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Abstract The implementation of the Schwinger mecha-
nism endows gluons with a nonperturbative mass through
the formation of special massless poles in the fundamen-
tal QCD vertices; due to their longitudinal character, these
poles do not cause divergences in on-shell amplitudes, but
induce detectable effects in the Green’s functions of the the-
ory. Particularly important in this theoretical setup is the
three-gluon vertex, whose pole content extends beyond the
minimal structure required for the generation of a gluon
mass. In the present work we analyze these additional pole
patterns by means of two distinct, but ultimately equiv-
alent, methods: the Slavnov–Taylor identity satisfied by
the three-gluon vertex, and the nonlinear Schwinger–Dyson
equation that governs the dynamical evolution of this ver-
tex. Our analysis reveals that the Slavnov–Taylor identity
imposes strict model-independent constraints on the associ-
ated residues, preventing them from vanishing. Approximate
versions of these constraints are subsequently recovered from
the Schwinger–Dyson equation, once the elements respon-
sible for the activation of the Schwinger mechanism have
been duly incorporated. The excellent coincidence between
the two approaches exposes a profound connection between
symmetry and dynamics, and serves as a nontrivial self-
consistency test of this particular mass generating scenario.

1 Introduction

The emergence of a gluon mass [1–9] through the action
of the Schwinger mechanism [10,11] represents a prime
example of how mass may emanate from interaction [12].
Indeed, the most appealing attribute of this mechanism is
that it arises entirely from the underlying dynamics, without
the slightest modification of the fundamental Lagrangian that

a e-mail: aguilar@ifi.unicamp.br (corresponding author)

defines the theory, and, most importantly, leaving the local
gauge symmetry intact [13,14].

The cornerstone of the Schwinger mechanism is the non-
perturbative formation of colored composite excitations with
vanishing mass in the vertices of the theory [15–21], and
especially in the three-gluon vertex, I�αμν(q, r, p) [1,9,22–
24]; for a variety of different approaches, see [25–34]. A spe-
cial subset of these massless poles is transmitted to the gluon
propagator, �(q), through the coupled dynamical equa-
tions of motion, i.e., Schwinger–Dyson equations (SDEs)
[13,14,35–42], triggering finally its saturation at the origin,
�−1(0) = m2 > 0 [22–24,43,44].

Due to the special dynamical details governing their for-
mation, the massless poles of the three-gluon vertex are lon-
gitudinally coupled [15–21], i.e., they correspond to tenso-
rial structures of the general form qα/q2, rμ/r2, and pν/p2.
As a result, they are not directly detectable in on-shell ampli-
tudes, nor in lattice simulations of the corresponding correla-
tion functions [45–62]; nonetheless, their effects are. Thus,
in addition to causing the infrared saturation of the gluon
propagator, the form factor C(q) associated with the pole
induces a smoking-gun modification (“displacement”) to the
Ward identity of the three-gluon vertex [14,63–65]. Most
importantly, the nonvanishing of C(q) has been unequivo-
cally confirmed in [64], through the suitable combination of
key inputs obtained from lattice QCD [57,59,66,67].

This encouraging result motivates the further detailed
scrutiny of the key features that the Schwinger mechanism
induces in the three-gluon vertex. The main purpose of the
present work is to carry out an extensive study of the full pole
content of this vertex, determine the structure and role of the
main components, and expose the delicate interplay between
symmetry and dynamics that prompts their appearance. In
that sense, our analysis provides a nontrivial confirmation of
the internal consistency of this rather elaborate mass gener-
ating approach.
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The dynamics of the pole formation are encoded in the
nonlinear SDE that controls the evolution of I�αμν(q, r, p).
In their primordial manifestation, the massless poles arise as
bound states of a particular kernel appearing in the skeleton
expansion of this SDE [22,22–24,43,44]; they are simple, of
the type 1/q2, 1/r2, and 1/p2. When inserted into the SDE
for �(q), only the pole in the direction of q is relevant for the
generation of the gluon mass, which is expressed as an inte-
gral over the residue of this pole. However, due to the nonlin-
ear nature of the vertex SDE, these “primary” poles give rise
to additional “secondary” structures, corresponding to mixed
double poles, of the general type 1/q2r2, 1/q2 p2, 1/r2 p2.
In the Landau gauge, these poles are inert as far as mass gen-
eration is concerned; however, their presence is instrumental
for the self-consistency of the entire approach, and in partic-
ular for preserving the fundamental relations that arise from
the Becchi–Rouet–Stora–Tyutin (BRST) symmetry [68,69]
of the gauge-fixed Yang–Mills Lagrangian.

