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Abstract The study of hadronic structure has been carried
out for many years. Generalized parton distribution func-
tions (GPDs) provide broad information on the internal struc-
ture of hadrons. Combining GPDs and high-energy scattering
experiments, we expect yielding three-dimensional physical
quantities from experiments. The Deeply Virtual Compton
Scattering (DVCS) process is a powerful tool for studying
GPDs. It is one of the important experiments of Electron Ion
Collider (EIC) and Electron ion collider at China (EicC) in
the future. In the initial stage, the proposed EicC will have
polarized electrons with energies of 3 ∼ 5 GeV colliding
with polarized protons with energies of 12 ∼ 25 GeV, with
luminosity up to 1 ∼ 2 ×1033 cm−2 s−1. EIC, which will be
constructed in the coming years, will cover center-of-mass
energies ranging from 30 to 50 GeV, with a luminosity of
about 1033 ∼ 1034 cm−2 s−1. In this work, we present a
detailed simulation of DVCS to study the feasibility of exper-
iments at EicC and EIC. Referring the method used by HER-
MES Collaboration, and comparing the model calculations
with pseudo data of asymmetries attributed to the DVCS, we
obtained a model-dependent constraint on the total angular
momentum of up and down quarks in the proton.

1 Introduction

In high-energy nuclear physics, the internal structure and
dynamics of the proton are still not fully understood.
Although decades have passed since the discovery that the
proton internal structure consisted of quarks [1–4] and gluons
(partons) [5–8], we still have limited knowledge about how
these partons contribute to the global properties of the proton,
such as its mass and spin. The measurement of the fraction
of the proton’s spin carried by quarks by the European Muon
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Collaboration (EMC) in 1987 indicated that only small per-
centages of the proton’s spin comes from quarks [9]. The data
of nucleon’s polarized structure function g1 (xB) in EMC
has deviated significantly from the Ellis–Jaffe sum rule [10].
These results gave rise to the so-called “spin crisis” or, more
appropriately, the “spin puzzle”. The discrepancy has since
inspired many intensive experimental and theoretical studies
of spin dependent nucleon structure [11–17]. It was proposed
that the missing fraction of the proton’s spin comes from the
polarized gluon contribution. Recent measurements of the
polarized gluon density have shown that gluons indeed con-
tribute, but they cannot fully account for the gap in the spin
puzzle [16]. The orbital angular momenta of the quarks and
gluons play an important role in the proton’s spin. According
to the generator of Lorentz transformation, we can define the
angular momentum operator in Quantum Chromodynamics
(QCD) [18],

J i = 1

2
εi jk

∫
d3xM0 jk, (1)

where M0 jk is the angular momentum density, which can be
expressed by the energy-momentum tensor Tμν through

Mαμν = T ανxμ − T αμxν . (2)

Tμν has the Belinfante-Improved form and is symmetric,
gauge-invariant, and conserved. It can be divided into gauge-
invariant quark and gluon contributions,

Tμν = Tμν
q + Tμν

g , (3)

and �J has a gauge-invariant form, �JQCD = �Jq + �Jg , where

J iq,g = 1

2
εi jk

∫
d3x

(
T 0k
q,gx

j − T 0 j
q,gx

k
)

. (4)

In pure gauge theory, �Jg is a conserved angular momen-
tum charge by itself, generating spin quantum numbers for
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glueballs. We can observe that �Jq and �Jg are interaction-
dependent. To study the orbital angular momentum of the
partons, one needs to study beyond one-dimensional parton
distributions.

One-dimensional parton distribution functions (PDFs)
provide significant informations about the structure of the
proton. Although PDFs have provided us with much knowl-
edge about the proton, one-dimensional distributions cannot
give us a complete picture. Therefore, theorists developed a
new density function about 30 years ago, which are called
GPDs. GPDs provide information that including both trans-
verse spacial and longitudinal momentum distributions. In
addition to the momentum fraction, GPDs depend on another
independent variable, the negative value of momentum trans-
fer square t = − (

p − p′)2 between the initial and final states
of a proton. Thus, GPDs provide extensive information about
the three-dimensional dynamics of the nucleon, including the
composition of spin and pressure distribution [19–24]. Simi-
lar to the one dimensional PDFs, GPDs include non-polarized
and polarized functions.

GPDs, also known as the off-forward PDFs, have attracted
a lot of attention since the spin decomposition rule was
first proposed [18]. It was proposed to factorize the hard
exclusive processes. The corresponding factorization struc-
ture functions that describe the structure of the nucleon
are the GPDs Hq (x, ξ, t), Eq (x, ξ, t), H̃q (x, ξ, t) and
Ẽq (x, ξ, t). These functions correspond to the Fourier trans-
form of the non-diagonal operators [18,20,22,25]:

P+

2π

∫
dy−e jx P+y− 〈

p′ ∣∣�̄q(0)γ +�q(y)
∣∣ p〉

∣∣∣∣
y+=�y⊥=0

= Hq (x, ξ, t) N̄
(
p′) γ +N (p)

+Eq (x, ξ, t) N̄
(
p′) iσ+v 
v

2MN
N (p),

P+

2π

∫
dy−ex P+y− 〈

p′
∣∣∣�̄q(0)γ +γ 5�q(y)

