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Abstract Stability of Schwarzschild-AdS (SAdS) black
hole is investigated in Einstein–Weyl-scalar (EWS) theory
with a negative cosmological constant. Here, we introduce
a quadratic scalar coupling to the Weyl term, instead of the
Gauss–Bonnet term. The linearized EWS theory admits the
Lichnerowicz equation for Einstein tensor as well as scalar
equation. The linearized Einstein-tensor carries with a regu-
lar mass term (M2), whereas the linearized scalar has a tachy-
onic mass term (−3r2

0 /m2r6). Two instabilities of SAdS
black hole in EWS theory are found as Gregory–Laflamme
and tachyonic instabilities. It shows that the correlated sta-
bility conjecture holds for small SAdS black holes obtained
from EWS theory by establishing a close relation between
Gregory–Laflamme and thermodynamic instabilities. On the
other hand, tachyonic instability of SAdS black hole can be
used for making five branches of scalarized black holes when
considering proper thermodynamic quantities of EWS theory
(M2 > 0).

1 Introduction

It is well known that the dynamical stability of asymptotically
flat black holes obtained from Einstein gravity confirms the
existence of these black holes in curved spacetimes [1]. If a
solution of the black hole is dynamically unstable, it is no
longer considered as a truly black hole. For Schwarzschild
black hole, the Regge–Wheeler prescription works to indi-
cate dynamical stability even though it is thermodynamic
unstable in canonical ensemble (CE) [2,3]. It was shown that
the Reissner–Nordström (RN) black hole is stable against the
tensor-vector perturbations [4,5], while its thermodynamic
(in)stabilities are found in CE. The Kerr black hole is sta-
ble against the gravitational perturbations [6], whereas its
thermodynamic (in)stabilities are found in CE. This implies
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that there is no connection between dynamical instability
and local thermodynamic instability for asymptotically flat
black holes. As was pointed out in [7–9], the SAdS black
hole is dynamically stable against metric perturbations when
adopting Regge–Wheeler prescription, even though its ther-
modynamic (in)stabilities are found in CE.

However, there was a close connection between dynam-
ical instability and local thermodynamic instability for the
black strings/branes in CE [10]. This Gubser- Mitra proposal
was known to be the correlated stability conjecture (CSC)
[11] which states clearly that gravitational systems with
translational symmetry and infinite extent exhibit Gregory–
Laflamme (GL) instability [12], if and only if they have
local thermodynamic instability in CE. Here, GL instabil-
ity implies the dynamical instability. It is clear that the CSC
does not hold for Schwarzschild and SAdS black holes found
in Einstein gravity with a negative cosmological constant
because they have no such translational symmetry and infi-
nite extent.

At this stage, we briefly explain the GL instability of
the five-dimensional (5D) black string. Considering four-
dimensional (4D) metric perturbation h(4)

μν = e�t eikz z Hμν

around the 5D black string ds2
(5) = ds2

(4) + dz2 background,

its linearized Einstein equation leads to (�̄+k2
z )h

(4)
μν = 0 with

�̄ 4D Lichnerowicz operator. The GL instability is an s-wave
(l = 0) spherically symmetric instability from 4D perspec-
tive. Solving Htr -equation, one found that the GL instability
bound is given by 0 < kz < 0.876/r+ which is a long wave-
length instability [12]. In addition, the 4D dRGT massive
gravity [13] which has a Schwarzschild solution when for-
mulated in a diagonal bimetric form is subject to a direct
analogous s-wave instability [14,15]. Furthermore, a direct
analogous s-wave instability bound for Schwarzschild black
hole was found as 0 < m < 0.876/r+ in Einstein–Weyl
(Ricci quadratic) gravity when solving the linearized Ein-
stein equation is given by (�̄ + m2)δRμν = 0 [16]. Two
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linearized Einstein equations become the same and thus, the
same instability bound is obtained when replacing k2

z and

h(4)
μν by m2 and δRμν [17]. Hence, it suggests that the direct

analogous s-wave instability is regarded as the GL instability
even though there is no direction with translation symmetry.