Indeed, the emergence of mixed poles finds its most com-
pelling justification when the Slavnov–Taylor identity (STI)
[70,71] of the three-gluon vertex [72–75] is invoked. In its
abelianized version, with the contributions of the ghost sec-
tor switched off, this STI states that qαI�αμν(q, r, p) =
Pμν(p)�−1(p) − Pμν(r)�−1(r), where Pμν(q) = gμν −
qμqν/q2 is the standard projection operator. Let us now
assume that the gluon propagator is infrared finite, i.e.,
�−1(0) = m2. Then, in the limit p2 → 0 or r2 → 0,
the r.h.s. of the STI displays longitudinally coupled massless
poles, pμ pν/p2 and rμrν/r2, whose residue is m2. Conse-
quently, self-consistency requires that, in the same kinematic
limits, the l.h.s. should exhibit the exact same pole structure,
i.e., I�αμν(q, r, p) must contain mixed poles, of the type
qα pμ pν/q2 p2 and qαrμrν/q2r2, precisely as predicted by
the vertex SDE.

The exact matching of pole contributions on both sides
of the STI (with the ghost contributions duly restored) gives
rise to a nontrivial relation, which expresses the form fac-
tors associated with the mixed poles in terms of components
that appear on the r.h.s. of the STI. Quite interestingly, an
approximate form of this special relation may be recovered
from a truncated version of the vertex SDE. Moreover, an
analogous construction reveals that the presence of a gen-
uine triple mixed pole, of the type 1/q2 p2r2 is excluded
by both the STI and the SDE, being effectively reduced to
a divergence weaker than a double mixed pole. These two
exercises are especially illuminating, exposing a powerful
synergy between symmetry and dynamics: whereas the STI
(BRST symmetry) imposes relations that are valid regard-
less of the dynamical details, the SDE (nonlinear dynamics)
reproduces them thanks to the distinct pole content induced
by the Schwinger mechanism.

The article is organized as follows. In Sect. 2 we summa-
rize the most salient features of the Schwinger mechanism

in QCD, commenting on some of its most recent advances.
Then, in Sect. 3 we discuss in detail the pole structure induced
to the three-gluon vertex when the Schwinger mechanism is
activated, and in particular the appearance of mixed double
and triple poles. In Sect. 4 we construct a tensor basis for
the pole part of the vertex, which makes its Bose symmetry
and longitudinal nature manifest, and will be used through-
out this work. In Sect. 5 we consider the STI satisfied by the
three-gluon vertex, and derive a crucial relation for a spe-
cial kinematic limit of the form factor associated with the
mixed double poles, denominated “residue function”. Then,
in Sect. 6, we turn to the SDE of the three-gluon vertex, and
derive, under certain simplifying assumptions, an approxi-
mate version of the aforementioned relation for the residue
function. In continuation, in Sect. 7 we compute the residue
function using as inputs all the components entering in that
relation. Then, in Sect. 8, we demonstrate that both the STI
and the detailed dynamics reduce substantially the strength
of the triple mixed pole. Finally, in Sect. 9 we present our
discussion and conclusions.

2 Schwinger mechanism in QCD: general concepts

In this section we present a brief overview of the imple-
mentation of the Schwinger mechanism in the context of a
Yang–Mills theory; for further details, the reader is referred
to two recent review articles [13,14].

The natural starting point of the discussion is the gluon
propagator, �ab

μν(q) = −iδab�μν(q). In the Landau gauge
that we employ throughout, �μν(q) assumes the completely
transverse form

�μν(q) = �(q)Pμν(q), Pμν(q) := gμν − qμqν/q
2.

(2.1)

In the continuum, the momentum evolution of the function
�(q) is determined by the corresponding SDE (Minkowski
space),

�−1(q) = q2 + i�(q), (2.2)

where �(q) is the scalar form factor of the gluon self-energy,

�μν(q) = �(q)Pμν(q), (2.3)

depicted diagrammatically in Fig. 1. Note that the fully-
dressed vertices, I�, of the theory enter in the diagrams
defining �μν(q). In addition, it is convenient to introduce
the dimensionless vacuum polarization, �(q), defined as
�(q) = q2�(q), such that �−1(q) = q2[1 + �(q)].

