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Abstract This study aims to investigate spherically sym-
metric anisotropic solutions that describe compact stellar
objects in the modified Rastall teleparallel (MRT) theory
of gravity. In order to achieve this goal, we utilize the Kar-
markar condition to evaluate the spherically symmetric com-
ponents of the line element. We explore the field equations
by selecting appropriate off-diagonal tetrad fields for two dif-
ferent scenarios. In the first scenario, we use a hybrid form
of f (T ) = βemT T n and a linear equation of state (EoS)
pr = ξρ +φ, where 0 < ξ < 1, to evaluate h(T ). In the sec-
ond scenario, we again use a hybrid form of f (T ) = βemT T n

and a logarithmic form of h(T ) = ψ log(φT χ ). We aim
to investigate the possible forms of gravity modifications
by evaluating the function for different values of m and n,
reducing the gravity forms to hybrid, power law form, and
exponential form. Our findings reveal that the exponential-
logarithmic case is unstable in our scenario. To the best of our
knowledge, we are the first to attempt to explore compact star
models in MRT gravity. After obtaining the field equations,
we investigate different physical parameters that demonstrate
the stability and physical acceptability of the stellar models.
We utilize observational data, such as the mass and radius
of the PSRJ 1416 − 2230 model, to ensure the physical
plausibility of our findings.
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1 Introduction

Modern cosmologists are facing a significant challenge with
the late-time expansion of our universe. A wealth of obser-
vationally supported data [1–5] suggests that our cosmos
is continuously expanding. Interestingly, this expansion is
believed to be driven by an unknown form of energy called
dark energy (DE), which makes up around two-thirds of the
total energy present in the universe. The mysterious nature
of DE is thought to accelerate the late-time cosmic expan-
sion, while dark matter, the second leading component in the
cosmos distribution, acts as invisible matter and supports the
gravitational clustering procedure. The existence of both DE
and dark matter is affirmed by their gravitational impact.

Einstein’s general relativity (GR) theory, which outlines
the effects of gravity on a local scale, fails to produce accu-
rate results when considering the global concept of universe-
accelerated expansion. To investigate this concept, many
modified theories of gravity have been proposed. Modified
theories of gravity are successful approaches to discussing
the gravitational impact and various stages of cosmic history.
These theories are obtained by simply changing the curva-
ture part of GR action. A variety of modified gravity theories
can be found in the literature, such as f (R) gravity, f (R, τ )

gravity, f (G) gravity, f (R,G) gravity, and f (T ) gravity
and some other theories (R is Ricci scalar, T is torsion, G is
Gauss-Bonnet term), which all have different approaches to
the concept of cosmic expansion. These theories are widely
discussed and explored in papers such as [6–10].

One of the notable amended theories of gravity is the f (R)

theory [11], which is regarded as a primary extension of GR.
Unlike a linear Ricci scalar, the action of this theory involves a
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function of the Ricci scalar R. Another interesting approach
is the formulation of torsion-based theories, with the first
such gravitational framework being the “Teleparallel Equiv-
alent to General Relativity” (TEGR). This theory depends
on the Weitzenbock connection, making it a curvature-less
theory with non-zero torsion [12]. A generalisation of this
theory was proposed, with the Lagrangian being a function
of the torsion scalar T (similar to the f (R) extension of GR).
It is worth noting that f (T ) gravity is considered simpler
than f (R) gravity because its field equations are of second
order, whereas those of f (R) gravity result in fourth-order
field equations. However, it has been argued in the litera-
ture [13,14] that the Platini version of f (R) gravity yields
a system of second-order field equations. In comparison to
GR, it has been observed [15] that f (T ) gravity exhibits an
additional degree of freedom under Lorentz transformations,
thus remaining invariant. Interestingly, since f (T ) gravity
is invariant under Lorentz transformations, the choice of a
good or bad tetrad plays a crucial role in this theory. It has
been noticed that every solution for GR is also acceptable for
TEGR. A significant amount of research has been conducted
in the literature to discuss the accelerated expansion of the
universe using the f (T ) gravitational framework. To over-
come the limitations of f (T ) gravity for diagonal tetrads in
producing solar systems, it is argued that off-diagonal tetrads
(good tetrads) can be utilized [16,17].

Einstein’s GR theory postulates a minimal coupling
between spacetime geometry and matter field, resulting
in the conservation law of the energy-momentum tensor
(EMT). However, this conservation law only holds true for
Minkowski’s flat spacetime or weak gravitational fields, leav-
ing room for modifications to the theory. Rastall [18,19] pro-
posed an amendment to GR that improves upon the conserva-
tion law to account for its violation in curved spacetime. This
amendment introduces the Rastall coupling parameter,λ,
which measures the affinity of spacetime geometry to couple
with matter field in a non-minimal way. The limiting value of
λ, i.e., zero coupling, reverts the modified form back to GR.
The revised conservation law is expressed as∇νT νμ = λR,μ.
The modified field equations derived from this amendment
are given as:

Gμν + κλgμνR = κTμν,

where κ denotes the gravitational coupling constant.
It is noteworthy that the modified Rastall theory (RT)

shares all vacuum solutions with GR. Nonetheless, when the
Rastall parameter λ is considered, the non-vacuum solutions
show substantial differences from those in GR. Leading to
a growing interest in RT among researchers, they showed
their interest by making a variety of comments regarding the
novelty and correctness of RT. Although researchers have
shown an increasing interest in exploring the fascinating and
mysterious features of the RT, Visser [20] recently claimed

that the RT is simply equivalent to GR. However, Darabi et
al. [21,22] disagreed, arguing that these theories are distinct
and that Visser’s claim was inaccurate. Visser argued that
the energy-momentum-tensor (EMT) proposed by Rastall
was flawed and that Rastall’s proposal was simply a rear-
rangement of the matter sector of GR. In contrast, Darabi
et al. argued that Rastall’s EMT definition was consistent
with the conventional definition of EMT. To reinforce their
argument, they offered a compelling example of the f (R)

theory of gravity, using the same method as Visser [20], but
demonstrating that the f (R) theory is not equivalent to GR.
In essence, the RT is a modified form of GR, as we previously
noted that for a specific value of λ (i.e., the Rastall parame-
ter), GR can be restored. It is worth noting that the thorough
analysis of Darabi et al. [21,22] was supported by the recent
study of Hansraj et al. [23].

Various modifications have been proposed for Rastall
gravity since its emergence. For instance, in a study refer-
enced as [24], Rastall’s theory has been generalized by the
authors by postulating ∇μTμν = ∇ν(λ

′R), where λ′ is a
function varying in space-time coordinates. In another refer-
ence [25], the authors assume ∇μTμν = λ∇ν f (R), which
leads to the presentation of a solution for an electrically
and magnetically neutral regular black hole. Additionally,
a modified version of teleparallel gravity based on Rastall’s
assumption is introduced in [26,27].

Researchers are interested in exploring the formation of
extremely dense matter in extreme conditions, as a compact
star could be the ultimate stage in the life cycle of a regu-
lar star. Pulsars and other rotating stars with strong magnetic
fields are examples of compact stellar objects that exhibit
very high densities and are significant in astrophysics [28].
Originally, it was thought that spherically symmetric matter
distribution in a perfect fluid, where the radial and tangential
pressures are equivalent, could describe these objects. How-
ever, in 1992, Jeans [29] proposed that the unusual conditions
inside a stellar body required anisotropy to better explain
the displacement of matter. Anisotropy, which measures the
deviation from isotropic conditions (� = pt − pr ), may arise
from several sources such as superfluids, fluid mixtures, solid
cores, phase transitions, viscosity, and magnetic fields within
the star [29–35].