∣∣∣ p
〉∣∣∣∣
y+=�y⊥=0

= H̃q (x, ξ, t) N̄
(
p′) γ +γ5N (p)

+Ẽq (x, ξ, t) N̄
(
p′) γ5


+

2MN
N (p), (5)

where y is the coordinate of the two correlated quarks, P
is the average nucleon four-momentum in the light-front
frame: P = (

p + p′) /2 and 
 = p′ − p. The “+” super-
script denotes the plus component of four-momentum in the
light-front frame. Each GPD function defined above is spe-
cific to a particular flavor of quark: Hq , Eq , H̃q , Ẽq(q =
u, d, s, . . .). Hq and H̃q represent spin non-flipped GPD
functions, while Eq and Ẽq represent spin-flipped ones. The
off-forward parton distributions encompass both the ordinary
parton distributions and nucleon form factors. In t → 0 and
ξ → 0 limit, we get

H(x, 0, 0) = f1(x),

H̃ (x, 0, 0) = g1(x), (6)

where f1(x) is quark distribution and g1(x) is quark helicity
distribution. According to the Dirac and Pauli form factors
F1, F2, as well as the axial-vector and pseudo-scalar form
factors GA, GP , the sum rules can be obtained,∫

dxH (x, ξ, t) = F1 (t) ,

∫
dxE (x, ξ, t) = F2 (t) ,

∫
dx H̃ (x, ξ, t) = GA (t) ,

∫
dx Ẽ (x, ξ, t) = GP (t) . (7)

The most interesting Ji’s sum rules related to the nucleon
spins are described through GPDs [22],
∫ 1

−1
dxx [H (x, ξ, t) + E (x, ξ, t)] = A(t) + B(t). (8)

Then the total spin of the proton can be expressed as:

Jq,g = 1

2

[
Aq,g(0) + Bq,g(0)

]
,

Jq + Jg = 1

2
, (9)

where Aq,g(0) gives the momentum fractions carried by
quarks and gluons in the nucleon (Aq(0) + Ag(0) = 1),

and B-form factor is analogous to the Pauli form factor for
the vector current. By extrapolating the sum rule to t = 0, one
gets Jq,g . The GPDs can be measured in deep-exclusive pro-
cesses such as DVCS and Deeply Virtual Meson Production
(DVMP) [18,22,26–30]. Both of these processes are exclu-
sive hard scattering processes in lepton-nucleon collisions.
Theoretical research on these topics has been conducted for
many years, and researchers have developed various theo-
retical models and predictions [18,21,22,31–39]. During the
past 20 years, the collaborations at HERA, Jefferson Lab
(JLab), and CERN have made significant efforts to obtain
information about GPDs from the electro-production of real
photons (DVCS processes) [31,40–61], such as DESY with
H1 [40,43], ZEUS [41], HERMES [45,46], JLab Halls A
[31,50,52–55] and Halls B [48,51,56–59], and COMPASS
[60,61]. These experiments have made important contribu-
tions to our understanding of the internal structure of the pro-
ton. However, the available data from these experiments lack
high precision and coverage of a wide kinematic range. Accu-
rately measuring the DVCS process is a significant challenge
as it requires high luminosity to compensate for very small
cross section and well-designed detector design to ensure the
exclusive measurement of the final states. Both EicC and EIC
are important future experiments that will provide high lumi-
nosity and excellent particle detection capabilities. In this
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work, we discuss the relation of GPDs and DVCS observ-
ables [22], and perform a Monte-Carlo simulation of DVCS
+ Bethe-Heitler (BH) events to estimate the statistical errors
of asymmetry observables in future DVCS experiments at
EicC and EIC.

The extraction of Generalized Parton Distributions (GPDs)
from exclusive reactions is indirect, and it requires the use
of appropriate GPD models. After years of development,
numerous theoretical models of GPDs have been devel-
oped. Two of these models are based on double distributions
(DDs) [20,62,63]. One model, known as the VGG model,
was proposed by Vanderhaeghen, Guichon, and Guidal
[26,27,64,65]. Another model, called the GK model, was
presented by Goloskokov and Kroll [28,66,67]. Researchers
have examined different GPD models using available experi-
mental data and have shown that the data from various exper-
iments agree well with the calculations based on the VGG
model [25,48,54,57,58]. Therefore, in this work, we per-
form theoretical calculations using the VGG model. In the
VGG model, the observable Transverse Target-Spin Asym-
metry (TTSA) Asin(φ−φs ) cos φ

UT is particularly sensitive to the
quark total angular momentum in the nucleon compared to
other observables [31,68,69]. Thus we make a constraint on
Ju and Jd by the pseudo data of Asin(φ−φs ) cos φ

UT .
The organization of the paper is as follows. The relation-

ship between GPDs and DVCS is illustrated in Sect. 2. The
phenomenological parametrization of GPDs is described in
Sect. 3. The invariant kinematic and final state kinematic
distributions of the simulation are shown in Sect. 4. The pro-
jections of DVCS experiment are shown in Sect. 5. Finally,
some discussions and a concise summary are given in Sect. 6.

2 Generalized partons distribution and deeply virtual
compton scattering

Deeply virtual Compton scattering on a nucleon shown in
Fig. 1 left panel is the simplest process to access GPDs. It
plays an important role in exploring the internal structure of
the nucleon. BH process, illustrated in the middle and right
panels of Fig. 1, shares the same initial and final states as the
DVCS process.

