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Abstract In this work we analyze traversable wormhole
spacetimes in the framework of a covariant generalization of
Einstein’s General Relativity known as energy–momentum
squared gravity, or f (R, T ) gravity, where R is the Ricci
scalar, T = TabT ab, and Tab is the energy–momentum ten-
sor. Considering a linear f (R, T ) = R+γT form, we show
that a wide variety of wormhole solutions for which the mat-
ter fields satisfy all the energy conditions, namely the null,
weak, strong and dominant energy conditions, exist in this
framework, without the necessity for a fine-tuning of the free
parameters that describe the model. Due to the complexity
of the field equations these solutions are obtained through an
analytical recursive algorithm. A drawback of the solutions
obtained is that they are not naturally localized, and thus a
matching with an external vacuum is required. For that pur-
pose, we derive the junction conditions for the theory, and we
prove that a matching between two spacetimes must always
be smooth, i.e., no thin-shells are allowed at the boundary.
Finally, we use these junction conditions to match the interior
wormhole spacetime to an exterior vacuum described by the
Schwarzschild solution, thus obtaining traversable localized
static and spherically symmetric wormhole solutions satis-
fying all energy conditions for the whole spacetime range.
We also prove that the methods outlined in this work can be
straightforwardly generalized to more complicated depen-
dencies of the action in T , as long as crossed terms between
R and T are absent.

a e-mail: joaoluis92@gmail.com (corresponding author)
b e-mail: nailhask8@hotmail.com
c e-mail: fslobo@fc.ul.pt

1 Introduction

A wormhole is a topological object connecting two spacetime
manifolds or two regions of the same spacetime manifold.
These objects have been widely studied in the framework of
General Relativity (GR) [1–6], but they feature an impor-
tant drawback: the requirement that the wormhole spacetime
be traversable entails the flaring-out condition [1], which
through the Einstein field equations violates the null energy
condition (NEC), and consequently violates all of the energy
conditions [3,7,8]. A matter distribution that violates the
NEC is thus denoted as exotic, and is of limited physical
relevance due to the rarity of an experimental counterpart.

To overcome the limitation of GR stated above, one usu-
ally recurs to the analysis of wormhole spacetimes in the
framework of modified theories of gravity [9–21], where the
additional components of the gravitational sector preserve
the geometry of the wormhole throat traversable, while keep-
ing the matter components non-exotic. Such a result can be
attained in several distinct modifications of GR, from f (R)

gravity and its extensions [22–28], to couplings between cur-
vature and matter [29,30], theories with additional funda-
mental fields [31,32], Einstein–Cartan gravity [33], Gauss–
Bonnet gravity [34–36], and braneworld scenarios [37,38].

In this work, we are interested in a covariant generaliza-
tion of Einstein’s GR known as energy–momentum squared
gravity, or f (R, T ) gravity [39,40], where T = TabT ab.
This particular modification of GR possesses similar fea-
tures to the previously explored curvature-matter coupling
theories [41–44], where the energy–momentum tensor is not
conserved. f (R, T ) gravity has been studied in a wide vari-
ety of topics from cosmological models [45–50] to compact
objects [51–54], including black-holes [55,56]. However, the
literature regarding wormhole physics in this theory is scarce:
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a few specific solutions were found through a Noether sym-
metry approach, but these solutions lack physical relevance
in the sense that they violate the NEC and, consequently,
all the other more restrictive energy conditions [57,58]. The
main objective of this work is thus to suppress this literary gap
and provide a clear analysis of physically relevant traversable
wormhole spacetimes in f (R, T ) gravity.

In the pursuit of physically relevant spacetime solutions
describing localized objects, one frequently makes use of
the so-called junction conditions. The junction conditions
for GR were derived long ago [59] and proven useful in sev-
eral astrophysical contexts, e.g. the analysis of traversable
wormholes [60–65], fluid stars [66–68] and gravitational col-
lapse [69,70]. The junction conditions are theory-dependent,
and several works analyze these conditions in modified the-
ories of gravity, from f (R) gravity and its extensions [71–
77] to theories with additional fundamental fields [78–81]
and metric-affine gravity [82–84]. A second objective of
this work is thus to provide the junction conditions of lin-
ear f (R, T ) along with explicit examples of application.

This paper is organized as follows. In Sect. 2, we intro-
duce the f (R, T ) theory of gravity along with our assump-
tions for the gravitational and matter sectors. In Sect. 3, we
solve the field equations and obtain solutions for non-exotic
traversable wormhole spacetimes. In Sect. 4, we derive the
junction conditions for linear f (R, T ) gravity and perform
a matching between the interior wormhole region previously
obtained and an exterior vacuum spacetime. In Sect. 5, we
analyze extensions of the theory to higher-order powers of
T . Finally, in Sect. 6 we present our conclusions.

2 Theory and framework

2.1 Action and field equations of f (R, T )

In this work, we are interested in studying wormholes in the
f (R, T ) theory of gravity. The action S that describes such
a theory can be written as

S = 1

2κ2

∫
�

√−g f (R, T ) d4x +
∫

�

√−gLmd
4x, (1)

where κ2 = 8πG/c4, with c the speed of light and G the
gravitational constant, � is a spacetime manifold described
by a set of coordinates xa , g is the determinant of the metric
gab, f (R, T ) is an arbitrary function of both the Ricci scalar
R = gabRab, with Rab the corresponding Ricci tensor, and
the scalar T = TabT ab, with Tab the energy–momentum ten-
sor, andLm is the matter Lagrangian. The energy–momentum
tensor is defined in terms of the variation of the matter
Lagrangian Lm with respect to the metric as

Tab = − 2√−g

δ
(√−gLm

)
δgab

. (2)

Throughout this work, we assume a geometrized unit system
in which c = G = 1, and hence κ2 = 8π .

Applying the variational method to Eq. (1) with respect to
the metric gab leads to the modified field equations as

fR Rab − 1

2
gab f − (∇a∇b − gab�) fR = 8πTab − fT �ab,

(3)

where we have introduced the notation fR ≡ ∂ f/∂R and
fT ≡ ∂ f/∂T , ∇a represents the covariant derivatives and
� = gab∇a∇b represents the d’Alembert operator, both in
terms of the metric gab, and �ab is an auxiliary quantity
arising from the variation of T as

�ab = δT
δgab

. (4)

Upon specifying a choice for the matter Lagrangian Lm or,
equivalently, a choice for the energy–momentum tensor Tab,
the explicit form of the auxiliary tensor �ab is set. Finally,
taking the covariant derivative of Eq. (3), one obtains the
conservation equation

8π∇bT
ab = ∇b

(
fT �ab

)
+ fR∇bR

ab − 1

2
gab∇b f. (5)

This result implies that the energy–momentum tensor Tab is
no longer required to be conserved in this theory, i.e., in gen-
eral one has ∇bT ab �= 0, a notable difference in comparison
with GR.