The basic premise underpinning the Schwinger mecha-
nism may be expressed as follows: if �(q) develops a pole
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Fig. 1 The diagrammatic representation of the gluon self-energy. The fully-dressed three-gluon, ghost–gluon, and four-gluon vertices are depicted
as red, blue, and green circles, respectively. The special analytic structure of these vertices induces the poles required for the activation of the
Schwinger mechanism

with positive residue at q2 = 0 (massless pole), the gauge
boson (gluon) acquires a mass, even if the symmetries of the
theory do not admit a mass term at the level of the funda-
mental Lagrangian [10,11]. In particular, the appearance of
such a pole triggers the basic sequence (Euclidean space)

lim
q→0

�(q) = m2/q2 �⇒ lim
q→0

�−1(q)

= lim
q→0

(q2 + m2) �⇒ �−1(0) = m2, (2.4)

where the residue of the pole acts as the effective squared
gluon mass, m2.

The pivotal result captured by Eq. (2.4) invites the natu-
ral question of what makes �(q) exhibit massless poles in
the first place. In the case of four-dimensional Yang–Mills
theories, such as QCD, the answer to this question is that
these poles are transmitted to �(q) by the fully-dressed
vertices that appear in the diagrammatic expansion of the
gluon self-energy [1,9,13,14,76], see Fig. 1. The poles of the
vertices are produced dynamically, when elementary fields
(e.g., two gluons, two ghosts, or three gluons) merge to cre-
ate composite colored scalars with vanishing masses [15–
21]. These processes are controlled by appropriate bound-
state equations, analogous to the standard Bethe–Salpeter
equations (BSEs) [77,78]; they arise as special kinematic
limits (q → 0) of the SDEs governing the various ver-
tices [22,24,43,44]. The residues of the vertices are func-
tions of the remaining kinematic variables; when convoluted
with the rest of the components comprising the gluon SDE,
they account for the final residue, m2, that one identifies as
the squared gluon mass in Eq. (2.4) [22,24,43,44].

To elucidate how a contribution to the total gluon mass
emerges from diagram (a1) in Fig. 1, consider the three-
gluon vertex I�abc

αμν(q, r, p) = g f abcI�αμν(q, r, p), where
g is the gauge coupling, f abc the structure constants of the
SU(3) gauge group, and q + r + p = 0. The formation
of the poles in the three-gluon vertex may be described by
separating I�αμν(q, r, p) in two distinct pieces,

I�αμν(q, r, p) = �αμν(q, r, p) + Vαμν(q, r, p), (2.5)

where �αμν(q, r, p) represents the pole-free component,
while Vαμν(q, r, p), whose origin is purely non-perturbative,
contains all pole-related contributions. As we will discuss in
detail in the next sections, the composition of Vαμν(q, r, p)

is rather elaborate; however, for the purposes of creating a
mass for the gluon propagator in the Landau gauge, only a
minimal structure of Vαμν(q, r, p) is required, namely1

Vαμν(q, r, p) = qα

q2 gμνV1(q, r, p) + · · · , (2.6)

where all omitted terms drop out when Vαμν(q, r, p) is
inserted in diagrams (a1).

A detailed analysis reveals that [79]

V1(0, r,−r) = 0 ; (2.7)

therefore, the Taylor expansion of V1(q, r, p) around q = 0
yields

lim
q→0

V1(q, r, p) = 2(q · r)C(r) + O(q2),

C(r) :=
[
∂V1(q, r, p)

∂p2

]
q=0

. (2.8)

With the aid of Eq. (2.8), and after the extraction of the appro-
priate tensorial structure, the integral associated with the dia-
gram (a1) yields

m2
(a1)

= −�−1
(a1)

(0) = 3λZ3

∫
k
k2�2(k)C(k), (2.9)

with

λ := ig2CA/2, (2.10)

where CA is the Casimir eigenvalue of the adjoint represen-
tation [N for SU(N )]. In the above formula, Z3 stands for
the renormalization constant of the three-gluon vertex, and
we denote by

∫
k

:= 1

(2π)4

∫
d4k (2.11)

the integration over virtual momenta; the use of a symmetry-
preserving regularization scheme is implicitly assumed.