The five-fold differential cross section for electro-produ-
ction of real photon ep → e′ p′γ is defined as [32]:

dσ

dxBdyd
∣∣
2

∣∣ dφdϕ
= α3xBy

16π2Q2
√

1 + ε2

∣∣∣∣ Te3

∣∣∣∣
2

. (10)

The cross section of this process depends on the Bjorken
scaling variable xB , the squared momentum transfer 
 =
(P2 − P1)

2, and the lepton energy fraction y = P1 ·q1/P1 ·k,
where q1 = k − k′. Here, P1 and P2 represent the four-
momentum of the initial and final state proton, respec-

Fig. 1 The Feynman diagram of DVCS (left) and BH (right) processes.
e, e′ and p, p′ are the initial and final states electron and proton respec-
tively. t is the squared four-momentum transfer between the initial and
final state proton

Fig. 2 The reference frame of scattering plane and kinematic variables
of ep → e′ p′γ reaction in the laboratory [25,32,70]

tively. The azimuthal angle between the lepton plane and the
recoiled proton momentum is denoted as φ. Additionally, ϕ is
the angle between the polarization vector S⊥ and the scattered
hadron, as shown in Fig. 2. The parameter ε = 2xBM/Q
incorporates nonvanishing target mass effects [32,70]. The
reaction amplitude T is the linear superposition of the BH
and DVCS amplitudes,

T 2 = |TBH |2 + |TDVCS|2 + TI , (11)

where TI = TDVCST ∗
BH + T ∗

DVCSTBH . The squared BH
term |TBH |2, squared DVCS amplitude |TDVCS|2, and inter-
ference term TI are given by:

|TBH|2 = e6

x2
By

2
(
1 + ε2

)2

2P1(φ)P2(φ)

×
{
cBH

0 +
2∑

n=1

cBH
n cos(nφ) + sBH

1 sin(φ)

}
,

(12)

|TDVCS|2 = e6

y2Q2

123



900 Page 4 of 13 Eur. Phys. J. C (2023) 83 :900

×
{
cDVCS

0 +
2∑

n=1

[
cDVCS
n cos(nφ) + sDVCS

n sin(nφ)
]}

,

(13)

TI = ±e6

xBy3
2P1(φ)P2(φ)

×
{
cI0 +

3∑
n=1

[
cIn cos(nφ) + sIn sin(nφ)

]}
. (14)

ForP1 andP2, we use the following parametrization [32,70]:

P1 = − 1

y
(
1 + ε2

) {J + 2K cos(φ)},

P2 = 1 + 
2

Q2 + 1

y
(
1 + ε2

) {J + 2K cos(φ)}, (15)

where

J =
(

1 − y − yε2

2

) (
1 + 
2

Q2

)
− (1 − x)(2 − y)


2

Q2 ,

(16)

K 2 = −
2

Q2 (1 − xB)

(
1 − y − y2ε2

4

)(
1 − 
2

min


2

)

×
{√

1 + ε2 + 4xB (1 − xB) + ε2

4 (1 − xB)


2 − 
2
min

Q2

}
.

(17)

It vanishes at the kinematical boundary 
2 = 
2
min or 
2 =


2
max,


2
min = −Q2

2 (1 − xB)
(

1 − √
1 + ε2

)
+ ε2

4xB (1 − xB) + ε2 , (18)

tmax = −Q2
2 (1 − xB)

(
1 + √

1 + ε2
)

+ ε2

4xB (1 − xB) + ε2 . (19)

The results for the Fourier coefficients can be found in [32,
70]. The variables ξ and t (or 
2) can be computed from the
kinematic variables. Since we cannot directly obtain xB from
experiment, the Compton form factors (CFFs) are obtained
by integrating the GPDs,
∫ 1

−1

Fq(x, ξ, t)

x − ξ + iε
dx

= P
∫ 1

−1

Fq(x, ξ, t)

x − ξ
dx − iπFq(ξ, ξ, t), (20)

where Fq are Hq , H̃q , Eq , or Ẽq . These real and imaginary
part of Eq. 20, which can be expressed in eight GPD-related
quantities that can be extracted from DVCS observables [25]:

HRe(ξ, t) ≡ P
∫ 1

0
dx [H (x, ξ, t) − H (−x, ξ, t)]C+,

HIm(ξ, t) ≡ H(ξ, ξ, t) − H(−ξ, ξ, t),

ERe(ξ, t) ≡ P
∫ 1

0
dx [E (x, ξ, t) − E (−x, ξ, t)]C+,

EIm(ξ, t) ≡ E(ξ, ξ, t) − E(−ξ, ξ, t),

H̃Re(ξ, t) ≡ P
∫ 1

0
dx

[
H̃ (x, ξ, t) − H̃ (−x, ξ, t)

]
C−,

H̃Im(ξ, t) ≡ H̃(ξ, ξ, t) − H̃(−ξ, ξ, t),

ẼRe(ξ, t) ≡ P
∫ 1

0
dx

[
Ẽ (x, ξ, t) − Ẽ (−x, ξ, t)

]
C−,

Ẽ Im(ξ, t) ≡ Ẽ(ξ, ξ, t) − Ẽ(−ξ, ξ, t). (21)