Similarly, one expects that another version of CSC holds
for small SAdS black hole in higher curvature gravity with
a negative cosmological constant because translational sym-
metry (higher dimensions) might be handled by the mas-
siveness (higher curvature gravity). Here, the negative cos-
mological constant is necessary to have its thermodynamic
(in)stabilities of black hole in CE. Fortunately, it was found
that another version of CSC holds for small SAdS black holes
found from Einstein–Weyl gravity with a negative cosmo-
logical constant by establishing a close relation between GL
instability and local thermodynamic instability in CE [18].
Also, this CSC holds for small SAdS black holes obtained
from Einstein–Ricci cubic gravity with a negative cosmolog-
ical constant [19,20]. For simplicity, we call another version
of CSC as CSC in the present work. In these higher curva-
ture gravity theories with negative cosmological constant, it
is obvious that small (large) black holes are determined pre-
cisely by negative (positive) heat capacities in CE and the 5D
black sting (k2

z ) is replaced by the massiveness (m2 �= 0) of
a massive spin-2 mode. In this case, a massive spin-2 mode
may be described by either the linearized Einstein tensor
δGμν or metric tensor hμν .

On the other hand, recently, there was a significant
progress in obtaining black holes with scalar hair via sponta-
neous scalarization. This indicates an example for evasion of
no-hair theorem. Here, the tachyonic instability of linearized
scalar propagating around bald black holes is regarded as
a hallmark for emerging scalarized black holes when intro-
ducing a quadratic scalar coupling to the Gauss–Bonnet term
[21–23]. So far, the Einstein–Gauss–Bonnet-scalar (EGBS)
theory is considered as a simple model to induce tachyonic
instability because the Gauss–Bonnet term is a topologi-
cal term in four dimensions. In its linearized theories, it is
important to note that the dynamical instability of bald black
holes is determined only by the linearized scalar equation
because its linearized Einstein equation is the same as that
obtained from Einstein gravity which was shown be stable
tensor modes [24]. So, it is clear that the dynamical instability
of bald black holes is determined by tachyonic instability for
scalar but its purpose is quite different from the conventional
aspects. We note here that tachyonic instability has nothing
to do with local thermodynamic instability, but it is regarded
as a hallmark for emerging infinite branches of scalarized
black holes.

In this work, we wish to investigate the stability of SAdS
black hole in EWS theory with a negative cosmological con-
stant and a quadratic scalar coupling to the Weyl term. This

model suggests a combined picture for establishing the CSC
and generating scalarized black holes. The linearized the-
ory admits the Lichnerowicz equation for Einstein tensor as
well as scalar equation. The linearized Einstein-tensor carries
with a regular mass term (M2 = m2−2/�2), whereas the lin-
earized scalar has a tachyonic mass term (−3r2

0 /m2r6). Two
instabilities of SAdS black hole in EWS theory are described
by GL and tachyonic instabilities. We check that the CSC
holds for small SAdS black holes obtained from EWS the-
ory by confirming a close relation between GL instability and
local thermodynamic instability in CE. On the other hand,
tachyonic instability of SAdS black hole will be used for
making five branches of scalarized black holes when prefer-
ring proper thermodynamic quantities.

2 EWS theory and its black hole thermodynamics

The EWS theory with a negative cosmological constant � <

0 is given by

SEWSc = 1

16π

∫
d4x

√−g

[
R − 2� − 2∂μφ∂μφ − f (φ)

2m2 C2
]
,

(1)

where f (φ) = 1−φ2 is a quadratic scalar coupling function,
m2 denotes a mass coupling parameter, andC2 represents the
Weyl term given by

C2(≡ CμνρσC
μνρσ ) = 2

(
RμνR

μν − R2

3

)
+ R2

GB. (2)

Here, R2
GB is the Gauss–Bonnet term defined by R2 −

4RμνRμν +Rμνρσ Rμνρσ . A this stage, it is worth noting that
scalar couplings to Gauss–Bonnet term were mostly used to
find scalarized black holes within EGBS theory because it
provides a tachyonic mass term for a linearized scalar with-
out modifying the linearized Einstein equation [21–23]. This
is so because the Gauss–Bonnet term is a topological term in
four dimensions.