1 In previous works [43,44,63,64,79], V1(q, r, p) has been denoted as
C1(q, r, p).

123



889 Page 4 of 20 Eur. Phys. J. C (2023) 83 :889

Fig. 2 The displacement function, CE(r), obtained from [64,65]

We next use standard rules (see eg [63]) to rewrite Eq. (2.9)
in Euclidean space; note, in particular, that m2 = �E(0).
Then, using hyperspherical coordinates, we obtain

m2
(a1)

= 3αsCAZ3

8π

∫ ∞

0
dy y2�2

E(y) |CE(y)| , (2.12)

with αs := g2/(4π) and y := k2
E . Evidently, m2 depends on

the renormalization point, μ; in particular, m = 348 MeV
for μ = 4.3 GeV [34,67]2.

We emphasize that CE(q), in addition to providing the
gluon mass through Eq. (2.12) and its two-loop extension,
plays a central role in this entire construction due to its dual
nature. In particular:

(i) CE(r) is the BS amplitude describing the formation of
gluon–gluon colored composite bound states;

(ii) CE(r) leads to a characteristic displacement of the WI
satisfied by the pole-free part of the three-gluon vertex; for
that reason, CE(r) is called “displacement function”. This
predicted displacement has been confirmed by combining
judiciously the results of several lattice simulations [64,65];
as shown in Fig. 2, the result for CE(r) is clearly nonvanish-
ing.

3 Schwinger poles of the three-gluon vertex

In this section we elaborate on the pole content of the three-
gluon vertex, which arises as a consequence of the activa-
tion of the Schwinger mechanism. Our analysis relies on
the bound-state interpretation of the poles associated with
the Schwinger mechanism (see e.g., [22,43,44,63,64,79]),

2 A renormalization-group-invariant gluonic mass scale of about half
the proton mass has been obtained from the process-independent QCD
effective charge [80,81].

making extensive use of the diagrammatic structure of the
SDE of the three-gluon vertex.

The dynamics of I�αμν(q, r, p) are determined by the SDE
shown in panel (A) of Fig. 3. Following the standard way
of writing the SDE of a vertex, a particular gluon leg of
I�αμν(q, r, p) is singled out (in this case the leg carrying
momentum q), and is connected to the various multiparticle
kernels through all elementary vertices of the theory. The
remaining two legs (with momenta r and p) are attached
to the multiparticle kernels through fully-dressed vertices.
Note that the full SDE is Bose-symmetric, albeit not mani-
festly so3; in order to expose its Bose symmetry, the detailed
skeleton expansion of the kernels must be taken into account.

The seed of the Schwinger mechanism may be traced
inside the four-particle kernel appearing in the top panel of
Fig. 3. It is triggered by the emergence of a colored scalar
excitation, formed as a bound state of a pair of gluons, as
shown pictorially in the bottom panel of Fig. 3; note that
the propagator of the composite scalar is given by iδab/q2.
The resulting scalar-gluon–gluon interaction is described by
the tensor denoted by Bμν(q, r, p) in the bottom panel of
Fig. 3. The dynamics of Bμν(q, r, p) is determined by solv-
ing the linear homogeneous BSE, which arises as the limit
q → 0 of the SDE for I�αμν(q, r, p) is taken. The nontrivial
solution that one obtains corresponds to the “BS amplitude”
for the formation of a massless scalar out of two gluons. As
explained in detail in [13], the BS amplitude coincides, up
to an overall scaling factor, with the displacement function
C(q).

When the upper part of the four-gluon kernel (legs with
k + q and −k) is connected to the external gluon (with
momentum q) in order to form the three-gluon vertex, as
shown in the bottom panel of Fig. 3, the part that contains
the composite scalar gives rise to the transition amplitude
Iα(q), defined in Fig. 4. Lorentz invariance imposes that
Iα(q) = I (q) qα , where I (q) is a scalar function, whose
role and properties have been discussed in detail in [13,24];
note, in particular, the exact relation m2 = g2 I 2(0). As
a consequence, the massless poles are longitudinally cou-
pled [15,17–20], giving rise to tensorial structures of the
general form qα/q2, rμ/r2, and pν/p2. Therefore, the pole
part, Vαμν(q, r, p), satisfies the important relation

Pα
α′(q)Pμ

μ′(r)Pν
ν′(p)Vαμν(q, r, p) = 0. (3.1)

Note, in addition, that when Vαμν(q, r, p) is contracted by
two transverse projectors, only the poles in the uncontracted