The case with the subscript “Re” is accessed by observables
sensitive to the real part of the DVCS amplitude, while the
case with the subscript “Im” is accessed by observables sen-
sitive to its imaginary part. The coefficients C± are defined
as:

C± = 1

x − ξ
± 1

x + ξ
. (22)

As a result, the Compton form factors with four complex
functions are written as:

H(ξ, t) ≡ HRe(ξ, t) − iπHIm(ξ, t),

H̃(ξ, t) ≡ H̃Re(ξ, t) − iπ H̃Im(ξ, t),

E(ξ, t) ≡ ERe(ξ, t) − iπEIm(ξ, t),

Ẽ(ξ, t) ≡ ẼRe(ξ, t) − iπ Ẽ Im(ξ, t). (23)

For the measurement of CFFs, it is mandatory to consider
the interference term from BH events. The production of
BH events is a pure QED process, which can be measured
precisely from the form factor F1 and F2. In addition to the
absolute cross section, another way to obtain the CFFs is by
measuring the asymmetries. The beam charge asymmetries
are defined as:

AC = σ+(φ) − σ−(φ)

σ+(φ) + σ−(φ)
, (24)

where σ+ and σ− refer to the cross sections with lepton
beams of opposite charge. It can be observed that the asym-
metries only depend on φ. The observables of interest in this
paper are the correlated charge and transversely polarized
target-spin asymmetries, which are defined as:

AUT,DVCS =
(
σ++ (φ) − σ+− (φ)

) + (
σ−+ (φ) − σ−− (φ)

)
σ++ (φ) + σ+− (φ) + σ−+ (φ) + σ−− (φ)

,

AUT,I =
(
σ++ (φ) − σ+− (φ)

) − (
σ−+ (φ) − σ−− (φ)

)
σ++ (φ) + σ+− (φ) + σ−+ (φ) + σ−− (φ)

, (25)

where A with subscripts denote the cross section asymme-
tries of ep → e′ p′γ at certain beam (first subscript) and
target (second subscript) polarization sign (“U” stands for
unpolarized and “T” for transverse polarized). Note that there
are two independent transverse polarization direction of pro-
ton:UTx is in the hadronic plane andUTy is perpendicular to
it. There, the superscript and subscript of σ refer to the charge
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of the lepton beam and the beam (or target) spin projection.
One can measure the exclusive ep → e′ p′γ cross section
with different beam and target polarization since the spin
asymmetries provide access to different CFFs through the
interference term I in the BH and DVCS processes. At lead-
ing order and leading twist, the relations linking observables
and CFFs for the ep → e′ p′γ process have been derived as
[32,71,72]:

Asin(φ−φs )
UT, DVCS ∝ [

Im
(
HE∗) − ξ Im

(
H̃Ẽ∗)] , (26)

Asin(φ−φs ) cos φ
UT,I ∝ Im

[
− t

4M2 (F2H − F1E)

+ξ2
(
F1 + t

4M2 F2

)
(H + E)

−ξ2 (F1 + F2)

(
H̃ + t

4M2 Ẽ
)]

. (27)

These approximations illustrate that different experimental
observables are sensitive to different CFFs. We can see that
the above asymmetries depend on the CFF E , which has
important implications for our subsequent study of the total
angular momentum of different quarks within the proton.

3 Phenomenological parametrization of GPDs

Assuming a factorized t-dependence, the quark GPD Hq is
given by [26]:

Hq(x, ξ, t) = Hq(x, ξ) · Fq
1 (t). (28)

The nucleon form factors in dipole form is given by:

Fdipole
1 (t) = 1 − (

1 + κ P
)
t/4m2

N

1 − t/4m2
N

1

(1 − t/0.71)2 . (29)

For the function Hq (for each flavor q), the t-independent
part Hq(x, ξ) ≡ Hq(x, ξ, t = 0) is parametrized by a two-
component form,

Hq(x, ξ) ≡ Hq
DD(x, ξ, t = 0) + θ(ξ − |x |)Dq

(
x

ξ

)
, (30)

where Dq
(
x
ξ

)
is the D-term, set to 0 in our following cal-

culation. And Hq
DD is the part of the GPD which is obtained

as a one-dimensional section of a two-variable double dis-
tribution (DD) Fq , imposing a particular dependence on the
skewness ξ ,

Hq
DD(x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x − β − αξ)Fq(β, α).

(31)

For the double distributions, entering Eq. 31, we use the fol-
lowing model,

Fq(β, α) = h(β, α)q(β), (32)

where q(β) is the forward quark distribution (for the flavor q)
and where h(β, α) denotes a profile function. In the following
estimates, we parametrize the profile function through a one-
parameter ansatz, following [26,62,63]:

h(β, α) = �(2b + 2)

22b+1�2(b + 1)

[
(1 − |β|)2 − α2

]b
(1 − |β|)2b+1 . (33)

For β > 0, q(β) = qval(β)+q̄(β) is the ordinary PDF for the
quark flavor q. In this work, we use IMParton as input [73].
The negative β range corresponds to the antiquark density:
q(−β) = −q̄(β). The parameter b characterizes to what
extent the GPD depends on the skewness ξ , and fixed to 1 in
this work.