Varying the action (1) with respect to metric tensor, we
derive the Einstein equation

Gμν = 2∂μφ∂νφ − (∂φ)2gμν + 2Bμν

m2 + 

2m2 , (3)

where Gμν = Rμν −(R/2)gμν +�gμν is the Einstein tensor.
Here, Bμν(Bμ

μ = 0) coming from the first part of C2 in
Eq. (2) is the Bach tensor given by

Bμν = Rμρνσ R
ρσ − gμν

4
Rρσ R

ρσ − R

3

(
Rμν − gμν

4
R

)

+1

2

(
∇2Rμν − gμν

6
∇2R − 1

3
∇μ∇νR

)
(4)
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and μν is given by

μν =
[(

Rρσ R
ρσ − R2

3

)
gμν + 4

3
RRμν − 4RμρR

ρ
ν

]
φ2

− 4

3
∇μ∇ν(φ

2R) + 4

3
gμν∇2(φ2R) + 2∇ρ∇μ(φ2Rρ

ν )

+ 2∇ρ∇ν(φ
2Rρ

μ) − 2∇2(φ2Rμν) − 2gμν∇ρ∇σ (φ2Rρσ )

+ 2R∇(μ�ν) + 4∇α�αGμν − 8R(μ|α|∇α�ν)

+ 4Rαβ∇α�βgμν − 4Rβ
μαν∇α�β (5)

with

�μ = 2φ∂μφ. (6)

Its trace is not zero as μ
μ = R∇ρ�ρ − 2Rρσ ∇ρ�σ .

Importantly, the scalar equation takes the form

∇2φ + C2

4m2 φ = 0. (7)

Considering the vanishing scalar φ̄ = 0, the SAdS black
hole solution is found from Eqs. (3) and (7) as

ds2
SAdS = ḡμνdx

μdxν = −
(

1 − r0

r
+ r2

�2

)
dt2

+ dr2

(
1 − r0

r + + r2

�2

) + r2d�2
2 (8)

with AdS curvature radius �2 = −3/� and a mass parameter
of SAdS black hole r0 = 2M . In this case, the horizon radius
r+ is the largest root to 1 − r0

r + r2

�2 = 0. It is determined by

r+ =
−2 · 31/3�2 + (2�4)1/3

(
9r0 +

√
3(4�2 + 27r2

0 )
)2/3

(6�)2/3
(

9r0 +
√

3(4�2 + 27r2
0 )

)1/3 .

(9)

A connection between r0 and r+ takes the form of r0 =
r+(1 + r2+/�2). This SAdS black hole background yields
R̄μνρσ �= 0, R̄μν = �ḡμν, and R̄ = 4�. In this case, we

find that C̄2 = 12r2
0

r6 and R̄2
GB = 12r2

0
r6 + 8�2

3 . The Hawking
temperature of this black hole is given by

TH = 1

4πr+

(
1 + 3r2+

�2

)
. (10)

On the other hand, using the Abbott-Deser-Tekin method
[25,26], Einstein–Weyl thermodynamic quantities of mass,
heat capacity, and Wald entropy are given by [18,19]

MEW(m2, r+, �) = M2

m2 M(r+, �),

CEW(m2, r+, �) = M2

m2 C(r+, �), (11)

SEW(m2, r+, �) = M2

m2 SBH(r+), (12)

where the thermodynamic quantities for SAdS black holes
in Einstein gravity take the forms