In this study, we investigate the creation of dense stars in an
anisotropic scenario using the environmental effect of MRT
gravity. Our research also includes an analysis of the stability
and physical characteristics of anisotropic stellar objects. We
examine parameters such as metric functions, energy density,
pressure (both radial and transverse), anisotropy, gradients,
equations of state, sound speeds using Abreu criteria, and
the balance of Tolman–Oppenheimer–Volkoff (TOV) forces.
Torsion-dependent theories are typically founded on tetrad
formalism, so we have selected the off-diagonal tetrad field
for this study. We provide a detailed explanation of the forma-
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tion of compact stellar bodies based on gravity and assess the
suitability of the chosen tetrad form, which can be adjusted to
accommodate all forms of gravity modification. It is widely
recognised that the conservation of the EMT, which is the
cornerstone of GR, governs the behaviour of matter and its
interaction with gravity [36]. Nevertheless, this conserva-
tion principle is modified by the MRT gravity theory. This
enables the EMT not to be conserved, thereby modifying
the dynamics of matter and its gravitational interaction [37].
The researchers hope to understand the ramifications of this
divergence from energy-momentum conservation by study-
ing compact objects in the context of MRT gravity. In par-
ticular, many researchers are interested in how extremely
dense and compact systems such as neutron stars and white
dwarfs are affected by the effects of this modified conserva-
tion principle on the behaviour and properties of matter. This
study opens up new perspectives on how matter and grav-
ity interact in unprecedented ways. It allows researchers to
examine how the gravitational field, the structure of compact
objects, and their observable properties are all affected by the
non-conservation of the EMT. In addition, the study of com-
pact objects within the framework of MRT gravity makes it
possible to compare the theoretical assumptions of this alter-
native theory with actual observations. Researchers can test
the theory’s validity and correctness in explaining current
astrophysical systems by comparing the predictions of MRT
gravity with the behaviour and characteristics of observable
compact objects. What’s more, the study of MRT gravity
in the context of compact objects contributes to the wider
endeavour of understanding the fundamental properties of
gravity itself. Researchers can use it to assess the effects of
relaxing certain assumptions about gravity and study differ-
ent theoretical frameworks. This advances our knowledge of
compact objects and provides important new insights into the
underlying principles that govern the universe.

We will now proceed with the next phase of our study,
which follows the scheme outlined as: In Sect. 2, we will
introduce the fundamentals of MRT gravity, and we will use
an off-diagonal tetrad to assess the field equations. In Sect. 3,
we will employ the embedding class-I approach to determine
the metric functions. Section 4 will detail our assessment
of the generalised field equations, which will be based on
the hybrid function f (T ) and the EoS for the calculation
of h(T ). In Sect. 5, we will match the interior and exterior
geometries to determine the constant parameters utilised in
our stellar modeling. Section 6 will focus on the evaluation
of generalised field equations based on the hybrid function
f (T ) and the logarithmic function h(T ). We will then present
a discussion of our results in Sect. 7, followed by a conclusion
in Sect. 8.

2 MRT gravity: basic formulation

The study of stars requires a fundamental understanding of
their structure, which is why spherically symmetric space-
time is often used as a model. This type of spacetime is
uniform in all directions and can be described mathemati-
cally using different models, like the Schwarzschild metric.
By analysing spherically symmetric spacetimes, researchers
can gain insights into the behaviour and evolution of stars.
These insights are essential to various fields of astrophysics.

ds2 = −ea(r)dt2 + eb(r)dt2 + r2sin2θdφ2 + dθ2. (1)

It is possible to represent the metric tensor gμν defined on a
manifold using the tetrad fields eiμ and the Minkowski metric
ηi j = diag(−1, 1, 1, 1).

gμν = ηi j e
i
μe

j
ν , (2)

where the Greek alphabet (μ, ν, . . . = 0, 1, 2, 3) repre-
sents space-time indices and the Latin alphabet (i, j, . . . =
0, 1, 2, 3) represents tangent space indices. The Weitzenböck
connection in a mathematical concept is defined as:

�α
μν = eα

i ∂νe
i
μ = −eiμ∂νe

α
i . (3)

The teleparallel theory utilises the above-given specific type
of connection that possesses non-zero torsion but zero curva-
ture. The connections are responsible for defining the torsion
tensor, which can be denoted as follows:

T σ
μν ≡ �σ

νμ − �σ
μν = eσ

i

(
∂μe

i
ν − ∂νe

i
μ

)
. (4)

The Weitzenbock connection is linked to the Levi-Civita con-
nection, �̄σ

μν , by the following relation

�σ
μv = �σ

μν − K σ
μv, (5)

where Kμν is the notion of the contorsion tensor, which is
given by:

K σ
μν = 1

2

(
T σ

μ σν + T σ
ν σμ − T σ

μν

)
. (6)

The expression for torsion scalar is read as

T = SσμνTσμν, (7)

where the expression for super-potential Sσμν is given by:

Sσμν = −Sσνμ = 1

2

(
Kμνσ − gσνT αμμ + gσμT aν

)
. (8)

The action of the modified teleparallel gravity is presented
by

S = SG + Sm = 1

4κ

∫
e f (T )d4x +

∫
eLmd

4x, (9)
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in which the function f (T ) depends on the torsion scalar,
while the determinant of the tetrad field ea F is denoted as
e. Additionally, the matter Lagrangian is represented by Lm .
By taking the variation of the action with respect to the tetrad
field, we can obtain the corresponding field equation.

Sμν
i fT T ∂μT + e−1∂μ

(
eSμν

i

)
fT − T α

μi S
νμ
σ fT

−1

4
ei

ν f = −κθν
μ, (10)

where �v
μ is addressed to the usual EMT of the perfect fluid.

It is shown that
(
Sμv
i fT T ∂μT + e−1∂μ

(
eSi

μν
)
fT − T σ

μi S
νμ
σ fT

−1

4
ev
i f

)

;v
= 0, (11)

where a semicolon is used to denote the covariant derivative
that is in teleparallel structure

Vμ

;ν = ∂νV
μ + (

�
μ
λν − Kμ

λν

)
V λ, (12)

for any space-time vector Vμ. The above-given expression
ensures that the covariant derivative of the EMT also van-
ishes:

�ν
μ;ν = 0. (13)

We have the same energy-momentum conservation equation
in both Einstein’s theory and our modified teleparallel grav-
ity theory. However, the conservation equation in Einstein’s
theory was challenged by Rastall [18], who proposed a new
equation Tμ

ν; μ
= λR, ν that involves an intriguing interac-

tion between matter and geometry. This idea suggests that
there is a connection between the two, and it leads to a mod-
ified field equation. Building on Rastall’s concept, we apply
the same assumption to our modified teleparallel gravity the-
ory. By linking matter and geometry through the scalar tor-
sion of geometry, we establish a connection where the diver-
gence of the EMT �ν

μ is proportional to the divergence of
the torsion scalar

�ν
μ;ν = λh(T ),μ, (14)

where λ is a real constant and h(T ) is an analytical function
of torsion. Then, the field Eq. (11) can be restated as follows,

Sμν
u f γ τ∂μT + e−1∂μ

(
Sμν
i

)
fT − T σ

μ Sνμ
σ fT

−1

4
eν
i f − δν

μκλh(T ) = −κ�ν
μ. (15)

Here, κ is the gravitational constant in RT, which is a com-
parison with Newtonian gravity and is expressed as

κ = 4γ − 1

6γ − 1
κG, (16)

where γ = λκ leading to

λ = 6γ − 1

4γ − 1

γ

κG
, (17)

and κG notions the Einstein coupling constant κG = 4πG. In
the case where λ = 0, or equivalently γ = 0, the parameter
κ takes the value of κG . In this particular scenario, Einstein’s
gravity is recovered, leading to the conservation of the EMT.
It should be noted that Rastall’s gravitational coupling con-
stant, i.e., κ , diverges when γ = 1