The spin-flip quark GPDs Eq in the factorized ansatz are
given by:

Eq(x, ξ, t) = Eq(x, ξ) · Fq
2 (t)/κq . (34)

Here Fq
2 (t) denotes the Pauli FF for quark flavor q, and is

parameterized by:

Fq
2 = κq(

1 − t/4m2
p

)
· (

1 − t/m2
D

)2
, (35)

where κq is the anomalous magnetic moment of quarks of
flavor q, κu = 2κ p + κn = 1.67, κd = κ p + 2κn = −2.03.
Same as Eq. 30, the t-independent part of the quark GPDs,
Eq(x, ξ) is defined as:

Eq(x, ξ) = EDD
q (x, ξ) − θ(ξ − |x |)Dq

(
x

ξ

)
. (36)

The part of the GPD E that can be obtained from the double
distribution has a form analogous to the spin-nonflip case:

EDD
q (x, ξ) =

∫ 1

−1
dβ

∫ 1−|β|

−1+|β|
dαδ(x − β − αξ)Kq(β, α),

(37)

there, Kq(β, α) is given by:

Kq(β, α) = h(β, α)eq(β), (38)

and eq(β) denotes the spin-flip can be written as:

eq(x) = Aq · qval(x) + Bq · δ(x), (39)

with:

Aq = 2Jq − M (2)
q

M (2)
qval

,

Bu = 2

[
1

2
κu − 2Ju − M (2)

u

M (2)
uval

]
,

Bd = κd − 2Jd − M (2)
d

M (2)
dval

. (40)
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By defining the total fraction of the proton momentum carried
by the quarks and antiquarks of flavor q as:

Mq
2 =

∫ 1

0
dxx[q(x) + q̄(x)]

=
∫ 1

0
dxx [qval (x) + 2q̄(x)] , (41)

and the momentum fraction carried by the valence quarks as:

Mqval
2 =

∫ 1

0
dxxqval (x). (42)

The parameterizations of H̃ and Ẽ are introduced in [26,
27,64,65]. For the parameterization of H̃ , we use polIMPar-
ton as input [74]. In this model, the total angular momentum
carried by u-quarks and d-quarks, Ju and Jd , are free parame-
ters in the parameterization of the spin-flip GPD Eq(x, ξ, t).
Therefore, this parameterization can be used to study the sen-
sitivity of hard electroproduction observables to variations
in Ju and Jd . The main objective of this article is to predict
the errors in future EIC and EicC experiments. The D-term
and the parameters introduced by the VGG model, have a
minimal impact on the errors. Therefore, we have adopted a
concise computational form.

4 Distributions of invariant and final-state kinematics

There is a Monte-Carlo (MC) simulation package for DVCS
and BH processes called MILOU [75]. We used this software
to generate 5 million events for EicC and EIC. We utilized the
PARTONS (PARtonic Tomography Of Nucleon Software)
package as input for observables [76]. Thus, we obtained
pseudo data for subsequent theoretical calculations. We focus
on two future experiments (EIC and EicC). For EicC, we
assume an incoming electron beam energy of Ee = 3.5 GeV
and an incoming proton beam energy of Ep = 20 GeV [77].
For EIC, the assumed beam energies are Ee = 5 GeV for
the incoming electron and Ep = 100 GeV for the incoming
proton [78]. We propose to perform measurements of spin
azimuthal asymmetries in deeply virtual Compton scatter-
ing on transverse polarized protons. In addition to the scat-
tered electron, the real photon and the scattered proton will
be measured after the incoming unpolarized electron. The
observable Asin(φ−φs ) cos φ

UT will be extracted from the data.
The EicC facility can provide a beam integrated luminosity
up to 50 fb−1, corresponding to the effective running time of
one year [77]. EicC also has a large kinematic acceptance
capacity, which can complement the current vacant data.
Compared to EicC, EIC offers a beam integrated luminosity
up to 60 fb−1 in less running time [78,79]. By combining
data from the EIC and EicC experiments, high precision data
covering most kinematic regions will be available.

10 15 20
 (GeV)p'P

0

2

4

6

8

 (d
eg

re
e)

p'θ

1

10

210

310

410

510

610

710

0 2 4 6
 (GeV)e'P

0

50

100

150

 (d
eg

re
e)

e'θ

1

10

210

310

410

510

0 5 10
 (GeV)γP

0

50

100

150

 (d
eg

re
e)

γθ

1

10

210

310

410

510

610

Fig. 3 The cross-section weighted momentum and polar angles distri-
butions of the final-state particles (scattered protons, scattered electrons
and real photons) in the MC simulation at EicC

In order to efficiently generate events in the kinematic
region of interest, we apply the following kinematic ranges
for MC sampling: 10−4 < xB < 1, 1 GeV2 < Q2 <

100 GeV2, and 10−3 GeV2< −t < 3 GeV2. Figures 3
and 4 show the momentum vs. polar angle coverage for the
final state electrons, real photons, and scattered protons from
the DVCS and BH processes at EicC and EIC. We observe
that the final proton typically carries a large fraction of the
momentum of the incoming proton and has a small scattering
angle. Most protons are located at very small polar angles,
and their momentum difference with the beam is so small
that we require a high-resolution momentum measurement
for the forward detector. On the other hand, the final electron
has a larger scattering angle compared to the final proton.
Based on the distribution of the final state particles, we can
appropriately position the detectors to collect more events.
Figures 5 and 6 illustrate the cross-section weighted invariant
kinematics distributions of the ep → e′ p′γ reaction at EicC
and EIC. These color z-axis distributions are weighted by the
cross-section computed in VGG model implemented in the
MILOU software, and they are shown on a logarithmic z-
scale. We observe that the Q2 range covers from 1.0 GeV2 to
10.0 GeV2, xB ranges from 0.003 to 0.05, and t goes from 0
down to −0.2 GeV2. Approximately 92% of the total events
fall within this region. When comparing the results of EicC
and EIC, we observe that EIC has more data in the smaller
xB and smaller −t regions compared to EicC.