3 Within the nPI effective action formalism, the resulting SDE for the
three-gluon vertex is manifestly Bose-symmetric with respect to all of
its three legs [82–87].
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Fig. 3 Top: skeleton expansion of the three-gluon vertex. The gray
ellipses denote multi-particle kernels, which are one-particle irreducible
with respect to the q-channel. Bottom: decomposition of the kernel of
diagram (c1) into a term with no poles in the q channel, denoted by
(d1) (blue ellipse), and a term that contains a massless bound state,

with propagator i/q2, denoted by (d2). For the purpose of clearer visu-
alization of the various structures, the components of the four-gluon
kernel are separated from the corresponding vertex graphs by dotted
horizontal lines

Fig. 4 Definition of the scalar-gluon transition amplitude, Iα(q). The
green circles represent the so-called “proper vertex functions” or “bound
state wave functions” [16]. In particular, the Bμν , first introduced in

Fig. 3, describes the effective interaction between a composite scalar
and two gluons, while B and Bμνρ describe the interaction of a com-
posite scalar with a ghost-antighost pair and three gluons, respectively

channel survive, e.g.4,

Pμ

μ′(r)Pν
ν′(p)Vαμν(q, r, p) = only poles in q2. (3.2)

The nonlinear nature of the SDE makes Vαμν(q, r, p) con-
tain mixed poles, of the type qαrμ/q2r2, etc. In the Landau

4 In the language of Eq. (4.4), Pμ

μ′ (r)Pν
ν′ (p)Vαμν(q, r, p) =

qα

q2 P
μ

μ′ (r)Pν
ν′ (p)

[
V1gμν + V2 pμrν

]
.

gauge, these additional terms do not affect the gluon mass,
which only depends on the residue of the single pole that
coincides with the external momentum of the gluon SDE
(q in the conventions of Fig. 1). Nonetheless, this type of
pole is crucial for maintaining gauge invariance, by balanc-
ing properly the STI satisfied by �αμν(q, r, p). In order to
appreciate how such terms arise, we make the following two
key observations.
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Fig. 5 Top: one-gluon exchange form of the blue kernel introduced in Fig. 3, and its subsequent decomposition into pole-free part (yellow vertices)
and terms containing poles in r and p. Bottom: decomposition of the scalar-gluon–gluon interaction, Bμν(q, r, p), defined in of Fig. 3, into pole-free
and pole terms

(i) To begin with, the part of the vertex with no poles in
the channel q, contains poles in the other two (r and p).
This is because the kernel associated with this part (blue
ellipse in Fig. 3) contains fully dressed vertices, as indi-
cated schematically in the top panel of Fig. 5, for the case
of the “one-gluon exchange” approximation. Denoting by
I�A := I�(p, k + q, r − k) and I�B := I�(r, k − r,−k), as
indicated in Fig. 5, the contribution to the (d1) of Fig. 3 may
be schematically written as

(d1) ∼
∫
k
�(0) � I�A � I�B �

∼
∫
k
�(0) � (�A + VA)� (�B + VB)�, (3.3)

where

�(0)
αμν(q, r, p)=(q−r)νgαμ+(r− p)αgμν +(p−q)μgνα,

(3.4)

is the tree-level expression of the three-gluon vertex.
Then, using Eq. (2.5), and noting that the vertices VA and

VB furnish poles only in the external momenta p, and r ,
respectively, since poles in all other directions are annihilated
by the Landau gauge propagators [see Eq. (3.2)], one obtains

(d1) ∼
∫
k
�(0)��A ��B �

︸ ︷︷ ︸
no pole

+
∫
k
�(0)� VA ��B �

︸ ︷︷ ︸
pole in p2

+
∫
k
�(0)��A � VB �

︸ ︷︷ ︸
pole in r2

+
∫
k
�(0)� VA � VB �

︸ ︷︷ ︸
poles in r2, p2

. (3.5)

(ii) Furthermore, the same kernel appears in the part of the
vertex describing the pole in theq-channel. Thus, as indicated
in the bottom panel of Fig. 5, one obtains contributions of the
type

(d2) ∼
∫
k
V � I�A � I�B � ∼

∫
k
V �(�A + VA)� (�B + VB)�,

(3.6)

giving rise to

(d2) ∼
∫
k
V��A ��B �

︸ ︷︷ ︸
pole in q2

+
∫
k
V� VA ��B �

︸ ︷︷ ︸
poles in q2, p2

+
∫
k
V��A � VB �

︸ ︷︷ ︸
poles in q2, r2

+
∫
k
V� VA � VB �

︸ ︷︷ ︸
poles in q2, r2, p2

. (3.7)

The main conclusion of the analysis presented in this
section is summarized in Fig. 6, where Eq. (2.5) is repre-
sented pictorially. In particular, the component Vαμν(q, r, p)
is comprised by single poles, mixed double poles, and and
mixed triple pole, depending on the number of gluon-scalar
transition amplitudes (grey circles) contained in them. The
three types of effective amplitudes, Tμν(q, r, p), Tμ(q, r, p),
and T (q, r, p) (white circles) are completely pole-free; see
also Eq. (4.9).