6 , as indicated by (16).
Therefore, the case where γ = 1

6 is not allowable. More-
over, as shown in (17), the parameter λ diverges when γ = 1

4 .
Consequently, the case where γ = 1

4 is not allowable either.
Accordingly, the Newtonian limit analysis indicates that both
the cases γ = 1

6 and γ = 1
4 are not allowable within the the-

ory [38]. The EMT �μ is assumed to describe a non-isotropic
fluid given as:

�v
μ = (p + pt ) uμu

v − ptb
v
μ + (pr − pt ) vμvv, (18)

where vector uμ represents the four velocities in the time-like
direction, while vμ is a unit space-like vector in the radial
direction. The relationship between these vectors is given by
u0u0 = −v1v

1 = 1.
The tetrad fields, denoted by eiμ, are an important part of

the teleparallel technique used in general relativity. These
fields represent the coordinates of the manifold through
holonomic (Greek indices) and the frame through anholo-
nomic (Latin indices). By combining the frame and coordi-
nate indices, we can use the same idea to describe the tetrad
matrix eiμ and its inverse. We can determine that eμ

i e
ν
i = δ

μ
ν

and eμ
i e

μ
j = δi j . The motivation behind the teleparallel tech-

nique is to develop a more generalised manifold that includes
torsion in addition to curvature. The Riemannian curvature
tensor is supposed to be zero (part without torsion plus some
contribution from torsion), which allows us to use either the
torsion-free part (geometry) or the torsion part (tetrad) to
explain the gravitational field. Therefore, the use of tetrad
fields and torsion provides an alternative to the geometric
definition of gravity. Tamanini and Böhmer introduced the
concept of a “good tetrad” in their work [39], which refers
to a tetrad that does not impose any additional constraints
on the functional form of f (T ). This allows for the study
of a broader class of f (T ) cosmologies. Böhmer et al. [40]
explored the existence of relativistic stars in f (T ) modified
gravity and constructed various classes of static perfect fluid
solutions for both diagonal and off-diagonal tetrad. However,
the diagonal tetrad is unsuitable for spherical symmetry as the
exact solutions correspond to a constant torsion scalar. The
literature suggests using off-diagonal tetrad (good tetrad),
and numerous aspects of spherically symmetric spacetime
have been presented for review (one can consult some of the
available references [15,41–45] and some others).
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In this study, we will develop field equations using the
off-diagonal tetrad matrix given in [39,40,46].

e jμ =

⎛
⎜⎜⎝

ea/2 0 0 0
0 eb/2 sin θ cos φ r cos θ cos φ −r sin θ sin φ

0 eb/2 sin θ sin φ r cos θ sin φ r sin θ cos φ

0 eb/2 cos θ −r sin θ 0

⎞
⎟⎟⎠ .

(19)

where gtt = ea(r) and grr = eb(r). The determimant
of the above tetrad field is given by e = det

(
e jμ

) =
r2 sin θe(a+b)/2. The torsion scalar obtained from Eqs.
(4, 7, 8) is given as:

T (r) = 2e−b

r2

(
e
b
2 − 1

) (
e
b
2 − 1 − ra′) . (20)

Replacing Eqs. (18, 19, and 20) in the field Eq. (1), the
obtained nonzero components of the EMT are read as:

κρ(r) =e−b/2

r

(
1 − e−b/2

)
f ′
T

−
(
T

4
− 1

2r2

)
fT + e−b

2r2

(
rb′ − 1

)

× fT + f

4
+ γ h(T ), (21)

κpr (r) =
[
T

4
− 1

2r2 + e−b

2r2

(
1 + ra′)

]

× fT − f

4
− γ h(T ), (22)

κpt (r) =e−b

2

(
a′

2
+ 1

r
− eb/2

r

)
f ′
T − f

4
− γ h(T ) + fT

×
{
T

4
+ e−b

2r

[(
1

2
+ ra′

4

) (
a′ − b′)+ ra′′

2

]}
.

(23)

The presence of the Rastall term γ h(T ) and the coefficient
κ in equations has a significant impact on the behaviour and
magnitude of the components, potentially altering the energy
conditions. To obtain solutions for compact objects, one must
consider a range of assumptions for the f (T ) functions avail-
able.

3 Evaluation of metric functions by Karmarkar
condition

Generally, the spherically symmetric metric given in Eq. (1)
is actually of second class. If this metric space admits the
Karmarkar condition, it would be called a metric space of
class one. The curvature tensor Rhi jk components in the case

of the spherically symmetric metric are like

R2323 = sin2 θ
(
eb − 1

)
r2

eb
, R1212 = b′r

2
, R2424 = e(a−b)

2
,

R1224 = 0, R1414 = ea

4

[
2a′′ + a′2 − b′a′] ,

R3434 = sin2 θR2424. (24)

Karmarkar condition Eq. (24) in light of curvature tensor
ingredients will result in the given form of differential equa-
tion:

a′′

a′ + a′

2
= b′b

2
(
eb − 1

) . (25)

The solution of Eq. (25) for gravitational potential a(r) will
result as follows:

a(r) = 2 ln

[
A + B

∫ √(
eb(r) − 1

)
dr

]
, (26)

where the process of integration will generate A and B, the
non-vanishing constants. One notable observation is that the
solution to the Einstein field equations, given an anisotropic
matter distribution, relies on either the a or b metric func-
tions. This is due to the direct relationship between the metric
functions established by the Karmarkar condition. To achieve
this, we adopt the same approach as Maurya et al. [47] by
utilising the ansatz previously used for eb.

b(r) = log

(
1 + r2(x − y)

1 + r2y

)
, (27)

where x and y are both non-zero constants with dimensions
of [length]−2. Substituting Eq. (27) into Eq. (26), we get

a(r) = 2 log

(
Ay + B

√
r2y + 1

√
x − y

)
− 2 log(y),

(28)

where A and B are constants with dimensions of [length]2.
To construct a valid physical model, it is essential that the
metric functions eb and ea exhibit two key properties. Firstly,
they must remain finite at the center of the gravitational
source. Secondly, these functions must increase monoton-
ically as a function of the radial distance from the center.
These conditions are necessary to ensure that the resulting
solution accurately represents a physically realistic space-
time, which can provide insight into the behaviour of mas-
sive objects under the influence of gravity, as shown in Fig.
1. One can observe from Eqs. (27 and 28)

eb(r)|r=0 = 1, ea(r)|r=0 = 1

y1/2

[
Ay + B

√
(x − y)

]2

(29)

which are clearly definite and out of the singularity.
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Fig. 1 Profiles of metric potentials eb(r) and e−a(r) versus
radial coordinate, r ([km]), for different values of y =
0.0.002, 0.0018, , 0.0016, 0.0014, 0.0012, 0.0007, 0.0006,

0.0005, 0.0004, 0.0003, 0.0026, 0.0025, 0.0024, 0.0023,

0.0022 km−2

4 Case-I: hybrid form of f (T ) = βemT Tn and
application of EoS pr = ξρ + φ, 0 < ξ < 1 for
evaluation of h(T )

Eos is a well-known component often used in the study
of compact objects. It basically develops a relationship
between the energy density ρ and radial pressure pr . In
the study of compact stars, it is evenly used to facili-
tate the system’s ability to solve for the separation of an
involved function if the system has more variables than the
number of equations. Several EoSs are used in the litera-
ture. Some of our knowledge includes: Nojiri and Odintsov
[48] used asymptotic EoS p = (1 + 2

n )ρ, while dis-
cussing the singularity of spherically-symmetric spacetime
in the quintessence/phantom dark energy universe; Sharif
and Faisal [49] used the generalised Chaplygin gas EoS
p = − C