M(r+, �) = r+
2

(
1 + r2+

�2

)
, C(r+, �)=2πr2+

(
3r2+ + �2

3r2+ − �2

)
,

SBH(r+) = πr2+. (13)

Here, the mass squaredM2 of a massive spin-2 mode is given
by

M2 = m2 − 2

�2 , (14)

which is positive/negative for m ≷
√

2/�.
It is checked that the first-law of thermodynamics is sat-

isfied within EWS theory as

dMEW = THdSEW, (15)

as well as the first-law is indeed satisfied in Einstein gravity

dM = THdSBH, (16)

where ‘d’ represents the differentiation with respect to the
horizon radius r+ only. As was shown for the SAdS black
holes [27], an Euclidean nonconformal negative mode which
was originally proposed by Gross–Perry–Yaffe [28] ceases
to exist exactly when the heat capacity becomes positive.
This confirms the conjecture of Hawking and Page [29] and
demonstrates the correspondence between this eigenvalue
spectrum and the local thermodynamic stability of SAdS
black hole in CE.

Hereafter, we consider the M2 > 0 case that is described
dominantly by the Einstein gravity. Observing Eq. (11), this
case corresponds to having proper thermodynamic quantities.
The opposite case of M2 < 0 corresponds to the case that
is described dominantly by the Weyl term and has improper
thermodynamic quantities. In the limit of m2 → 0/∞ with
φ = 0, one recovers Weyl term (conformal gravity)/ Ein-
stein gravity. Since the heat capacity C(r+, � = 10) blows
up at r+ = r∗ = �/

√
3 = 5.773� [see (Left) Fig. 1], one

divides the black hole into small black hole with r+ < r∗
and large black hole with r+ > r∗. This implies that the
small black hole is thermodynamically unstable because
CEW < 0 (C(r+, � = 10) < 0), while the large black hole
is thermodynamically stable because CEW > 0(C(r+, � =
10) > 0). Davies curve labels the positions where heat capac-
ity diverges. According to the usual Ehrenfest classification,
second-order phase transitions occur there. (Right) Fig. 1
shows Davies curve representing for C(r+, �) → ∞.

3 Two instabilities of SAdS black holes

To perform the stability analysis of SAdS black hole in EWS
theory, one needs metric perturbation hμν in (gμν = ḡμν +
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Fig. 1 (Left) Heat capacity C(r+, � = 10) for SAdS black hole. Heat
capacity blows up at r+ = r∗ = 5.773 (red line), it is negative for
r+ < r∗, and it is positive for r+ > r∗. This picture persists to CEW

for M2 > 0. (Right) Davies curve for C(r+, �) → ∞. A red dot rep-
resents a red line (� = 10, r+ = r∗) in (Left). Cyan (white) regions
denote C(r+, �) < 0(C(r+, �) > 0)

hμν) and scalar perturbation δφ in (φ = 0+δφ) propagating
around (8). Two linearized equations obtained by linearizing
Eqs. (3) and (7) are decoupled as [30–32]

(
�̄L + 6

�2 + M2
)

δGμν(h) = 0, (17)

(
�̄L − 3r2

0

m2r6

)
δφ = 0, (18)

where the Lichnerowicz operator �̄L is defined for tensor
and scalar as

�̄LδGμν = −∇̄2δGμν − 2R̄μρνσ δGρσ − 6

�2 δGμν, (19)

�̄Lδφ = −∇̄2δφ. (20)

The linearized Einstein tensor δGμν is defined by

δGμν = δRμν − δR

2
ḡμν + 3

�2 hμν (21)

with the linearized Ricci tensor δRμν and the linearized Ricci
scalar δR [19]. Here, it is important to note that ‘M2’ in
Eq. (17) is regarded as a regular mass term for linearized
Einstein tensor, while ‘3r2

0 /m2r6’ in Eq. (18) is regarded as
a tachyonic mass term for linearized scalar. Also, we note that
δGμ

μ = −δR = 0 and the Bianchi identity ∇̄μδGμν = 0
in the linearized EWS theory.