For the purpose of this work, we assume that the function
f (R, T ) is separable and linear in both R and T , i.e., we
write

f (R, T ) = R + γT , (6)

where γ is a coupling constant. Under this assumption, the
field equations in Eq. (3) and the conservation equation in
Eq. (5) reduce to

Gab = 8πTab − γ

(
�ab − 1

2
gabT

)
, (7)

8π∇bT
ab = γ∇b

(
�ab − 1

2
gabT

)
, (8)

respectively, where we have introduced the Einstein tensor
Gab = Rab − 1

2 Rgab. Extensions of these assumptions are
addressed below in Sect. 5.

2.2 Wormhole metric and matter distribution

In this work we are interested in static and spherically sym-
metric traversable wormhole solutions. A general static and
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spherically symmetric metric can be written in the usual
spherical coordinates (t, r, θ, ϕ) as

ds2 = −eζ (r)dt2 +
[

1 − b (r)

r

]−1

dr2 + r2d�2, (9)

where ζ (r) is the redshift function, b (r) is the shape func-
tion, and d�2 = dθ2 + sin2 θdϕ2 is the solid angle surface
element. For the wormhole to be traversable, the functions
ζ (r) and b (r) must satisfy a few conditions. First, it is nec-
essary that the spacetime is free of event horizons, to allow
an observer to cross the interior of the wormhole without
being trapped inside. For this purpose, the redshift func-
tion must remain finite throughout the whole spacetime, i.e.,
|ζ (r) | < ∞. Furthermore, one needs to impose a geomet-
rical condition at the wormhole throat r = r0, known as the
flaring-out condition,1 which can be described by the two
following boundary conditions on the shape function:

b (r0) = r0, b′ (r0) < 1. (10)

Two broad families of solutions for the functions ζ (r) and
b (r) that satisfy the requirements above are

ζ (r) = ζ0

(r0

r

)α

, b (r) = r0

(r0

r

)β

, (11)

where ζ0 is an arbitrary constant to be specified in what fol-
lows, and α and β are arbitrary positive exponents.

Regarding the matter sector, we assume that the distri-
bution of matter is well described by an anisotropic perfect
fluid, i.e., the energy–momentum tensor Tab takes the form

T b
a = diag (−ρ, pr , pt , pt ) , (12)

where ρ ≡ ρ (r) is the energy density, pr ≡ pr (r) is the
radial pressure, and pt ≡ pt (r) is the tangential pressure.
These quantities are assumed to depend solely on the radial
coordinate r to preserve the spherical symmetry of the worm-
hole. Under these assumptions, the matter Lagrangian takes
the formLm = 1

3 (pr + 2pt ), and consequently the auxiliary
tensor �ab reads

�ab = −2

3
(pr + 2pt )

(
Tab − 1

2
gabT

)
− T Tab + 2T c

a Tcb,

(13)

where T = gabTab is the trace of the energy–momentum
tensor.

1 The flaring-out condition in the neighbourhood of the throat takes the
form (b − b′r)/b2 > 0 [1].

3 Wormhole solutions

Under the assumptions outlined above, the field equations in
Eq. (7) feature three independent components, which take
the forms:

8πρ = γ

6

(
p2
r − 2p2

t − 3ρ2 − 8pr pt − 8prρ − 16ptρ
)

− β

r2

(r0

r

)β+1
, (14)

8πpr = γ

6

(
p2
r + 2p2

t − 3ρ2 − 12pr pt + 4prρ − 4ptρ
)

− 1

r2

(r0

r

)β+1 − αζ0

r2

(r0

r

)α
[

1 −
(r0

r

)β+1
]

, (15)

8πpt = −γ

6

(
p2
r + 6p2

t + 3ρ2 + 2pr pt + 2prρ − 2ptρ
)

+1 + β

2r2

(r0

r

)β+1 + α2ζ 2
0

4r2

(r0

r

)2α
[

1 −
(r0

r

)β+1
]

+αζ0

4r2

(r0

r

)α
[

2α − (1 + 2α + β)
(r0

r

)β+1
]

, (16)

respectively. Equations (14)–(16) form a system of three
equations for the three unknowns ρ, pr , and pt . These three
equations are quadratic in their respective unknowns, which
implies that this system features a set of at most eight inde-
pendent solutions, of which some might be complex for given
combinations of parameters.

Due to the complexity of the system of Eqs. (14)–(16),
explicit analytical solutions for ρ, pr and pt are unattain-
able, even for specific choices of the free parameters r0, α,
β, γ , and ζ0. Nevertheless, one can obtain analytical solu-
tions for these quantities recursively, as follows. We start
by selecting specific values for the free parameters. Then,
for this particular choice, starting at r = r0, one can alge-
braically solve the system for ρ (r0), pr (r0), and pt (r0), and
obtain the numerical values of these quantities, i.e., sets of
values

{
ρi

0, p
i
r0, p

i
t0

}
, for i ∈ {1, ..., 8} corresponding to the

eight independent solutions of the system. For each of these
solutions, one can increment the radius r in small steps, say
rn+1 = rn + ε for some small value ε, and find the values of
ρ (rn+1), pr (rn+1), and pt (rn+1). Repeating the process up
to a radius r large enough, one is able to extract analytically
the behavior of the solutions.

Note that not all of the solutions of the system above are
of interest to us. Indeed, we are only interested in those solu-
tions which are relevant from an astrophysical point of view,
i.e., solutions whose matter components satisfy the so-called
energy conditions. There are four different energy condi-
tions that we are interested in analyzing, namely the null
energy condition (NEC), the weak energy condition (WEC),
the strong energy condition (SEC), and the dominant energy
condition (DEC). For a diagonal energy–momentum tensor
Tab in the form of Eq. (12), the energy conditions take the
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Fig. 1 Matter quantity ρ and the energy condition combinations ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | for the choice of parameters
α = β = −γ = 1, r0 = 3 M and ζ0 = − 6

5

forms [7]:

NEC: ρ + pr ≥ 0, ρ + pt ≥ 0, (17)

WEC: NEC and ρ ≥ 0, (18)

SEC: NEC and ρ + pr + 2pt ≥ 0, (19)

DEC: ρ ≥ |pr |, ρ ≥ |pt |. (20)

The NEC guarantees that the average energy density as seen
by any null observer is positive, the WEC guarantees that the
average energy density as seen by any timelike observer is
positive, the SEC preserves the attractive behavior of gravity,
and the DEC guarantees that the speed of sound is smaller
than the speed of light c. The DEC is also frequently asso-
ciated with the stability of the object under study. From the
set of eight solutions for the matter quantities contained in
the theory, those which violate any of the energy conditions
stated above are discarded, and only those which satisfy all
of the energy conditions are considered.