5 Projection of DVCS experiment

The statistical uncertainty of the measured experimental
observable is directly related to the number of events col-
lected during an experiment. To estimate the number of
events for an experiment, we need to know the cross sec-
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Fig. 4 The cross-section weighted momentum and polar angles distri-
butions of the final-state particles (scattered protons, scattered electrons
and real photons) in the MC simulation at EIC
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matics in the MC simulation at EicC
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matics in the MC simulation at EIC

tion of the reaction, the integrated luminosity of the exper-
iment, and the event selection criteria for the reaction. EIC
provides an integrated luminosity of 1.5 fb−1 per month [78].
We assume an integrated luminosity of 50 fb−1 for the EicC
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2 = 100 GeV2Q

y = 0.6
y = 0.6
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 = 16.7 GeVsEicC

Fig. 7 Kinematic range in the x , Q2 plane at EicC (
√
s = 16.7 GeV)

and EIC (
√
s = 45 GeV) [80–82]. The hatched areas indicate the areas

simulated in this work, which correspond to 0.01 ≤ y ≤ 0.85. The red
dashed line and green dashed line indicate y = 0.6

experiment, which corresponds to three to four years of data
collection. The integrated luminosity for EIC is assumed to be
60 fb−1 over a period of approximately 3 years. To ensure that
the collected events are valid for our study, we have applied
the following event selection conditions: 0.01 < y < 0.85,
t > −0.5 GeV2, W > 2.0 GeV, Pe′ > 0.5 GeV. Figure 7
shows the kinematic regions of EIC and EicC, which repre-
sent the simulated region in this work. EIC and EicC will pro-
vide data in small x region, with the red area indicating EIC
and the green area indicating EicC. In the small Q2 region,
EicC can provide data where x is close to x ∼ 0.005. Since
EIC has a higher center-of-mass energy, it can provide data
for an even smaller x region in the range of x ∼ 0.0007. The
DVCS experiment poses significant challenges for detect-
ing the recoiled proton with small t . In order to ensure that
the recoiled proton can be detected by forward detector, we
have imposed certain constraints on the detection of the final
state protons. This low-t acceptance eliminates many forward
events, as exemplified by EicC in Fig. 8.

Based on the event selection criteria discussed above, the
number of events in each bin is calculated using the following
formula,

N = σ avg · Lumi · Time · εeff · 
xB · 
t · 
Q2, (43)

where N is the total number of events in each kinematical bin,
σ avg is the average of the four cross section with different
electron and proton beam polarization directions, “Lumi”
is the beam luminosity, “Time” is the beam duration, εeff

is the overall detector efficiency, and the remaining terms
represent the sizes of the kinematical bins. In this work, we
conservatively assumed a particle acceptance of 25% at EIC
and 20% at EicC [77,78].
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The counts of events in each bin are denoted as N++,
N+−, N−+, and N−−, corresponding to different electron
and nucleon polarization directions. One can obtain the
asymmetries quantities of the target spin asymmetry (AT S)

using the formula:

AT S = N++ + N−+ − N+− − N−−

N++ + N+− + N−+ + N−−
1

PT
, (44)

where PT stands for the polarization degree of nucleon
(assumed to be 70%) [77,78]. Considering that the asym-
metries quantities are at the several percent level, we use the
unpolarized events generated by MILOU for the projection,
and the total number of events for all polarization conditions
is denoted as N . Thus, the absolute statistical uncertainty of
the asymmetries quantities can be approximately expressed
as:

δAT S ≈ 1

PT

1√
N

. (45)

Figures 9 and 10 show the projection of statistical errors in
a low Q2 bin ranging from 1 to 3 GeV2 for EicC and EIC
experiments. We focus on the small xB and −t region and
divide the xB vs. −t plane into very small bins. In these
plots, we observe that the statistical uncertainty increases
as xB increases. For most of the data at EicC and EIC, the
projected statistical uncertainty is smaller than 3%. When
xB reaches around 0.12, the statistical uncertainty is around
5%. These precise data will be of great help for future the-
oretical research. Now we can provide the pseudo-data for
the asymmetry of the cross-section in the region of inter-
est at EicC and EIC. We divide xB , t , and Q2 in differ-
ent bins, as shown in Table 1. This table corresponds to
Figs. 11 and 12. For cases where only xB , t or Q2 changes,
we applied a similar division approach. Here xB ranges from
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Fig. 9 The statistical errors projection of the Transverse Target-Spin
Asymmetry at low Q2 at EicC. We calculate the statistical errors at each
bin center. The right axis shows how large the statistical errors are
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Fig. 10 The statistical errors projection of the Transverse Target-Spin
Asymmetry at low Q2 at EIC. We calculate the statistical errors at each
bin center. The right axis shows how large the statistical errors are