σγ , 0 < γ ≤ 1, while studying the stability of
Einstein–Power–Maxwell (2 + 1)-dimensional wormholes.
Exotic matter is a topic of great interest in the scientific com-
munity, and several models exist to describe it. One such
model is the phantom-like EoS for exotic matter, which can
be defined as p = ωρ with ω < 0. This model can represent
various types of matter distributions that depend on the value
of ω. The fascinating aspect of this model is that it can lead
to different states of energy depending on the value of ω. If
ω < −1, then the EoS leads to a phantom energy state. On
the other hand, if ω lies between −1 and −1/3, it results in
a quintessence state. Finally, if ω < −1/3, it leads to a dark
energy state. In summary, the phantom-like EoS for exotic
matter is a versatile model that can help in understanding
various types of matter distributions. Its implications for our
understanding of the universe are truly fascinating. For the

purpose of simplicity, we in this study used the below-given
EoS [50,51]:

pr = ξρ + φ, 0 < ξ < 1. (30)

For the first case, we presume the hybrid functional form of
teleparallel gravity to be [52]:

f (T ) = βemT T n, (31)

where m ≥ 0 and n are real constants. This hybrid form
of f (T ) merges an exponential function emT with a power-
law term T n . This choice enables exponential and power-
law effects to be combined in the modification of telepar-
allel gravity. The exponential term incorporates a non-linear
dependency on the torsional scalar T , whereas the power-law
term incorporates a power-law behavior. The parameters β,
m, and n control the strength, scale, and shape by which the
modification occurs, respectively. The physical importance
of this hybrid form lies in its capability to encompass a wide
range of gravitational behavior. The exponential term can
lead to significant deviations from the GR predictions, par-
ticularly in regimes where the torsional scalar T is large. The
power-law term provides greater flexibility in modification,
allowing the further exploration of diverse modifications to
gravitational theory. It is interesting to note that:

• For m = 0 & n �= 0, Eq. (31) reduces to the power law
of MRT gravity f (T ) = βT n .

• For m �= 0 & n = 0, Eq. (31) reduces to the exponential
law of MRT gravity: f (T ) = βemT .

• For m �= 0 & n �= 0, Eq. (31) retains the hybrid form of
MRT gravity f (T ) = βemT T n .

In our study, we discussed the above three forms of gravity
and showed that our stellar structures are stable in the hybrid,
exponential, and power-law forms of f (T ) gravity.

Here, we apply Eq. (21), Eq. (22), and Eq. (30) and cal-
culate the function h(T ) as given below:

h(T ) = e−b(r)

4γ (ξ + 1)r2

[
2 fT ra

′(r) − 2 fT ξrb′(r)

− f ξr2eb(r) + f r2
(
−eb(r)

)
+ fT ξr2T eb(r)

+ fT r
2T eb(r)−2 fT ξeb(r)−2 fT e

b(r)−4 f ′
T ξre

b(r)
2

−4kr2φeb(r) + 2 fT ξ + 2 fT + 4 f ′
T ξr

]
. (32)

After all, if we use the Eqs. (20), (27), (28), (31), and (32) in
Eqs. (21–23), we get the final versions of field equations as
given below:
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ρ =
(6γ − 1)

(
βl2(r)l4(r) − βl5(r)l3(r) + βl3(r)l6(r) + r(βl7(r)l2(r))

l10(r)
− l8(r)

)

8πrl9(r)
, (33)

pr =
(6γ − 1)

(
βl2(r)l4(r)ξ − βl5(r)l3(r)ξ + βl3(r)l6(r)ξ + r(βl7(r)l2(r)ξ)

l10(r) + l8(r)
)

8πrl9(r)
, (34)

pt = (6γ − 1)

32πl9(r)r2

[
βB (−l20(r)) l18(r)l19(r)2

nr2r y
√
x − y (l16(r))

n + βl2(r)l12(r)(ξ − 1) + βl2(r)l14(r)(ξ + 1)

+βl2(r)l15(r)(ξ + 1) + l13(r)

l11(r)
+ l17(r)

]
, (35)

where functions li (r), i = 1, 2, . . . 20 are given in Appendix
(Figs. 2, 3).

5 Matching conditions

The inside border metric is constant regardless of the geo-
metrical structure of the star, whether viewed from the out-
side or the inside. An emergent scenario requires that the
metric components be continuous to the boundary, regard-
less of the reference frame. While analysing Schwarzschild’s
solution related to stellar remnants in general relativity, it
is well thought out to be the major priority out of all the
available varied matching situation alternatives. It is also
a good idea to account for quasi-pressure and energy den-
sity when working with modified gravity theories. Numerous
researchers have produced excellent work on boundary con-
ditions [53,54]. Goswami et al. [55] determined the match-
ing boundaries when studying stellar compact structures by
combining some unique constraints to stellar compact struc-
tures as well as thermodynamically relevant properties. So
the exterior spacetime in this study can be the vacuum case,
as given below (Figs. 4, 5, 6, 7):

ds2 = −
(

1 − 2M

R

)
dt2 +

(
1 − 2M

R

)−1

dt2

+r2sin2θdφ2 + dθ2. (36)

After comparing the inner spacetime Eq. (1) and outer space-
time Eq. (36) at the boundary r = R, we arrive at the given
system of equations:
(
Ay + B

√
R2y + 1

√
x − y

y

)2

= 1 − 2M

R
, (37)

R2(x − y)

R2y + 1
+ 1 = 1

1 − 2M
R

, (38)

2BR
√
x − y

(
Ay + B

√
R2y + 1

√
x − y

)

y
√
R2y + 1

= 2M

R2 .

(39)

The solution of these equations results in the following
form of expressions for constants A, B, x :

A = −
B
√

2R2y + 2

√
M(R2y+1)
R2(R−2M)

y
−

√
R − 2M√

R
, (40)

B = − M
√
R2y + 1

R5/2
√
R − 2M

√
− 2M+R3y

R2(2M−R)
− y

, (41)

x = − 2M + R3y

R2(2M − R)
. (42)

Specific values of constant parameters are given in Tables 1
and 2 for both cases of our study, respectively.

6 Case-II: hybrid-logarithmic MRT gravity:
f (T ) = βemT Tn and h(T ) = ψ log (ϕTχ )

In this section of our case study, we explore the stellar models
by taking the hybrid form of the function f (T ) [52],

f (T ) = βemT T n, (43)

along with the logarithmic form of the function h(T ),

h(T ) = ψ log
(
ϕT χ

)
. (44)

This logarithmic form of h(T ) represents the coupling
between the modified teleparallel gravity and the matter con-
tent of the compact stars. The logarithmic function is chosen
to highlight specific physical behaviours or features of the
gravitational-matter interaction. The parameters ψ , ϕ, and
χ characterise the strength and form of this coupling. The
logarithmic form enables a non-linear relationship between
h(T ) and the matter variables, potentially resulting in unique
effects in the dynamics of the compact stars. In addition,
parametrization provides a framework for exploring how
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Table 1 Values of constants, by using the mass = 1.97 M/M⊙ and
9.949 km of PSRJ1614 − 2230. We fix φ = 2.036 × 10−35km−2,
while choosing Hybrid function f (T ) = βemT T n of MRT gravity, and

EoS pr = ξρ + φ (where 0 < ξ < 1) in the evaluation of function
h(T ). We also choose different values of m & n to discuss the power
law of f (T ) and the exponential form of f (T )

Hybrid gravity f (T ) = βemT T n , where n = 1 and m = 0.0019. Also β = 5, ξ = 0.3.