Similarly to what was previously found in linear f (R, T )

gravity [28], one verifies that in linear f (R, T ) gravity solu-
tions satisfying all of the energy conditions mentioned above

exist for negative values of the coupling constant γ . However,
a main difference between the two theories is that in the lat-
ter the solutions are not asymptotically vacuum, even though
they are asymptotically flat. As an explicit example, consider
the combination of parameters α = β = −γ = 1, r0 = 3M ,
and ζ0 = −6/5.2 The matter quantity ρ and the combinations
ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt |, for the
solution that satisfies all of the energy conditions previously
mentioned, are plotted in Fig. 1. Furthermore, to illustrate
how the values of α and β impact the solutions, we plot
the matter quantities ρ, pr , and pt for the combination of
parameters γ = −1, r0 = 3 M and ζ0 = −6/5 for different
combinations of α and β in Fig. 2.

An important feature of the solutions described is that,
even though the spacetime is asymptotically flat, the mat-
ter components are non-vanishing for the whole range of
the radial coordinate, i.e., the solutions are not localized. To

2 While the choice of ζ0 at this point is quite arbitrary, we have chosen
this particular value for reasons that we clarify in subsequent sections.
A wide range of other values of ζ0, including positive values, would
provide a qualitatively similar solution.
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Fig. 2 Matter quantities ρ, pr and pt for the choice of parameters γ = 1, r0 = 3 M and ζ0 = − 6
5 and for different combinations of α and β

improve the physical relevance of these solutions, it is thus
necessary to consider a matching with an exterior vacuum
spacetime at some finite radius, thus resulting in localized
wormhole solutions. We address this issue in the following
section.

4 Junction conditions and matching

4.1 Junction conditions of linear f (R, T ) gravity

Let the spacetime manifold � be composed of two distinct
and complementary regions �±, described by metric tensors
g±
ab written in terms of coordinate systems xa±. We denote

the spacetime �+ as the exterior spacetime, and the space-
time �− as the interior spacetime. The boundary between
the two �± is a 3-dimensional hypersurface � described
by a metric hαβ written in terms of a coordinate system yα ,
where greek indices exclude the direction orthogonal to �.
The projection tensors from the 4-dimensional spacetime �

into the hypersurface � are defined as eaα = ∂xa/∂yα , and
the normal vector on � is defined as na = ε∂al, where l
is the affine parameter along the geodesics orthogonal to �

and ε is either 1, −1 or 0 for spacelike, timelike, and null
geodesic congruences, respectively. By construction, one has
naeα

a = 0. Following this notation, the induced metric hαβ

and the extrinsic curvature Kαβ of the hypersurface � can be
written as

hαβ = eaαe
b
βgab, Kαβ = eaαe

b
β∇anb. (21)

A convenient framework on which to analyze the junction
conditions is the distribution formalism. In this formalism,
any quantity X and its derivative ∇a X can be written in terms
of distribution functions as

X = X+θ (l) + X−θ (−l) , (22)

∇a X = ∇a X
+θ (l) + ∇a X

−θ (−l) + εna [X ] δ (l) , (23)

where X± represent the quantity X in the spacetimes �±
respectively, θ (l) is the Heaviside distribution function
defined as θ (l) = 0 for l < 0, θ (l) = 1 for l > 0, and

θ (l) = 1
2 for l = 0, δ (l) = ∂lθ (l) is the Dirac-delta distri-

bution, and we have introduced the notation [X ] to represent
the jump of X across �, i.e.,

[X ] = X+|� − X−|�. (24)

If the quantity X is continuous across �, one has [X ] = 0.
Furthermore, by definition one has

[
na

] = [
eaα

] = 0.
To obtain the junction conditions, all of the quantities

appearing in the field equations, namely Eq. (7), must be
written in the distribution formalism. Consider first the met-
ric gab, which can be written in the distributional formalism
as

gab = g+
abθ (l) + g−

abθ (−l) . (25)

The Christoffel symbols �c
ab associated with the metric

gab require the computation of the derivatives ∂cgab. Fol-
lowing Eq. (23), these derivatives take the form ∂cgab =
∂cg

+
abθ (l) + ∂cg

−
abθ (−l) + εnc [gab] δ (l). The presence of

the term proportional to δ (l) is problematic when one tries to
define the Riemann tensor Ra

bcd in the distributional formal-
ism, as the latter depends on products between the Christoffel
symbols which consequently depend on factors of the form
δ2 (l). These factors are singular in the distributional formal-
ism. To avoid these problematic terms, one needs to require
that the metric gab is continuous across �, i.e., [gab] = 0.
Since

[
eaα

] = 0, one can rewrite the previous condition in a
coordinate-independent way by projecting both indices into
the hypersurface �, from which one obtains
[
hαβ

] = 0. (26)

Equation (26) is known as the first junction condition, and
requires the induced metric at � to be continuous. Following
this result, the derivatives of gab reduce to

∂cgab = ∂cg
+
abθ (l) + ∂cg

−
abθ (−l) . (27)

One is now able to construct the Christoffel symbols in the
distribution formalism and, consequently, the Riemann ten-
sor and its contractions, i.e., the Ricci tensor Rab and the
Ricci scalar R, which are regular. These quantities take the
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forms

Rabcd = R+
abcdθ (l) + R−

abcdθ (−l) + R̄abcdδ (l) , (28)

Rab = R+
abθ (l) + R−

abθ (−l) + R̄abδ (l) , (29)

R = R+θ (l) + R−θ (−l) + R̄δ (l) , (30)

where R̄abcd , R̄ab, and R̄ denote the factors proportional to
δ (l), which are given in terms of geometrical quantities as

R̄abcd = 4
[
Kαβ

]
eα[anb]e

β
[dnc], (31)

R̄ab = −
(
ε
[
Kαβ

]
eα
a e

β
b + nanb [K ]

)
, (32)

R̄ = −2ε [K ] , (33)

where we have introduced the definition of index anti-
symmetrization as X[ab] = 1

2 (Xab − Xba), and K =
hαβKαβ denotes the trace of the extrinsic curvature.