We end this section with two final comments.
First, as we will demonstrate in Sect. 8, the triple mixed

pole is not genuine; its strength is reduced due to require-
ments imposed by the self-consistency of the vertex STI, or,
at the diagrammatic level, by virtue of Eq. (2.8).

Second, the validity of Eq. (3.1), which, in the bound-state
formulation of the Schwinger mechanism arises naturally,
guarantees that the lattice “observables” of the general form

L(q, r, p)

= λαμν(q, r, p)Pαα′(q)Pμμ′(r)Pνν′(p)I�α′μ′ν′
(q, r, p)

λαμν(q, r, p)Pαα′(q)Pμμ′(r)Pνν′(p)�α′μ′ν′
0 (q, r, p)

,

(3.8)

where the λαμν(q, r, p) are appropriate projectors, are com-
pletely pole-free. Indeed, all lattice results obtained thus far
show no trace of pole divergences [49–60,88,89].

123



Eur. Phys. J. C (2023) 83 :889 Page 7 of 20 889

Fig. 6 The general structure of the three-gluon vertex after the acti-
vation of the Schwinger mechanism. Note, in particular, that the term
Vαμν(q, r, p) contains single poles, such as qα/q2, as well as mixed

poles of the forms qαrμ/q2r2 and qαrμ pν/q2r2 p2. The term “(perms)”
denotes the permutations of the external legs that lead to a Bose-
symmetric Vαμν(q, r, p)

4 A purely longitudinal basis

In this section we introduce an appropriate basis for describ-
ing the special component V αμν(q, r, p), which, due to the
condition Eq. (3.1), is strictly longitudinal.

As is well known, the most general Lorentz decomposition
of the three-gluon vertex is comprised of 14 independent ten-
sors. However, the strict longitudinality condition of Eq. (3.1)
imposes 4 constraints on the form factors of V αμν(q, r, p).
As a result, V αμν(q, r, p) can be decomposed in a basis com-
prised of 10 tensors, denoted by v

αμν
i (q, r, p), accompanied

by the associated form factors, denoted by Vi (q, r, p), i.e.,

V αμν(q, r, p) =
10∑
i=1

Vi (q, r, p) v
αμν
i (q, r, p), (4.1)

where

v
αμν
1 = qαgμν, v

αμν
2 = qα pμrν , v

αμν
3 = rμgνα,

v
αμν
4 = rμqν pα, v

αμν
5 = pνgαμ, v

αμν
6 = pνrαqμ,

v
αμν
7 = qαrμ(q − r)ν, v

αμν
8 = rμ pν(r − p)α, v

αμν
9 =pνqα(p − q)μ,

v
αμν
10 = qαrμ pν .

(4.2)

Note that these tensors form three distinct groups, depend-
ing on the number of momenta to which they are longitudi-
nal: the v

αμν
i with i = 1, . . . , 6 are longitudinal to a single

momentum, those with i = 7, . . . , 9 to two, while v
αμν
10 is

longitudinal to all three momenta.
Now, following the bound state interpretation, each form

factor Vi can have massless poles in each of the channels
to which the corresponding tensor, v

αμν
i , is longitudinal. In

particular, exhibiting the poles explicitly, we have

V1 = V1

q2 ; V3 = V3

r2 ; V5 = V5

p2 ; V7 = V7

q2r2 ;

V9 = V9

p2q2 ;

V2 = V2

q2 ; V4 = V4

r2 ; V6 = V6

p2 ; V8 = V8

r2 p2 ;

V10 = V10

q2r2 p2 , (4.3)

where the Vi ≡ Vi (q, r, p) are regular functions, which,
in the appropriate limits, capture the corresponding pole
residues.