0.01 to 0.17 in steps of 0.02 (t : −0.11 ∼ −0.09 GeV2,
Q2 : 1.13 ∼ 1.38 GeV2), t ranges from −0.19 GeV2

to −0.03 GeV2 in steps of 0.02 (xB : 0.01 ∼ 0.03,
Q2 : 1.13 ∼ 1.38 GeV2) and Q2 ranges from 1.13 to
3.13 GeV2 in steps of 0.25 (xB : 0.01 ∼ 0.03, t : −0.11 ∼
−0.09 GeV2). As shown in Fig. 11, EicC provides a large
phase space coverage and good statistics, especially for
the small xB ,−t and Q2 regions. Similar results at EIC
[83] are shown in Fig. 12. Since we also divide the Q2

into small bins, the statistical errors of the pseudo-data in
Figs. 11 and 12 are much larger than those shown in Figs. 9
and 10.

We have developed a code to calculate observables in
the exclusive reaction ep → e′ p′γ to LO precision in per-
turbative theory. This calculation follows the VGG model
described in Sect. 3. In order to compare the results from
theoretical calculations with the pseudo data for the TTSA
amplitudes shown in Fig. 13, the χ2 is defined as:
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Table 1 Binning scheme for
xB , t , and Q2 xB t (GeV2) Q2 (GeV2)

xB \ 0.01 ∼ 0.03 0.01 ∼ 0.03

t (GeV2) −0.11 ∼ −0.09 \ −0.11 ∼ −0.09

Q2 (GeV2) 1.13 ∼ 1.38 1.13 ∼ 1.38 \
Bins 0.01 ∼ 0.03 −0.05 ∼ −0.03 1.13 ∼ 1.38

0.03 ∼ 0.05 −0.07 ∼ −0.05 1.38 ∼ 1.93

0.05 ∼ 0.07 −0.09 ∼ −0.07 1.63 ∼ 1.88

0.07 ∼ 0.09 −0.11 ∼ −0.09 1.88 ∼ 2.13

0.19 ∼ 0.11 −0.13 ∼ −0.11 2.13 ∼ 2.38

0.11 ∼ 0.13 −0.15 ∼ −0.13 2.38 ∼ 2.63

0.13 ∼ 0.15 −0.17 ∼ −0.15 2.63 ∼ 2.88

0.15 ∼ 0.17 −0.19 ∼ −0.17 2.88 ∼ 3.13
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Fig. 11 Asymmetries with polarized electron beam and proton beam
in some typical bins at EicC

χ2 (Ju, Jd )

=

[
Asin(φ−φs ) cos φ
UT

∣∣∣
( Pseudo data )

− Asin(φ−φs ) cos φ
UT

∣∣∣
theory

]2

δA2
stat + δA2

syst
.

(46)

To account for systematic errors, we need to consider the
previous experiments [31,40–61]. Based on these previous
experiments, we make a conservative estimate for EicC and
EIC. Therefore, for EicC and EIC, we assume the experimen-
tal systematic errors to be 10%. The constraints on Ju and Jd
obtained for the extracted TTSA amplitudes from the pseudo
data are shown in Fig. 13. We calculate the TTSA amplitudes
for Ju (Jd) ranging from 0 to 1 (−1 to 1) in steps of 0.2 and set

the D-term = 0 (Dq
(
x
ξ

)
in Eq. 30). We make the assumption

that the D-term is equal to zero, as the value of D-term has
little significance on the final distribution of angular momen-
tum [84]. Figure 14 shows the model-dependent constraint
on u-quark total angular momentum Ju vs d-quark total angu-
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Fig. 12 Asymmetries with polarized electron beam and proton beam
in some typical bins at EIC

lar momentum Jd in the same kinematic region as HERMES
[68,69]. Here we only consider the influences from statistical
errors. The result of EicC, which is shown in Fig. 14, can be
expressed as

Ju + Jd/2.9 = 0.41 ± 0.06, (47)

and the result of EIC is

Ju + Jd/3.0 = 0.39 ± 0.04. (48)

If we consider both statistical and systematic errors
(Asin(φ−φs ) cos φ

UT = −0.142 ± 0.020 ± 0.014 at EicC,

Asin(φ−φs ) cos φ
UT = −0.020±0.002±0.002 at EIC), the result

(shown in Fig. 15) is

Ju + Jd/2.9 = 0.41 ± 0.08, (49)

for EicC, and

Ju + Jd/3.0 = 0.39 ± 0.06. (50)

for EIC. The uncertainty is propagated from the TTSA ampli-
tudes uncertainty of the pseudo data, and experimental sys-
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in small x region at EicC (Table 2) and EIC (Table 3)

Table 2 Asymmetries with polarized electron beam and proton beam
at EicC

xB t (GeV2) Q2 (GeV2) Asin(φ−φs ) cos φ
UT ± stat

0.006 0.10 1.25 −0.089 ± 0.007

0.01 0.10 1.25 −0.168 ± 0.016

0.1 0.12 2.50 −0.142 ± 0.020

Table 3 Asymmetries with polarized electron beam and proton beam
at EIC

xB t (GeV2) Q2 (GeV2) Asin(φ−φs ) cos φ
UT ± stat

0.002 0.10 1.25 −0.225 ± 0.005

0.006 0.10 1.25 −0.172 ± 0.008

0.01 0.10 1.25 −0.121 ± 0.007

0.1 0.12 2.50 −0.020 ± 0.002

tematic errors dominate. According to the results of HER-
MES [68,69,85],

Ju + Jd/2.9 = 0.42 ± 0.21, (51)

we ignore the effects of parameter b and D-term. As the
Fig. 15 shows, EicC and EIC have higher accuracy to obtain
smaller uncertainty for constraint on u-quark and d-quark
total angular momentum.