Let us now consider the matter sector. In general theories
of gravity, any terms proportional to δ (l) in the gravitational
sector of the modified field equations can be associated to
the presence of a thin-shell of matter at the hypersurface �.
It is thus useful to write the energy–momentum tensor in the
distribution formalism as

Tab = T+
abθ (l) + T−

abθ (−l) + Sabδ (l) , (34)

where Sab = Sαβeα
a e

β
b , and Sαβ represents the 3-dimensional

energy–momentum tensor of the thin-shell. The scalar T in
the distributional formalism can thus be obtained via the con-
traction of Tab with itself, which takes the form

T = T +θ (l) + T −θ (−l) + T̄ δ (l) + T̂ δ2 (l) , (35)

where the quantities T̄ and T̂ are given in terms of matter
quantities as

T̄ = (
T+
ab + T−

ab

)
Sab, (36)

T̂ = SabS
ab. (37)

Similarly to what was previously mentioned to present the
regularity of the Riemann tensor, the term proportional to
δ2 (l) is singular in the distributional formalism and must be
eliminated. However, since T̂ is proportional to a quadratic
term in Sab, which is always non-negative, the only possible
way of eliminating the problematic singular terms in T is
to force the energy–momentum tensor of the thin-shell to
vanish, i.e.,

Sab = 0. (38)

Such a matching is called a smooth matching and, while in
several other theories of gravity it corresponds to a particular
case of the general matching with a thin-shell, in f (R, T )

gravity it is the only allowed method of matching two space-
times that preserves the regularity of the action.

Following the definitions outlined above and under the
restriction of Eq. (38), the field equations in Eq. (7) pro-
jected into the hypersurface � with eaαe

b
β take the form[

Kαβ

] − [K ] hαβ = 0. Taking the trace of this result with
hαβ implies [K ] = 0, which upon replacing back into the
original equation leads to
[
Kαβ

] = 0, (39)

i.e., the second junction condition implies that the extrinsic
curvature Kαβ must be continuous across �.

Summarizing, the matching between two spacetimes in
linear f (R, T ) gravity must always be smooth, i.e., in the
absence of a thin-shell, and the two junction conditions the
spacetimes must satisfy are the same as in GR, that is, the
induced metric hαβ and the extrinsic curvature Kαβ must be
continuous across the hypersurface �,
[
hαβ

] = 0,
[
Kαβ

] = 0. (40)

4.2 Matching with an exterior vacuum

Let us now make use of the junction conditions derived in the
previous section to perform a matching between the interior
wormhole spacetime and an exterior spherically symmetric
and static vacuum solution. The interior and exterior space-
time metrics to match are

ds2− = −Ceζ0
( r0
r

)α
dt2 +

[
1 −

(r0

r

)β+1
]−1

dr2 + r2d�2,

(41)

ds2+ = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2d�2,

(42)

respectively, where the metric in Eq. (41) corresponds to the
metric in Eq. (9) subjected to the ansatz for the redshift and
shape functions given in Eq. (11), the metric in Eq. (42)
corresponds to the Schwarzschild solution with a mass M ,
and the constant C is introduced for later convenience, to
guarantee that the time coordinates in both the interior and
exterior metrics coincide.

For a better readability, it is convenient to start the analy-
sis with the second junction condition. Due to the spherical
symmetry of the metrics considered, the extrinsic curvatures
K±

αβ feature only two independent components, namely K00

and Kθθ = Kφφ sin2 θ . These components take the forms

K−
00 = αζ0

2r

(r0

r

)α
√

1 −
(r0

r

)β+1
, (43)

K+
00 = −M

r2

√
r

r − 2M
, (44)

K−
θθ = r

√
1 −

(r0

r

)β+1
, (45)

123



Eur. Phys. J. C (2023) 83 :1040 Page 7 of 14 1040

K+
θθ = r

√
1 − 2M

r
. (46)

From the second junction condition in Eq. (40), i.e.,[
Kαβ

] = 0, one obtains two independent constrains to the
matching, namely [K00] = 0 and [Kθθ ] = 0. These two
constrains take the forms

αζ0

2

(r0

r

)α
√

1 −
(r0

r

)β+1 + M

r

√
r

r − 2M
= 0, (47)

√
1 −

(r0

r

)β+1 =
√

1 − 2M

r
, (48)

respectively. The second of these conditions, Eq. (48), can be
solved for the radius r and it features a unique real solution
for M > 0 and r0 > 0. This solution corresponds to the
radius r� at which the matching must be performed, and it
takes the form

r� = (2M)
− 1

β (r0)
1+ 1

β . (49)

Note that the radius r� must satisfy the condition r� > 2M
to avoid the presence of event horizons in the full wormhole
spacetime, which according to the result above constrains the
radius of the throat to be also in the regime r0 > 2M , for any
β ≥ 1. The solution for r� can now be introduced back into
the first condition, Eq. (47), in order to solve it with respect to
the value of ζ0 for which the matching at the radius r = r� is
possible. Following this procedure, one obtains the solution
for ζ0 as

ζ0 = (2M)
1−α+β

β (r0)
α
β

α
[
(2M)

1+ 1
β − (r0)

1+ 1
β

] . (50)

Note that since r0 > 2M , which was obtained from the pre-
vious constraint, this implies that for any α ≥ 1 and β ≥ 1,
one has ζ0 < 0. This is somewhat expected as negative val-
ues of ζ0 preserve the sign of the derivative of g00 consistent
in both the interior and exterior metrics, a requirement for
the matching to be smooth.

Let us now turn to the first junction condition in Eq. (40),
i.e.,

[
hαβ

] = 0. Since the angular parts of the metrics in
Eqs. (41) and (42) coincide, the angular components of the
induced metric hαβ are automatically continuous, and one
just needs to analyze the h00 components independently. The
condition [h00] = 0 takes the form

Ceζ0
( r0
r

)α =
(

1 − 2M

r

)
. (51)

From the analysis of the second junction condition, one has
already concluded that the matching must be performed at
a radius r� given by Eq. (49), and that the only value of ζ0

consistent with this matching is given by Eq. (50). Introduc-
ing these values of r� and ζ0 into Eq. (51) and solving for
the constant C one obtains

C =
[

1 −
(

2M

r0

)1+ 1
β

]
e
−α

[( r0
2M

)1+ 1
β −1

]
. (52)

We note that since r0 > 2M , the constant C is always strictly
positive independent of the values of α ≥ 1 and β ≥ 1, thus
preserving the correct metric signature.