In addition, taking into account the transverse and trace-
less conditions of ∇̄μhμν = 0 and hμ

μ = 0, one finds [32]

δGμν = −1

2

(
�̄L + 6

�2

)
hμν. (22)

In this case, one rewrites Eq. (17) as a fourth-order equation

(
�̄L + 6

�2 + M2
)(

�̄L + 6

�2

)
hμν = 0 (23)

which implies a linearized massless equation for hμν

(
�̄L + 6

�2

)
hμν = 0 (24)

and a linearized massive equation for hMμν

(
�̄L + 6

�2 + M2
)
hMμν = 0. (25)

We find that Eq. (17) is the same as Eq. (25) when replacing
δGμν by hMμν . Hence, we may use Eq. (17) as the linearized
equation around SAdS black hole background for a massive
spin-2 mode (linearized Einstein tensor). However, one point
to clarify is that if one uses Eq. (25), one may be confronted
with the ghost issue because Eq. (25) arises from the fourth-
order equation (23).

3.1 Gregory–Laflamme instability

Equation (17) leads to

∇̄2δGμν + 2R̄μρνσ δGρσ − M2δGμν = 0. (26)

Actually, Eq. (26) describes a massive spin-2 mode (δGμν)
with mass M propagating on the SAdS black hole back-
ground. We wish to solve Eq. (26) by adopting polar sector
δGe

μν(t, r) = e�tδGμν(r). Its radial part is initially given by
four δGtt (r), δGtr (r), δGrr (r), and δGθθ (r). Making use
of δGμ

μ = 0 and ∇̄μδGμν = 0, one derives one decoupled
second-order equation for s(l = 0)-mode δGtr as

A(r; r0, �,�
2,M2)δG ′′

tr (r) + BδG ′
tr (r) + CδGtr (r) = 0,

(27)

where the prime (′) denotes differentiation with respect to
a radial coordinate r . Three coefficients (A, B, C) were
found in [18]. Solving Eq. (27) numerically with appropriate
boundary conditions, one reads off the GL instability bound
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Fig. 2 � graphs as function of mass parameter M for linearized Ein-
stein tensor δGtr with r+ = 1, 2, 4 (r0 = 1.01, 2.08, 4.64) with
� = 10. The thresholds of GL instability (� = 0) are located at
Mth = 0.87, 0.42, 016

from Fig. 2 as

0 < M < Mth, (28)

where Mth = 0.88/r0 = 0.87 for r0 = 1.01(r+ = 1)

denotes threshold mass of GL instability.
At this stage, it is important to find that for r+ = 6 > r∗ =

5.773, the maximum value of � is less than 10−4, implying
there is no unstable modes for large black hole with r+ > r∗.
The GL instability of small SAdS black holes sets in precisely
when they are thermodynamically unstable (C(r+, �) < 0).
This means that the CSC holds for small SAdS black holes
found in the EWS theory.

Finally, it is worth noting that we arrive at the same con-
clusion on the GL instability bound (28) when using Eq. (25),
instead of Eq. (17).

3.2 Tachyonic instability

Tachyonic instability has nothing to do with thermodynamic
instability, but it is considered as an onset for emerging black
holes with scalar hair. From Eq. (18), the linearized scalar
equation takes the form
(
∇̄2 − μ2

S

)
δφ = 0, (29)

where a tachyonic mass squared is given by

μ2
S = − 3r2

0

m2r6 . (30)

Taking into account separation of variables [δφ(t, r, θ, ϕ) =
u(r)
r e−iωt Ylm(θ, ϕ)] and introducing a tortoise coordinate r∗

defined by dr∗ = dr
1−2M/r+r2/�2 , the radial part of (29) is

given by

d2u

dr2∗
+

[
ω2 − VS(r)