Since EIC and EicC can provide a large amount of accurate
data in the small x region, we performed some calculations
in this region. Both statistical and systematic errors are con-
sidered in these results. At x = 0.01, the results of EicC and
EIC are shown in Fig. 16, where EicC is

Ju + Jd/2.6 = 0.39 ± 0.05, (52)

and EIC is

Ju + Jd/2.7 = 0.38 ± 0.05. (53)
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Fig. 14 The result of model-dependent constraint on u-quark total
angular momentum Ju vs d-quark total angular momentum Jd at EIC
and EicC compared with HERMES [68,69]. Only statistical errors are
considered
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Fig. 15 The result of model-dependent constraint on u-quark total
angular momentum Ju vs d-quark total angular momentum Jd at EIC
and EicC compared with HERMES [68,69]. Both statistical and sys-
tematic errors are considered
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Fig. 16 The result of model-dependent constraint on u-quark total
angular momentum Ju vs d-quark total angular momentum Jd in the
region of x ∼ 0.01 at EIC and EicC. Both statistical and systematic
errors are considered

In the region of x ∼ 0.006, we obtained the following
results, where
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Fig. 18 The result of model-dependent constraint on u-quark total
angular momentum Ju vs d-quark total angular momentum Jd in the
region of x ∼ 0.002 at EIC. Both statistical and systematic errors are
considered

Ju + Jd/2.5 = 0.38 ± 0.05, (54)

is the result of EicC shown in Fig. 17. The result of EIC in
this kinematic region is

Ju + Jd/2.5 = 0.39 ± 0.05. (55)

As Fig. 7 shows, EIC also provides accurate data in the
area of x ∼ 0.002. In this very small x region, we present
the result of EIC,

Ju + Jd/2.4 = 0.35 ± 0.04, (56)

which is shown in Fig. 18.
The results of EicC and EIC are both within the error range

of HERMES and exhibit small uncertainties. Without precise
experiments, it is challenging for theoretical advancements
to occur. These accurate experimental data will greatly con-
tribute to our future understanding of nucleon structure.

6 Discussions and summary

The internal structure of the nucleon remains mysterious, and
researchers explore it through various methods. Following
the EMC experiment, numerous detailed studies on nucleon
spins were conducted. The proposed theory of GPDs has
opened new avenues for investigating the three-dimensional
structure and spin of the nucleon. Ji’s sum rule establishes
a direct relationship between GPDs and the total angular
momentum carried by the partons. DVCS experiments serve
as a valuable choice for obtaining GPDs, albeit not through
direct extraction. Despite significant progress in the theoret-
ical exploration of GPDs, relatively little advancement has
been made on the experimental front. This is primarily due
to the demanding requirements of high statistical accuracy,
necessitating exceptional detectors and high luminosity.

In this study, we performed simulations of the DVCS pro-
cess at EicC and EIC to investigate the internal structure
of the proton. We predicted the statistical errors for these
two future experiments. Based on the very small statisti-
cal errors, we conclude that the measurement accuracy of
future DVCS experiments will be predominantly limited by
systematic errors. A notable improvement in data accuracy
is expected for EIC and EicC compared to existing data
obtained from different experimental groups. This develop-
ment holds significant implications for future experimental
studies on the internal structure of the nucleon. Advanced
experimental equipment can help reduce systematic errors,
while better detection of final-state particles can minimize
statistical errors. With excellent detectors and high acceler-
ator luminosity, DVCS experiments at EicC and EIC hold
promising prospects.

Using high-precision pseudo-data for TTSA from EIC and
EicC measurements, we can effectively study the nucleon’s
helicity-flip GPD E . Through the VGG model, GPD E is
parameterized by the total angular momentum of the up and
down quarks within the nucleon. By combining DVCS exper-
iments with nucleon spin studies, we can constrain the total
angular momentum carried by up and down quarks inside
the proton during future EIC and EicC experiments, taking
into account the constraints provided by HERMES and JLab
experiments on the total angular momentum of quarks in the
proton and neutron. Comparison of the differences between
the different models is necessary.The viability of the VGG
model in the valence quark energy region is unquestionable,
but there is a restriction on its use in the gluon as well as in
the sea quark energy region at small x . Measurements and
analyses of nucleon angular momentum in recent years have
used the VGG model as a benchmark, e.g., HERMES, JLab
experiments. As a first step, we use the same VGG model and
parameters for the simulations in this paper, with the aim of
comparing the results with those of other collaborations. In
future work we will focus on the discretization of the VGG
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model with respect to the GK model, the later one increases
the rationality of the parameterization of GPDs in the small
x gluon and sea quark energy regions.
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