Summarizing, for a given choice of r0 > 2 M , α ≥ 1,
and β ≥ 1, the second junction condition

[
Kαβ

] = 0 sets
the radius r� at which the matching must be performed (see
Eq. (49)) and the corresponding consistent value of ζ0 (see
Eq. (50)), whereas the first junction condition

[
hαβ

]
sets the

value of the constantC that allows for the complete spacetime
metric to be continuous (see Eq. (52)).

Let us provide a couple of explicit examples of application.
Consider the particular case r0 = 3 M , α = 1 and β = 1.
For this choice of parameters, Eq. (49) sets the matching
radius at r� = 9

2 M , Eq. (50) sets ζ0 = − 6
5 , and Eq. (52) sets

C = 5
9e

4
5 . The g00 component of the interior, exterior, and

matched metrics are plotted in the left panel of Fig. 3. As an
example with a slightly different behavior, consider instead
α = 10 while keeping β = 1 and r0 = 3 M . For this com-
bination, one obtains the same r� = 9

2 M , whereas ζ0 and
C take the values ζ0 ∼ −4.61320 and C ∼ 0.601826. This
solution is plotted in the right panel of Fig. 3. We observe
that for both solutions the g00 component of the metric tran-
sitions smoothly from the interior to the exterior metric, thus
preserving the continuity of both the induced metric and the
extrinsic curvature.

Let us now analyze the radial component of the metric,
grr . We take as explicit examples the same case as before
for α = β = 1, for which the remaining parameters have
already been specified, as well as the combination α = 1
with β = 3, from which one obtains r� ∼ 3.43414M ,
ζ0 ∼ −1.59637, and C ∼ 1.68432. For both combinations
of parameters given, the grr components of the metric are
given in Fig. 4. Even though the radial component of the
metric is unaffected by the junction conditions, since both
the induced metric hαβ and the extrinsic curvature Kαβ are
3-dimensional tensors on the hypersurface �, one verifies
that grr is continuous, although not differentiable at r = r� .
This continuity of the grr is expected if one takes into consid-
eration its dependence in the mass function inside a spherical

hypersurface of radius r , m (r), i.e., grr =
(

1 − 2m(r)
r

)−1
,

from which one obtains m (r) = r0
2

( r0
r

)β (see Eqs. (41) and
(11)). Indeed, since the matching between the interior and the
exterior spacetimes is smooth, i.e., in the absence of a thin-
shell, one expects the mass function m (r) to be continuous
at r� , which implies consequently that the grr component of
the metric is continuous.
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Fig. 3 Components g00 of the interior wormhole spacetime in Eq. (41)
(red dashed curve) and the exterior Schwarzschild spacetime in Eq. (42)
(blue dotted curve) for β = 1, r0 = 3 M , and α = 1 (left panel) or

α = 10 (right panel). The thin black line represents the solution gtot
00

obtained via the matching between the interior and exterior solutions at
r = r�

Fig. 4 Components grr of the interior wormhole spacetime in Eq. (41)
(red dashed curve) and the exterior Schwarzschild spacetime in Eq. (42)
(blue dotted curve) for α = 1, r0 = 3 M and β = 1 (left panel) or β = 3

(right panel). The thin black line represents the solution gtot
rr obtained

via the matching between the interior and exterior solutions at r = r�

5 Extensions to higher powers of T

In the previous sections, we have analyzed wormhole solu-
tions in a specific form of the f (R, T ) theory that is linear
in both R and T . In this form of the action, we have imple-
mented a recursive method to obtain wormhole solutions
satisfying the energy conditions, and we have performed a
matching with an exterior vacuum spacetime in such a way
as to preserve the locality of the solutions obtained. In this
section, we argue that as long as the form of the function
f (R, T ) remains separable and linear in R, featuring higher
powers of T , the analysis of the previous sections can be
straightforwardly generalized to find wormhole solutions and
it is still applicable to these cases, albeit requiring a larger
computational time.

Consider the following extension of the f (R, T ) theory
used in the previous sections as

f (R, T ) = R + γT + σT n . (53)

For the particular form of f (R, T ) given in Eq. (53), the
field equations and the conservation equation given in Eqs.
(3) and (5), respectively, take the forms

Gab = 8πTab − λ

(
�ab − 1

2
gabT

)

− σT n−1
(
n�ab − 1

2
gabT

)
, (54)

8π∇bT
ab = γ∇b

(
�ab − 1

2
gabT

)

+ σ∇b

(
nT n−1�ab − 1

2
gabT n

)
, (55)

respectively.
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Fig. 5 Matter quantity ρ and the energy condition combinations ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr | and ρ − |pt | for the choice of parameters
α = β = −σ = 1, γ = 0, r0 = 3 M and ζ0 = − 6

5

For a metric of the same form as given previously in Eq.
(9) and a matter distribution of the same form as given in Eq.
(12), the field equations in Eq. (54) feature several additional
terms in comparison with their linear counterpart, rendering
the resultant equations extremely lengthy. As such, we do
not write these equations explicitly in this manuscript, but
we outline the fundamental differences in what follows.

5.1 Wormhole solutions

For a linear form of the function f (R, T ) as used in Sect. 2,
the field equations in Eqs. (14)–(16) are at most quadratic in
the matter quantities ρ, pr , and pt , which results in a com-
plete set of at most eight possibly complex solutions for these
quantities. When one considers higher powers of T , one con-
sequently obtains higher powers of the matter quantities in
the field equations, resulting in a larger set of solutions. Nev-
ertheless, due the fact that the function f (R, T ) does not fea-
ture any crossed terms in R and T , the resultant relationship
between the matter quantities is still algebraic (in opposition

to the differential relation one would find if the crossed terms
were present). Consequently, the recursive method outlined
in Sect. 3 to obtain solutions is still applicable.

Similarly to what was found in the linear version of the
theory, one verifies that wormhole solutions satisfying all of
the energy conditions also exist in theories described by func-
tions f (R, T ) featuring higher powers of T . As an example
of application, consider the same wormhole metric as before,
described by the parameters α = β = 1, r0 = 3 M , and
ζ0 = −6/5, in a particular form of f (R, T ) that is linear in
R and quadratic in T , i.e., it is described by the parameters
γ = 0, σ = −1, and n = 2. The matter quantity ρ and the
energy condition combinations ρ + pr , ρ + pt , ρ + pr +2pt ,
ρ−|pr |, and ρ−|pt | are given in Fig. 5. Since these solutions
are also not localized and require a matching with an external
vacuum, we turn to the analysis of the junction conditions in
this case in the following section.