]
u(r) = 0, (31)

where the effective potential VS(r) is

VS(r) =
(

1 − r0

r
+ r2

�2

)[
r0

r3 + l(l + 1)

r2 + 2

�2 − 3r2
0

m2r6

]
. (32)

For VS(r) obtained from EGBS theory, see Ref. [33,34].
We could not impose a sufficient condition of tachyonic insta-
bility because

∫ ∞
−∞ VS(r)dr∗ → ∞ for any � > 0. From

(Left) Fig. 3, the negative region becomes wide and deep as
the mass parameter m decreases, implying tachyonic insta-
bility of SAdS black hole. To determine the threshold of
tachyonic instability for s(l = 0)-mode δφ, one has to solve
Eq. (29) with ω = i� directly, which may allow an exponen-
tially growing mode of e�t as an unstable mode. The bound
for tachyonic instability for r+ = 1 (r0 = 1.01) and � = 10
is achieved for

0 < m < mth, (33)

where the threshold mass is given by mth = 1.103. If one
requires M2 > 0 (m >

√
2/�), the bound for tachyonic

instability is modified as

0.141 < m < 1.103. (34)

On the other hand, we consider the static scalar equation
(29) with ω = 0. Solving this equation, we obtain a finite
spectrum of parameter m: m ∈ [1.103 = mth, 0.435, 0.271,
0.197,
0.155], which defines five branches of scalarized black holes:
n = 0((0.141, 1.103]), n = 1((0.141, 0.435]), n =
2((0.141, 0.271]), n = 3((0.141, 0.197]), and
n = 4(0.141, 0.155). This is because the condition of
M2 > 0 puts a lower bound on m (m > 0.141). Here,
n = 0, 1, 2, 3, 4 are identified with the number of nodes
for δφn(r) profile [see (Right) Fig. 3]. Hence, we expect that
five branches (n = 0, 1, 2, 3, 4) of scalarized black holes
would be found when solving Eqs. (3) and (7) numerically.
However, this computation seems to be difficult because Eq.
(3) includes fourth-order derivatives and its Ricci scalar is
not zero.

4 Discussions

In this work, we have investigated the instability of SAdS
black hole in EWS theory with a negative cosmological con-
stant and a quadratic scalar coupling to the Weyl term. This
theory has provided a unified picture for establishing the
correlated stability conjecture (CSC) and generating infi-
nite branches of scalarized black holes. The linearized the-
ory admits the Lichnerowicz equation for Einstein tensor
(metric tensor) as well as scalar equation. The linearized
Einstein-tensor (metric tensor) carries with a regular mass
term (M2), whereas the linearized scalar has a tachyonic
mass term (−3r0/m2r6). Two instabilities of SAdS black
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Fig. 3 (Left) Scalar potential VS(r ∈ [r+ = 1, 10]) for s(l = 0)-mode δφ with r0 = 1.01, � = 10, and m = 1.2 (stable), 1.103(= mth), 1.0
(unstable). The negative region increases as m decreases. (Right) Profile of δφn(r ∈ [r+ = 1, 10]) with node number n = 0, 1, 2 and � = 10

hole in EWS theory are described by Gregory–Laflamme
(GL) and tachyonic instabilities. The GL instability bound
takes the form 0 < M < 0.87 with M = √

m2 − 2/�2 for
r+ = 1 and � = 10, while the tachyonic instability bound is
given by 0.141 < m < 1.103. Furthermore, we have shown
that the CSC holds for small SAdS black holes with r+ < r∗
obtained from EWS theory by confirming a close connection
between GL instability and local thermodynamic instabil-
ity in canonical ensemble. On the other hand, it seems that
tachyonic instability of SAdS black hole has nothing to do
with thermodynamic instability. In the case of EGBS theory,
tachyonic instability implies infinite branches of scalarized
black holes. However, number of branches of scalarized black
holes is five when taking into account proper thermodynamic
quantities of EWS theory (M2 > 0).
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