γ [km−2] y [km−2] A [km2] B [km2] x [km−2] prc
ρc

(r = 0)

1.0 0.002 0.764648 − 0.0316263 0.00993559 < 1

1.5 0.0018 0.907651 − 0.0316263 0.00960446 < 1

2.0 0.0016 1.0864 − 0.0316263 0.00927332 < 1

2.5 0.0014 1.31623 − 0.0316263 0.00894218 < 1

3.0 0.0012 1.62266 − 0.0316263 0.00861105 < 1

Power law f (T ) = βT n (m = 0), here we fix n = 1. Also β = 5, ξ = 0.5.

γ [km−2] y [km−2] A [km2] B [km2] x [km−2] prc
ρc

(r = 0)

1.0 0.0007 3.15483 − 0.0316263 0.0077832 < 1

1.5 0.0006 3.7677 − 0.0316263 0.00761764 < 1

2.0 0.0005 4.62572 − 0.0316263 0.00745207 < 1

2.5 0.0004 5.91274 − 0.0316263 0.0072865 < 1

3.0 0.0003 8.05778 − 0.0316263 0.00712093 < 1

Exponential law f (T ) = βemT (n = 0), here we fix m = 0.0019. Also β = 1500, ξ = 0.2.

γ [km−2] y [km−2] A [km2] B [km2] x [km−2] prc
ρc

(r = 0)

1.0 0.0026 0.467642 − 0.0316263 0.010929 < 1

1.5 0.0025 0.507243 − 0.0316263 0.0107634 < 1

2.0 0.0024 0.550144 − 0.0316263 0.0105979 < 1

2.5 0.0023 0.596775 − 0.0316263 0.0104323 < 1

3.0 0.0022 0.647646 − 0.0316263 0.0102667 < 1

Table 2 Values of constants, by using the mass = 1.97 M/M⊙
and 9.949 km of PSRJ1614 − 2230. We choose Hybrid function
f (T ) = βemT T n of MRT gravity and h(T ) = ψ log (ϕT χ ). We also

choose different values of m & n to discuss the power law of f (T ),
and the exponential form of f (T ). We fix ψ = −0.00000002, ϕ =
−2, χ = 5, ξ = 0.3

Hybrid-Logarithmic form of MRT gravity when f (T ) = βemT T n , and h(T ) = ψ log (ϕT χ ).

Also β = 5, n = 1, m = 0.0019.
γ [km−2] y [km−2] A [km2] B [km2] x [km−2] prc

ρc
(r = 0)

1.0 0.0006 3.7677 − 0.0316263 0.00761764 < 1

1.5 0.0005 4.62572 − 0.0316263 0.00745207 < 1

2.0 0.0004 5.91274 − 0.0316263 0.0072865 < 1

2.5 0.0003 8.05778 − 0.0316263 0.00712093 < 1

3.0 0.0002 12.3479 − 0.0316263 0.00695536 < 1

Power-Logarithmic law of MRT gravity when f (T ) = βT n (m = 0), and h(T ) = ψ log (ϕT χ ).

Also β = 4, n = 1.
γ [km−2] y [km−2] A [km2] B [km2] x [km−2] prc

ρc
(r = 0)

1.0 0.0001 25.2181 − 0.0316263 0.00678979 < 1

1.5 0.00009 28.0782 − 0.0316263 0.00677324 < 1

2.0 0.00008 31.6532 − 0.0316263 0.00675668 < 1

2.5 0.00007 36.2497 − 0.0316263 0.00674012 < 1

3.0 0.00006 42.3784 − 0.0316263 0.00672357 < 1

Exponential-Logarithmic form of MRT gravity when f (T ) = βemT (n = 0), and h(T ) = ψ log (ϕT χ ) is not stable
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modifications to gravitational theory and gravity-matter cou-
pling can influence the structure, properties, and stability of
compact stellar objects. It can easily be observed from Eqs.
(43) and (44) that:

• For m �= 0 and n �= 0, it is hybrid-logarithmic MRT
gravity.

• For m = 0 and n �= 0 if is power-law-logarithmic MRT
gravity.

• For m �= 0 and n = 0 if is exponential-logarithmic MRT
gravity.

The final version of Eqs. (21–23), when taking the hybrid-
logarithmic form of MRT gravity, is given below:

ρ = (6γ − 1)

4π(4γ − 1)

[
β2n−2e2ml21(r) (l21(r))

n

+βl22(r)l24(r)l27(r) (l21(r))
n−1

+βl22(r)l27(r)
(
(l21(r))

n−1
)
l26(r) + l29(r)

]
, (45)

pr = (6γ − 1)

4π(4γ − 1)

[
β
(
−2n−2

)
e2ml21(r) (l21(r))

n

−βl27(r)l22(r) (l21(r))
n−1l23(r)

−γψ log
(
2χϕ (l21(r))

χ
) ]

, (46)

pt = (6γ − 1)

4π(4γ − 1)

[βl22(r)l31(r)2n−4e2ml21(r) (l21(r)) n−1

r4
(
r2(x−y)
r2 y+1

+ 1
)2

−β2n−2e2ml21(r)

× (l21(r))
n + l30(r)

]
. (47)

Fig. 2 Energy density ρ ([km−2]) and pressure pr & pt ([km−2])
profiles versus radial coordinate, r ([km]). Here we fix {γ =
1.0 km−2, y = 0.002 km−2 (black solid line), γ = 1.5 km−2, y =
0.0018 km−2 (purple long dashed line), γ = 2.0 km−2, y =
0.0016 km−2 (magenta dashed line),γ = 2.5 km−2, y = 0.0014 km−2

(red small dashed line), γ = 3.0 km−2, y = 0.0012 km−2 (orange dot-
ted line) for hybrid case m �= 0 &n �= 0}, {γ = 1.0 km−2, y =
0.0007 km−2 (dark brown solid line), γ = 1.5 km−2, y =
0.0006 km−2 (blue long dashed line), γ = 2.0 km−2, y =
0.0005 km−2 (cyan dashed line), γ = 2.5 km−2, y = 0.0004 km−2

(green small dashed line), γ = 3.0 km−2, y = 0.0002 km−2

(dark green dotted line) for power-law case m = 0 & n = 1},
and {γ = 1.0 km−2, y = 0.0026 km−2 (darker red solid line),
γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan long dashed
line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed line),
γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed line),
γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for exponent-
law case m �= 0 & n = 0}. Other constant parameters are given in
Table 1
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Fig. 3 Anisotropy ([km−2]), gradient ([km−2]) and adiabatic index
profiles, respectively from left to right, versus radial coordinate, r
([km]). Here we fix {γ = 1.0 km−2, y = 0.002 km−2 (black
solid line), γ = 1.5 km−2, y = 0.0018 km−2 (purple long dashed
line), γ = 2.0 km−2, y = 0.0016 km−2 (magenta dashed line),
γ = 2.5 km−2, y = 0.0014 km−2 (red small dashed line), γ =
3.0 km−2, y = 0.0012 km−2 (orange dotted line) for hybrid case
m �= 0 &n �= 0}, {γ = 1.0 km−2, y = 0.0007 km−2 (dark
brown solid line), γ = 1.5 km−2, y = 0.0006 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.0005 km−2 (cyan dashed

line), γ = 2. km−25, y = 0.0004 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}, and {γ = 1.0 km−2, y = 0.0026 km−2

(darker red solid line), γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan
long dashed line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed
line), γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed
line), γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for
exponent-law case m �= 0 & n = 0}. Other constant parameters are
given in Table 1

where functions li (r), i = 21, 22, . . . 31 are given in the
Appendix. The values of constant parameters are given in
Table 2. It is worth saying that, according to our observa-
tion, the exponential-logarithmic case does not give a stable
configuration.