It is also interesting to note that the presence of higher
powers of T alleviates the restrictions on the lower powers
in the form of f (R, T ). Indeed, for a linear form of this
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Fig. 6 Values of the matter quantities ρ, pr and pt , as well as the energy condition combinations ρ + pr , ρ + pt , ρ + pr + 2pt , ρ − |pr |, and
ρ − |pt | at the throat r = r0 for α = β = 1, r0 = 3 M , n = 2, and for different values of γ and σ
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function, obtained with σ = 0, we have verified in Sect. 3
that solutions satisfying the energy conditions for the whole
spacetime could only be obtained by taking negative values
of γ , see e.g. Fig. 1. However, when a larger power of T
is present, one verifies that solutions satisfying the energy
conditions can be obtained even for positive values of γ . In
Fig. 6, we plot the values of the matter quantities ρ, pr and pt ,
as well as the energy condition combinations ρ + pr , ρ + pt ,
ρ+ pr+2pt , ρ−|pr |, and ρ−|pt |, at the throat r = r0 = 3M
for a function f (R, T ) featuring both a linear and a quadratic
terms in T , i.e., n = 2, for the same wormhole solutions with
α = β = 1 and ζ0 = −6/5, with varying values of γ and σ .
We observe that both the values of γ and σ affect the values
of the matter quantities at the throat. However, as long as
σ remains negative, γ is allowed to take both positive and
negative values, while the solution preserves the validity of all
the energy conditions at the throat. Furthermore, all of these
solutions that satisfy the energy conditions at the throat also
satisfy those conditions for any radius larger than the throat,
see e.g. Fig. 5 as a particular example.

5.2 Junction conditions

In the previous section we have obtained wormhole solutions
satisfying the energy conditions for the whole spacetime con-
sidering a function f (R, T ) that is quadratic in T . Similarly
to the solutions obtained in a linear form of the function,
these solutions are not localized and thus require a matching
with an external vacuum. Let us analyze what are the conse-
quences of having a higher-order power in T in the function
f (R, T ) to the set of junction conditions obtained in Sect. 4.

The modified field equations when a higher-order power of
T is added to the action are given in Eq. (54). These equations
feature an additional term proportional to σ in comparison
with their linear counterparts, which includes products of the
form T n−1�ab and powers of T n . In Sect. 4, we have proven
that in order for T to be well-defined in the distributional
formalism, it is required that the matching is smooth, i.e., in
the absence of a thin-shell, or Sab = 0. A direct consequence
of this restriction is that T , as well as the auxiliary tensor
�ab given in Eq. (13), are completely regular, i.e., they only
feature terms proportional to θ (l) but no terms proportional
to δ (l). Consequently, the products between T and �ab, as
well as the powers T n , also preserve the same regularity.
Therefore, no additional junction conditions arise from the
addition of a higher-order power-law of T in the function
f (R, T ).

The result of the previous paragraph is based on the
same fundamental principle that allows for the relationship
between the matter quantities in the modified field equations
to remain algebraic, a trait that allowed us to generalize our
recursive method to obtain solutions to the case in which
higher powers of T are present: the fact that crossed terms

in R and T are absent. Indeed, if one had considered an
extension of f (R, T ) featuring crossed terms in R and T ,
additional differential terms in T would appear in the field
equations, resulting in additional junction conditions. These
extensions will be covered in a separate manuscript, since
they are out of the scope of this work.

6 Conclusions

In this work, we analyzed traversable wormhole spacetimes
in the context of f (R, T ) gravity for a linear model on both R
and T . We have proven that a plethora of traversable worm-
hole solutions satisfying all energy conditions exist in this
theory, thus being of a strong physical relevance. Due to the
fact that the modified field equations are quadratic in the mat-
ter quantities ρ, pr , and pt , the theory allows for eight inde-
pendent (possibly complex) solutions for these quantities,
some of which are of limited physical relevance. Thus, we
have implemented an iterative recursive algorithm to extract
the non-exotic wormhole solutions, and obtain the behavior
of the matter quantities.

An interesting feature of the solutions obtained in this
work is the fact that, although the spacetime metrics are
asymptotically flat, the f (R, T ) theory allows for matter
distributions that are not asymptotically vacuum, and thus
not localized. Nevertheless, the localization of the solutions
is possible via the use of the junction conditions of the the-
ory. We have derived such conditions and proven that only
a smooth matching is allowed in this theory, as the scalar T
becomes singular in the presence of a thin-shell. The junc-
tion conditions for a smooth matching thus reduce to those
of GR, i.e., the continuity of the induced metric and extrin-
sic curvature at the hypersurface that separates the interior
from the exterior spacetime regions. Upon performing the
matching mentioned, we have obtained localized wormhole
solutions satisfying all of the energy conditions for the whole
spacetime, thus being of a particular astrophysical relevance.

The methods introduced in this work can be straightfor-
wardly generalized to more complicated dependencies of the
function f (R, T ) in T , provided that crossed terms between
R and T are absent. Indeed, the fact that the relationship
between the matter quantities ρ, pr , and pt remains alge-
braic in such a case, allows for the extraction of suitable
wormhole solutions following the same recursive method.
Furthermore, due to the requirement that the matching in
this theory is smooth, the absence of these crossed terms also
guarantees that no additional junction conditions arise in the
theory, thus allowing one to effectively localize the solutions
obtained in precisely the same way as in the linear T coun-
terpart. For completeness, we have applied these methods to
a quadratic version of the theory and successfully obtained
astrophysically relevant and localized wormhole solutions.
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The f (R, T ) theory of gravity is still a relatively unex-
plored theory in the topic of wormhole physics due to the
complexity of the field equations when more generalized
forms of the function are considered. Interesting extensions
of this work could cover the analysis of junction conditions
for an arbitrary form of the function, particularly including
crossed terms of R and T . Such a form of the function would
also require the development of new methods to solve the
field equations, as these are promoted to differential rela-
tions between the matter fields. An alternative way to address
the analysis of more complicated forms of the action is to
consider the dynamically equivalent scalar-tensor represen-
tation of the theory, in which the arbitrary dependency of the
action in R and T is exchanged for two scalar fields, with
the advantage of reducing the order of the field equations to
second-order. We hope to address these issues in upcoming
works.

Acknowledgements JLR acknowledges the European Regional Devel-
opment Fund and the programme Mobilitas Pluss for financial support
through Project No. MOBJD647, and project No. 2021/43/P/ST2/02141
co-funded by the Polish National Science Centre and the European
Union Framework Programme for Research and Innovation Horizon
2020 under the Marie Sklodowska-Curie Grant agreement No. 94533.
N.G. and F.S.N.L. acknowledge funding from the Fundação para a
Ciência e a Tecnologia (FCT) research Grants UIDB/04434/2020 and
UIDP/04434/2020. F.S.N.L. acknowledges support from the FCT Sci-
entific Employment Stimulus contract with reference CEECINST/000
32/2018, and funding from the FCT research Grant CERN/FIS-
PAR/0037/2019 and PTDC/FIS-AST/0054/2021.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Data sharing
not applicable to this article as no datasets were generated or analysed
during the current study.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

References

1. M.S. Morris, K.S. Thorne, Wormholes in spacetime and their use
for interstellar travel: a tool for teaching general relativity. Am. J.
Phys. 56, 395 (1988)

2. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time
machines, and the weak energy condition. Phys. Rev. Lett. 61,
1446–1449 (1988)

3. M. Visser, Lorentzian Wormholes: From Einstein to Hawking
(Springer, New York, 1996)

4. M. Visser, S. Kar, N. Dadhich, Traversable wormholes with arbi-
trarily small energy condition violations. Phys. Rev. Lett. 90,
201102 (2003). arXiv:gr-qc/0301003

5. S. Kar, D. Sahdev, Evolving Lorentzian wormholes. Phys. Rev. D
53, 722–730 (1996). arXiv:gr-qc/9506094

6. J.P.S. Lemos, F.S.N. Lobo, S. Quinet de Oliveira, Morris–Thorne
wormholes with a cosmological constant. Phys. Rev. D 68, 064004
(2003). arXiv:gr-qc/0302049

7. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-
Time (Cambridge University Press, Cambridge, 1973). (ISBN 978-
1-00-925316-1)

8. S.N. Sajadi, N. Riazi, Gravitational lensing by multi-polytropic
wormholes. Can. J. Phys. 98(11), 1046–1054 (2020). https://doi.
org/10.1139/cjp-2019-0524. arXiv:1611.04343 [gr-qc]

9. A.G. Agnese, M. La Camera, Wormholes in the Brans–Dicke the-
ory of gravitation. Phys. Rev. D 51, 2011–2013 (1995)

10. K.K. Nandi, B. Bhattacharjee, S.M.K. Alam, J. Evans, Brans–
Dicke wormholes in the Jordan and Einstein frames. Phys. Rev.
D 57, 823–828 (1998). arXiv:0906.0181 [gr-qc]

11. M. La Camera, Wormhole solutions in the Randall–Sundrum sce-
nario. Phys. Lett. B 573, 27–32 (2003). arXiv:gr-qc/0306017

12. M. La Camera, Wormhole solutions in the Randall–Sundrum sce-
nario. Phys. Lett. B 573, 27–32 (2003). arXiv:gr-qc/0306017

13. F.S.N. Lobo, Exotic solutions in general relativity: traversable
wormholes and “warp drive”T M spacetimes, in Classical and
Quantum Gravity Research, ed. by M.N. Christiansen, T.K. Ras-
mussen (Nova Science Publishers, 2008), p. 1. arXiv:0710.4474
[gr-qc]

14. R. Garattini, F.S.N. Lobo, Self sustained phantom wormholes in
semi-classical gravity. Class. Quantum Gravity 24, 2401–2413
(2007). arXiv:gr-qc/0701020

15. F.S.N. Lobo, General class of wormhole geometries in confor-
mal Weyl gravity. Class. Quantum Gravity 25, 175006 (2008).
arXiv:0801.4401 [gr-qc]

16. R. Garattini, F.S.N. Lobo, Self-sustained traversable wormholes
in noncommutative geometry. Phys. Lett. B 671, 146–152 (2009).
arXiv:0811.0919 [gr-qc]

17. F.S.N. Lobo, M.A. Oliveira, General class of vacuum Brans–Dicke
wormholes. Phys. Rev. D 81, 067501 (2010). arXiv:1001.0995 [gr-
qc]

18. N. Montelongo Garcia, F.S.N. Lobo, Exact solutions of Brans–
Dicke wormholes in the presence of matter. Mod. Phys. Lett. A 40,
3067–3076 (2011). arXiv:1106.3216 [gr-qc]

19. R. Garattini, F.S.N. Lobo, Self-sustained wormholes in mod-
ified dispersion relations. Phys. Rev. D 85, 024043 (2012).
arXiv:1111.5729 [gr-qc]

20. R. Myrzakulov, L. Sebastiani, S. Vagnozzi, S. Zerbini, Static spher-
ically symmetric solutions in mimetic gravity: rotation curves
and wormholes. Class. Quantum Gravity 33(12), 125005 (2016).
arXiv:1510.02284 [gr-qc]

21. F.S.N. Lobo (editor), Wormholes, Warp Drives and Energy Condi-
tions, Fundam. Theor. Phys. 189, (Springer International Publish-
ing, 2017)

22. F.S.N. Lobo, M.A. Oliveira, Wormhole geometries in f(R) mod-
ified theories of gravity. Phys. Rev. D 80, 104012 (2009).
arXiv:0909.5539 [gr-qc]

23. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev.
D 86, 127504 (2012). arXiv:1209.5862 [gr-qc]

24. J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo, Wormholes in gener-
alized hybrid metric-Palatini gravity obeying the matter null

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/gr-qc/0301003
http://arxiv.org/abs/gr-qc/9506094
http://arxiv.org/abs/gr-qc/0302049
https://doi.org/10.1139/cjp-2019-0524
https://doi.org/10.1139/cjp-2019-0524
http://arxiv.org/abs/1611.04343
http://arxiv.org/abs/0906.0181
http://arxiv.org/abs/gr-qc/0306017
http://arxiv.org/abs/gr-qc/0306017
http://arxiv.org/abs/0710.4474
http://arxiv.org/abs/gr-qc/0701020
http://arxiv.org/abs/0801.4401
http://arxiv.org/abs/0811.0919
http://arxiv.org/abs/1001.0995
http://arxiv.org/abs/1106.3216
http://arxiv.org/abs/1111.5729
http://arxiv.org/abs/1510.02284
http://arxiv.org/abs/0909.5539
http://arxiv.org/abs/1209.5862


Eur. Phys. J. C (2023) 83 :1040 Page 13 of 14 1040

energy condition everywhere. Phys. Rev. D 98(6), 064054 (2018).
arXiv:1808.08975 [gr-qc]