7 Discussion related to the physical properties of
compact configurations

In this section, we will examine the behavior exhibited by
the compact star solutions and compare it with the standard
requirements. Firstly, we will explore the behaviour of our
solutions and then analyse how they match up to the standard
requirements. Our study indicates that all three forms of MRT
gravity–hybrid, power-law, and exponential-law in case I–are

stable. However, the exponential-logarithmic form of MRT
gravity is found to be unstable. Moving forward, we will
discuss the crucial characteristics of compact objects (Figs.
8, 9, 10, 11, 12, 13):

• To gain a deeper understanding, let’s take a closer look at
equations (21–23), which are based on the metric com-
ponents ea(r) and eb(r). To achieve this, we adopt the
approach of embedding class-I spacetime components
as described in equations (27–28), where positive con-
stants A, B, x , and y are utilized. As we examine these
equations, it becomes apparent that as r approaches zero,
ea(r) > 0 and eb(r) = 1, both of which demonstrate
smooth evolutionary behaviour, as depicted in Fig. 1.
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Fig. 4 Energy conditions ([km−2]) versus radial coordinate, r ([km]).
Here we fix {γ = 1.0 km−2, y = 0.002 km−2 (black solid
line), γ = 1.5 km−2, y = 0.0018 km−2 (purple long dashed
line), γ = 2.0 km−2, y = 0.0016 km−2 (magenta dashed line),
γ = 2.5 km−2, y = 0.0014 km−2 (red small dashed line), γ =
3.0 km−2, y = 0.0012 km−2 (orange dotted line) for hybrid case
m �= 0 &n �= 0}, {γ = 1.0 km−2, y = 0.0007 km−2 (dark
brown solid line), γ = 1.5 km−2, y = 0.0006 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.0005 km−2 (cyan dashed

line), γ = 2.5 km−2, y = 0.0004 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}, and {γ = 1.0 km−2, y = 0.0026 (darker
red solid line), γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan long
dashed line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed line),
γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed line),
γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for exponent-
law case m �= 0 & n = 0}. Other constant parameters are given in
Table 1

• Physical validity is crucial in studying compact stars, and
investing energy into a study that lacks physical admissi-
bility is not worthwhile. The density parameter, ρ, serves
as a useful tool to ensure the study’s physical affirmation.
The left panel of Fig. 2 for case-I and Fig. 8 for case-II
illustrate the legitimate propagation of energy parame-
ters. It is evident that the energy density behaves perfectly
in accordance with the criteria, with maximum values
at the center and smooth, positive declines everywhere
within the star’s distribution (0 < r ≤ R). Therefore, the
energy density function confirms the physical plausibility
of the celestial body.

• The pressure components are crucial factors that deter-
mine the physical properties of a celestial object, much
like the energy density (ρ). The pressure profiles, denoted

as pr and pt (middle and right panels of Fig. 2 for case-
I and Fig. 8 for case-II), also exhibit distinct physical
behaviors. The central point, where r → 0, indicates the
peak value, followed by a smooth decrease as r increases
up to the radius R. Furthermore, the pressure compo-
nent pt at the surface (r = R) is positive, while pr is
zero. Additionally, pt is greater than pr . However, in
case-I, the EoS limits pr to approach zero, but it remains
positive throughout the object, which is acceptable and
aligned with the expected behaviour of a celestial body.
This conforms well to the physical requirements of the
object.

• The presence of repulsive forces is crucial to counter-
balance the effects of gradient components, which leads
to a significant improvement in the equilibrium and sta-
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Fig. 5 TOV forces ([km−2]), EoS components versus radial coordi-
nate, r ([km]). Here we fix {γ = 1.0 km−2, y = 0.002 km−2

(black solid line), γ = 1.5 km−2, y = 0.0018 km−2 (purple long
dashed line), γ = 2.0 km−2, y = 0.0016 km−2 (magenta dashed
line), γ = 2.5 km−2, y = 0.0014 km−2 (red small dashed line),
γ = 3.0 km−2, y = 0.0012 km−2 (orange dotted line) for hybrid
case m �= 0 &n �= 0}, {γ = 1.0 km−2, y = 0.0007 km−2

(dark brown solid line), γ = 1.5 km−2, y = 0.0006 km−2 (blue
long dashed line), γ = 2.0 km−2, y = 0.0005 km−2 (cyan dashed

line), γ = 2.5 km−2, y = 0.0004 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}, and {γ = 1.0 km−2, y = 0.0026 km−2

(darker red solid line), γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan
long dashed line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed
line), γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed
line), γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for
exponent-law case m �= 0 & n = 0}. Other constant parameters are
given in Table 1

bility of stellar models. The enduring benefits of these
repulsive forces are confirmed by the positive anisotropy
observed. This anisotropy is determined by the criteria
that �|(0<r≤R) > 0 when pt > pr , where � = pt − pr ,
but as r → 0, � tends towards zero. The anisotropy �

depicted in the left panels of Fig. 3 for case-I and Fig. 9 for
case-II demonstrate identical behaviors as our computed
results.

• Gradients are accepted to exhibit a negative and decreas-
ing behavior, starting from zero at the center (i.e.,
(
dρ
dr = dpr

dr = dpt
dr )|(r → 0) = 0), except for

(
dρ
dr ,

dpr
dr ,

dpt
dr )|(0 < r ≤ R) < 0 at their graphical rep-

resentation. The middle panels of Fig. 3 for case-I and
Fig. 9 for case-II reveal that the computed results for
gradients conform to this range of values.

• The study of the adiabatic index is necessary to under-
stand the stability and solidity of compact objects. To pre-
dict the stability of relativistic and non-relativistic com-
pact objects based on the manifold of spherically sym-
metric spacetimes, it is essential to study the adiabatic
index. The adiabatic index defines the stability factor and
solidity of the EoS at a given density, making it a critical
component in the study of stellar objects. Chandrasekhar
first discussed stability and solidity under the adiabatic
index in [56,57], followed by several authors [58–61]
who adopted this interesting method of stability. Heintz-
mann and Hillebrandt [62] established a stability limit
for the adiabatic index by setting it to be greater than 4

3
for 0 ≤ r ≤ R.
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Fig. 6 Sound speeds and Abreu condition versus radial coordinate,
r ([km]). Here we fix {γ = 1.0 km−2, y = 0.002 km−2 (black
solid line), γ = 1.5 km−2, y = 0.0018 km−2 (purple long dashed
line), γ = 2.0 km−2, y = 0.0016 km−2 (magenta dashed line),
γ = 2.5 km−2, y = 0.0014 km−2 (red small dashed line), γ =
3.0 km−2, y = 0.0012 km−2 (orange dotted line) for hybrid case
m �= 0 &n �= 0}, {γ = 1.0 km−2, y = 0.0007 km−2 (dark
brown solid line), γ = 1.5 km−2, y = 0.0006 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.0005 km−2 (cyan dashed

line), γ = 2.5 km−2, y = 0.0004 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}, and {γ = 1.0 km−2, y = 0.0026 km−2

(darker red solid line), γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan
long dashed line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed
line), γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed
line), γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for
exponent-law case m �= 0 & n = 0}. Other constant parameters are
given in Table 1

The mathematical equation for the adiabatic index is
given by,

� = pr + ρ

pr
v2
r . (48)

The right panels of Fig. 3 for case-I and Fig. 9 for case-II
demonstrate the stability of our solutions as the behaviour
of � completely adheres to the criteria established in [62].

• In the theory of GR, momentum, mass, and stress are
defined by the EMT, which describes the distribution of
matter fields and gravitation-free fields (GFF) in space-
time. However, the Einstein field equations (EFEs) do
not directly relate to the state of matter or allowable
GFF in the spacetime manifold. Instead, energy condi-
tions are used to sanction all forms of matter, contra-

dict GFF in GR, and ensure physically valid solutions to
the field equations. To ensure a realistic and physically
acceptable distribution of matter, the anisotropic conduct
of energy must remain positive and obey certain limit-
ing constraints throughout the stellar body. These con-
straints, studied in the literature [63,64], are known as
the Strong Energy Condition (SEC), Weak Energy Con-
dition (WEC), Null Energy Condition (NEC), and Dom-
inant Energy Condition (DEC) and are expressed in Eqs.
(49–52)

SEC : ρ + pγ ≥ 0, ρ + pr + 2pt ≥ 0, (49)

WEC : ρ ≥ 0, ρ + pγ ≥ 0, (50)

NEC : ρ + pγ ≥ 0, (51)

DEC : ρ > |pγ |. (52)
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Fig. 7 Mass function, compactness and surface redshift profiles ver-
sus radial coordinate, r ([km]). Here we fix {γ = 1.0 km−2, y =
0.002 km−2 (black solid line), γ = 1.5 km−2, y = 0.0018 km−2

(purple long dashed line), γ = 2.0 km−2, y = 0.0016 km−2 (magenta
dashed line), γ = 2.5 km−2, y = 0.0014 km−2 (red small dashed
line), γ = 3.0 km−2, y = 0.0012 km−2 (orange dotted line) for
hybrid case m �= 0 &n �= 0}, {γ = 1.0 km−2, y = 0.0007 km−2

(dark brown solid line), γ = 1.5 km−2, y = 0.0006 km−2 (blue
long dashed line), γ = 2.0 km−2, y = 0.0005 km−2 (cyan dashed

line), γ = 2.5, y = 0.0004 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}, and {γ = 1.0 km−2, y = 0.0026 km−2

(darker red solid line), γ = 1.5 km−2, y = 0.0025 km−2 (darker cyan
long dashed line), γ = 2.0 km−2, y = 0.0024 km−2 (pink dashed
line), γ = 2.5 km−2, y = 0.0023 km−2 (darker pink small dashed
line), γ = 3.0 km−2, y = 0.0022 km−2 (orange dotted line) for
exponent-law case m �= 0 & n = 0}. Other constant parameters are
given in Table 1

Here (γ = r, t), r and t denote the radial and tangential
coordinates. We present the results of our study, which are
shown in Fig. 4 for case-I and Fig. 10 for case-II. These
results are consistent with the standard criteria used in
the study of compact stars.

• Equilibrium criteria of a stellar system were suggested in
the Tolman-Oppenheimer-Volkoff (TOV) equation [65,
66]. The TOV equation in the common version for MRT
gravity is given as:

dpr
dr

+ a
′
(ρ + pr )

2
− 2(pt − pr )

r

− γ

4γ − 1

(
dρ

dr
− dpr

dr
− dpt

dr

)
= 0, (53)

Fg + Fh + Fa + Fr = 0, (54)

where

Fg = −a
′
(ρ + pr )

2
, Fh = −dpr

dr
, Fa = 2(pt − pr )

r
,

Fe = − γ

4γ − 1

(
dρ

dr
− dpr

dr
− dpt

dr

)
.

According to the TOV equation, a stellar system is con-
sidered to be in equilibrium when the four forces Fa , Fg ,
Fh , and Fr balance each other out, resulting in a net effect
of zero, as shown in Eq. (53). This balancing mechanism
is essential in preventing the stellar system from collaps-
ing into a singular point during its gravitational collapse.
As can be seen from the left panels of Fig. 5 for case-
I and Fig. 11 for case-II, all the forces in this section
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Fig. 8 Energy density ρ ([km−2]) and pressure pr & pt ([km−2])
profiles versus radial coordinate, r ([km]). Here we fix {γ =
1.0 km−2, y = 0.0006 km−2 (black solid line), γ = 1.5 km−2, y =
0.0005 km−2 (purple long dashed line), γ = 2.0 km−2, y =
0.0004 km−2 (magenta dashed line),γ = 2.5 km−2, y = 0.0003 km−2

(red small dashed line), γ = 3.0 km−2, y = 0.0002 km−2 (orange dot-
ted line) for hybrid case m �= 0 &n �= 0}, and {γ = 1.0 km−2, y =

0.0001 km−2 (dark brown solid line), γ = 1.5 km−2, y =
0.00009 km−2 (blue long dashed line), γ = 2.0 km−2, y =
0.00008 km−2 (cyan dashed line), γ = 2.5 km−2, y = 0.00007 km−2

(green small dashed line), γ = 3.0 km−2, y = 0.00006 km−2 (dark
green dotted line) for power-law case m = 0 & n = 1}. Other constant
parameters are given in Table 2

of our study are in perfect balance, thereby ensuring the
equilibrium of our solutions.

• The essence of matter, whether it is real matter or dark
matter, is of relative importance in studying compact
stellar systems. For realistic or byronic matter equations
of state (EoS), wr and wt must lie within the range of
0 ≤ wr < 1 and 0 < wt < 1. If the system follows
these EoS limits, it guarantees that the stellar body is
composed of normal (real) matter. Otherwise, the system
is composed of dark matter or exotic matter. The EoS
expressions are given by:

wr = pr
ρ

and wt = pt
ρ

. (55)

For case-I, where pr = ξρ + φ was used, wr is constant
and approximately equal to ξ when a very small φ is cho-
sen. The middle and right panels of Fig. 5 for case-I and
Fig. 11 for case-II demonstrate that these EoS parameters

satisfy the required limiting criteria, ensuring that matter
is generally distributed in the system.

• Now, we discuss the stability of the stellar system by
analysing stability parameters, namely sound speeds
v2
r , the speed along the radial direction, and v2

t , the
speed along the tangent direction. In addition to sta-
bility, we also need to consider the anisotropic matter
distribution, famously known as the Herrera cracking
concept. According to the cracking concept [67], sta-
bility is ensured if sound speeds satisfy the constraints
0 < v2

r , v
2
t < 1, where c = 1 is the speed of light, and

both speeds acquire values less than the speed of light c.
The expression for sound speeds is as follows:

v2
r = dpr

dρ
and v2

t = dpt
dρ

. (56)

Similar to wr , for case-I, where pr = ξρ + φ was used,
vr is constant and approximately equal to ξ when a very
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Fig. 9 Anisotropy ([km−2]), gradient ([km−2]) and adiabatic index
profiles, respectively from left to right, versus radial coordinate, r
([km]). Here we fix {γ = 1.0 km−2, y = 0.0006 km−2 (black
solid line), γ = 1.5 km−2, y = 0.0005 km−2 (purple long dashed
line), γ = 2.0 km−2, y = 0.0004 km−2 (magenta dashed line),
γ = 2.5 km−2, y = 0.0003 km−2 (red small dashed line), γ =
3.0 km−2, y = 0.0002 km−2 (orange dotted line) for hybrid case

m �= 0 &n �= 0}, and {γ = 1.0 km−2, y = 0.0001 km−2 (dark
brown solid line), γ = 1.5 km−2, y = 0.00009 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.00008 km−2 (cyan dashed
line), γ = 2.5 km−2, y = 0.00007 km−2(green small dashed line),
γ = 3.0 km−2, y = 0.00006 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}. Other constant parameters are given in
Table 2

small φ is chosen. Abreu et al. [68] propose another cri-
terion for stability in which the region is considered to
have potential strength when v2

r > v2
t , as the sign remains

unchanged in v2
r −v2

t . Later, Andreasson generalised this
criterion [69] to 0 < |v2

t −v2
r | < 1, i.e., no cracking and a

stable region. Figures 6 and 12 for cases I and II, respec-
tively, demonstrate that our results are in good agreement
with the Abreu criteria and the Andreasson limit, indicat-
ing the stability of our solutions for compact star studies.