25. J.L. Rosa, Double gravitational layer traversable wormholes in
hybrid metric-Palatini gravity. Phys. Rev. D 104(6), 064002 (2021).
arXiv:2107.14225 [gr-qc]

26. J.L. Rosa, J.P.S. Lemos, Junction conditions for generalized hybrid
metric-Palatini gravity with applications. Phys. Rev. D 104(12),
124076 (2021). arXiv:2111.12109 [gr-qc]

27. J.L. Rosa, R. André, J.P.S. Lemos, Traversable wormholes with
double layer thin shells in quadratic gravity. Gen. Relativ. Gravit.
55(5), 65 (2023). arXiv:2305.06829 [gr-qc]

28. J.L. Rosa, P.M. Kull, Non-exotic traversable wormhole solutions
in linear f (R, T ) gravity. Eur. Phys. J. C 82(12), 1154 (2022).
arXiv:2209.12701 [gr-qc]

29. N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a
nonminimal curvature-matter coupling. Phys. Rev. D 82, 104018
(2010). arXiv:1007.3040 [gr-qc]

30. N. Montelongo Garcia, F.S.N. Lobo, Nonminimal curvature-matter
coupled wormholes with matter satisfying the null energy condi-
tion. Class. Quantum Gravity 28, 085018 (2011). arXiv:1012.2443
[gr-qc]

31. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Modified-gravity
wormholes without exotic matter. Phys. Rev. D 87(6), 067504
(2013). arXiv:1301.6878 [gr-qc]

32. L.A. Anchordoqui, S.E. Perez Bergliaffa, D.F. Torres, Brans–Dicke
wormholes in nonvacuum space-time. Phys. Rev. D 55, 5226–5229
(1997). arXiv:gr-qc/9610070

33. E. Di Grezia, E. Battista, M. Manfredonia, G. Miele, Spin, torsion
and violation of null energy condition in traversable wormholes.
Eur. Phys. J. Plus 132(12), 537 (2017). https://doi.org/10.1140/
epjp/i2017-11799-6. arXiv:1707.01508 [gr-qc]

34. B. Bhawal, S. Kar, Lorentzian wormholes in Einstein Gauss–
Bonnet theory. Phys. Rev. D 46, 2464 (1992)

35. G. Dotti, J. Oliva, R. Troncoso, Exact solutions for the Einstein–
Gauss–Bonnet theory in five dimensions: black holes, worm-
holes and spacetime horns. Phys. Rev. D 76, 064038 (2007).
arXiv:0706.1830 [hep-th]

36. M.R. Mehdizadeh, M. Kord Zangeneh, F.S.N. Lobo, Einstein–
Gauss–Bonnet traversable wormholes satisfying the weak energy
condition. Phys. Rev. D 91(8), 084004 (2015). arXiv:1501.04773
[gr-qc]

37. K.A. Bronnikov, S.W. Kim, Possible wormholes in a brane world.
Phys. Rev. D 67, 064027 (2003). arXiv:gr-qc/0212112

38. F.S.N. Lobo, A general class of braneworld wormholes. Phys. Rev.
D 75, 064027 (2007). arXiv:gr-qc/0701133

39. N. Katırcı, M. Kavuk, f (R, TμνTμν) gravity and Cardassian-like
expansion as one of its consequences. Eur. Phys. J. Plus 129, 163
(2014). arXiv:1302.4300 [gr-qc]

40. M. Roshan, F. Shojai, Energy–momentum squared gravity. Phys.
Rev. D 94(4), 044002 (2016). arXiv:1607.06049 [gr-qc]

41. O. Bertolami, C.G. Boehmer, T. Harko, F.S.N. Lobo, Extra force in
f(R) modified theories of gravity. Phys. Rev. D 75, 104016 (2007).
arXiv:0704.1733 [gr-qc]

42. T. Harko, F.S.N. Lobo, f (R, Lm ) gravity. Eur. Phys. J. C 70, 373–
379 (2010). arXiv:1008.4193 [gr-qc]

43. T. Harko, F.S.N. Lobo, S. Nojiri, S.D. Odintsov, f (R, T ) gravity.
Phys. Rev. D 84, 024020 (2011). arXiv:1104.2669 [gr-qc]

44. Z. Haghani, T. Harko, F.S.N. Lobo, H.R. Sepangi, S. Shahidi, Fur-
ther matters in space-time geometry: f (R, T, RμνTμν) gravity.
Phys. Rev. D 88(4), 044023 (2013). arXiv:1304.5957 [gr-qc]

45. C.V.R. Board, J.D. Barrow, Cosmological models in energy-
momentum-squared gravity. Phys. Rev. D 96(12), 123517 (2017)
(Erratum: Phys. Rev. D 98(12), 129902 (2018)). arXiv:1709.09501
[gr-qc]

46. Ö. Akarsu, N. Katırcı, S. Kumar, Cosmic acceleration in a dust
only universe via energy–momentum powered gravity. Phys. Rev.
D 97(2), 024011 (2018). arXiv:1709.02367 [gr-qc]

47. S. Bahamonde, M. Marciu, P. Rudra, Dynamical system analysis
of generalized energy–momentum-squared gravity. Phys. Rev. D
100(8), 083511 (2019). arXiv:1906.00027 [gr-qc]

48. O. Akarsu, N. Katirci, S. Kumar, R.C. Nunes, M. Sami, Cos-
mological implications of scale-independent energy-momentum
squared gravity: pseudo nonminimal interactions in dark mat-
ter and relativistic relics. Phys. Rev. D 98(6), 063522 (2018).
arXiv:1807.01588 [gr-qc]

49. Ö. Akarsu, S. Kumar, E. Özülker, J.A. Vazquez, Relaxing cosmo-
logical tensions with a sign switching cosmological constant. Phys.
Rev. D 104(12), 123512 (2021). arXiv:2108.09239 [astro-ph.CO]

50. A.H. Barbar, A.M. Awad, M.T. AlFiky, Viability of bouncing
cosmology in energy–momentum-squared gravity. Phys. Rev. D
101(4), 044058 (2020). arXiv:1911.00556 [gr-qc]

51. N. Nari, M. Roshan, Compact stars in energy–momentum squared
gravity. Phys. Rev. D 98(2), 024031 (2018). arXiv:1802.02399 [gr-
qc]

52. Ö. Akarsu, J.D. Barrow, S. Çıkıntoğlu, K.Y. Ekşi, N. Katırcı, Con-
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