• The ratio m(R)
R is an important tool for determining the

level of compactness of a stellar body. One can obtain the
expression for the mass from the formula given below:

m(R) = 4π

∫
R2ρdr = r

2

(
1 − e−b(r)

)
, (57)

where ρ is the density. By incorporating the contribution
of Eq. (45), one can obtain an expression for the compact-
ness parameter u(r), which is further used to determine
the redshift function zs :

u = m(R)

R
, (58)

zs = (1 − 2u)−
1
2 − 1. (59)
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Fig. 10 Energy conditions ([km−2]) versus radial coordinate, r ([km]).
Here we fix {γ = 1.0 km−2, y = 0.0006 km−2(black solid
line), γ = 1.5 km−2, y = 0.0005 km−2(purple long dashed
line), γ = 2.0 km−2, y = 0.0004 km−2(magenta dashed line),
γ = 2.5 km−2, y = 0.0003 km−2(red small dashed line), γ =
3.0 km−2, y = 0.0002 km−2(orange dotted line) for hybrid case
m �= 0 &n �= 0}, and {γ = 1.0 km−2, y = 0.0001 km−2 (dark

brown solid line), γ = 1.5 km−2, y = 0.00009 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.00008 km−2 (cyan dashed
line), γ = 2.5 km−2, y = 0.00007 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.00006 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}. Other constant parameters are given in
Table 2

The author [70] set a maximum limiting value for the
compactness parameter u = m(R)

R < 4
9 . This criterion

was further generalised for the anisotropic case of mat-
ter distribution in [68]. Moreover, Buchdhal [32] estab-
lished a maximum value criteria for the redshift param-
eter, zs ≤ 4.77. Our study yielded a smooth and regular
result for the mass function, as shown in the left panel of
Figs. 7 and 13 for cases I and II, respectively. The mid-
dle and right panels in Figs. 7 and 13 for cases-I and-II,
respectively, demonstrate that our results for the com-
pactness and redshift parameters are well-matched with
the defined criteria of physical admissibility of the stellar
system.

8 Conclusion

This analysis genuinely represents the compatibility of the
tetrad field in the study of compact stellar structures with
the effects of gravity expressed by MRT theory. The MRT
gravity is the most straightforward modification of f (T ),
and the inclusion of Rastall’s term makes it different from
f (T ) gravity. We applied the Karmar technique to evalu-
ate the components of the geometry of spherical symmetric
spacetime to draw admissible results to support the choice
of off-diagonal tetrad fields. We also investigated the effect
of Rastall’s parameter on the results. We made an attempt to
explore the different forms of MRT gravity by making the
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Fig. 11 TOV forces ([km−2]), EoS components versus radial coor-
dinate, r ([km]). Here we fix {γ = 1.0 km−2, y = 0.0006 km−2

(black solid line), γ = 1.5 km−2, y = 0.0005 km−2 (purple long
dashed line), γ = 2.0 km−2, y = 0.0004 km−2 (magenta dashed
line), γ = 2.5 km−2, y = 0.0003 km−2 (red small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (orange dotted line) for hybrid
case m �= 0 &n �= 0}, and {γ = 1.0 km−2, y = 0.0001 km−2

(dark brown solid line), γ = 1.5 km−2, y = 0.00009 km−2 (blue
long dashed line), γ = 2.0 km−2, y = 0.00008 km−2 (cyan dashed
line), γ = 2.5 km−2, y = 0.00007 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.00006 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}. Other constant parameters are given in
Table 2

choice of the hybrid function f (T ) = βT nemT , by further
reducing it into power law (m = 0, n �= 0) and exponential
(m �= 0, n = 0), just altering the values ofm, n. For the first
case, we used the EoS of state to evaluate the function h(T ),
and for the second case, we chose the logarithmic function
h(T ). For the purpose of variation and to make the results
more clear for different values of Rastall’s parameter γ , we
also used different values for constant y in each case, as indi-
cated in Tables 1 and 2. Here we have a detailed diagnosis
of the anisotropic nature of the solutions of compact stellar
bodies in both cases. The brief findings of our results are as
follows:

• It is clear from the graphical analysis that the off-diagonal
tetrad is well-matched with the hybrid form of MRT grav-
ity. In the case of the h(T ) function evaluated by the EoS
pr = ξρ + φ, all three possible forms of MRT gravity
are stable, whereas in the case of h(T ) = ψ log (ϕT χ ),
the exponential-logarithmic form (n = 0, & m �= 0) of
MRT gravity is not stable.

• The anisotropic behaviour of all the parameters is well-
fitted in this analysis. The behaviour of metric potentials
is smooth, i.e., eb = 1 when r → 0 and ea > 0, with the
embedding class-I spacetime requirements. The expres-
sions for ρ, pr , and pt agree with the required behaviour
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Fig. 12 Sound speeds and Abreu condition versus radial coordi-
nate, r ([km]). Here we fix {γ = 1.0 km−2, y = 0.0006 km−2

(black solid line), γ = 1.5 km−2, y = 0.0005 km−2 (purple long
dashed line), γ = 2.0 km−2, y = 0.0004 km−2 (magenta dashed
line), γ = 2.5 km−2, y = 0.0003 km−2 (red small dashed line),
γ = 3.0 km−2, y = 0.0002 km−2 (orange dotted line) for hybrid
case m �= 0 &n �= 0}, and {γ = 1.0, y = 0.0001 km−2 (dark

brown solid line), γ = 1.5 km−2, y = 0.00009 km−2 (blue long
dashed line), γ = 2.0 km−2, y = 0.00008 km−2 (cyan dashed
line), γ = 2.5 km−2, y = 0.00007 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.00006 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}. Other constant parameters are given in
Table 2

within the stellar configurations. The anisotropy param-
eter � has shown smooth behaviour starting from the
center and going to the boundary. The gradients have
negative directions from the center towards the bound-
ary. The inequalities in the energy conditions posed posi-
tive behaviour throughout the stellar configurations. The
EoS, speed of sound, and causality limits also fulfil the
required criteria. The TOV forces also ensure the stability
of the stellar system. The adiabatic index, mass function,
compactification, and redshift functions also show the
required behaviour.

In short, our results are physically acceptable within the
framework of the Karmarkar condition in the MRT theory
of gravity. Ditta and Xia [71] also developed thefield equa-
tions by using the environment of MRT gravity (an extended
version of Rastall’s gravity) to discuss the stellar structure
by using an anisotropic fluid distribution with a spherically
symmetric metric. But the current study is in the environment
of MRT gravity (an extended version of f (T ) gravity).
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Fig. 13 Mass function, compactness, and surface redshift profiles ver-
sus radial coordinate, r ([km]). Here we fix {γ = 1.0 km−2, y =
0.0006 km−2 (black solid line), γ = 1.5 km−2, y = 0.0005 km−2

(purple long dashed line), γ = 2.0 km−2, y = 0.0004 km−2 (magenta
dashed line), γ = 2.5 km−2, y = 0.0003 km−2 (red small dashed
line), γ = 3.0 km−2, y = 0.0002 km−2 (orange dotted line) for
hybrid case m �= 0 &n �= 0}, and {γ = 1.0 km−2, y = 0.0001 km−2

(dark brown solid line), γ = 1.5 km−2, y = 0.00009 km−2 (blue
long dashed line), γ = 2.0 km−2, y = 0.00008 km−2 (cyan dashed
line), γ = 2.5 km−2, y = 0.00007 km−2 (green small dashed line),
γ = 3.0 km−2, y = 0.00006 km−2 (dark green dotted line) for power-
law case m = 0 & n = 1}. Other constant parameters are given in
Table 2
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