With the above definitions, Vαμν(q, r, p) can be recast in
the form

Vαμν(q, r, p) = qα

q2

(
gμνV1 + pμrνV2

)

+ rμ
r2 (gανV3 + qν pαV4)

+ pν

p2

(
gαμV5 + rαqμV6

)

+ qαrμ
q2r2 (q − r)νV7 + rμ pν

r2 p2 (r − p)αV8

+ pνqα

p2q2 (p − q)μV9 + qαrμ pν

q2r2 p2 V10.

(4.4)

It is clear from the diagrammatic representation of Fig. 6,
that Vαμν(q, r, p) is Bose-symmetric. Consequently, and
given that the color factor f abc has been factored out, we
have that

Vαμν(q, r, p) = −Vμαν(r, q, p) = −Vνμα(p, r, q). (4.5)

Then, from Eqs. (4.4) and (4.5) follows that the form factors
Vi (q, r, p) satisfy the following symmetry relations

V1,2(q, r, p) = −V1,2(q, p, r), V7(q, r, p) = V7(r, q, p),

V3,4(q, r, p) = −V3,4(p, r, q), V8(q, r, p) = V8(q, p, r),

V5,6(q, r, p) = −V5,6(r, q, p), V9(q, r, p) = V9(p, r, q),

(4.6)

with V10(q, r, p) being totally anti-symmetric. In addition,
some form factors are related to each other by the cyclic
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permutations of their arguments, namely

V3,4(q, r, p) = V1,2(r, p, q), V8(q, r, p) = V7(r, p, q),

V5,6(q, r, p) = V1,2(p, q, r), V9(q, r, p) = V7(p, q, r).

(4.7)

In the limit q → 0, we obtain from Eq. (4.6) the relations

V1(0, r,−r) = V3(r, 0,−r) = V5(r,−r, 0) = 0,

V2(0, r,−r) = V4(r, 0,−r) = V6(r,−r, 0) = 0,

V10(0, r,−r) = V10(r, 0,−r) = V10(r,−r, 0) = 0. (4.8)

The relations derived above will be employed in the analysis
presented in the following sections.

Finally, it is instructive to make contact between the form
of the vertex Vαμν(q, p, r) given in Eq. (4.4) and the picto-
rial representation of the same vertex, depicted in Fig. 6. In
particular, the effective amplitudes Tμν , Tμ, and T may be
expressed in terms of the form factors Vi through the direct
matching of the various tensorial structures, namely

I (q)Tμν(q, r, p) = −i
[
gμνV1(q, r, p)

+pμrνV2(q, r, p)
]
,

I (q)I (r)Tν(q, r, p) = (r − q)νV7(q, r, p),

I (q)I (r)I (p)T (q, r, p) = iV10(q, r, p). (4.9)

We conclude this discussion with some remarks regard-
ing the basis given by Eq. (4.2). The 14 tensors required
for the full description of I�αμν(q, r, p) may be obtained by
supplementing the v

αμν
i of Eq. (4.2) with 4 totally trans-

verse tensors, say t αμν
i , such that qαt

αμν
i = rμt

αμν
i =

pν t
αμν
i = 0. For example, one could use the tαμν

i given
in Eq. (3.6) of [90], corresponding to the transverse part
of the Ball–Chiu (BC) basis [73]. However, the resulting
basis, v

αμν
i ∪ tαμν

j , introduces spurious divergences in cer-
tain form factors of the pole-free part, thus being unsuit-
able for many applications. Furthermore, as explained in
[90], the BC basis is inconvenient for the description of
V αμν(q, r, p), because the 10 non-transverse tensors (the
�
αμν
i in Eq. (3.4) of [90]) are not longitudinal5, in the sense

that Pα′α(q)Pμ′μ(r)Pν′ν(p)�
αμν
i 
= 0. As a result, in the BC

basis, the transverse components of V αμν(q, r, p) acquire
poles as well, which combine in complicated ways with the
non-transverse ones to yield a strictly longitudinally coupled
V αμν(q, r, p). The basis of [91] appears to suffer from the
same shortcoming. Thus, it is preferable to decompose the

5 In [73], the �
αμν
i span the part of the vertex that saturates the

STI, which was denominated “longitudinal”, in contradistinction to
the “transverse” (automatically conserved) component. The confusion
caused by the fact that the �

αμν
i are not longitudinal, in the sense

explained above, may be avoided by using the term “non-transverse”
instead.

pole-free and pole parts in different bases, such as the BC for
�αμν(q, r, p) and Eq. (4.2) for V αμν(q, r, p).

5 Mixed poles from the Slavnov–Taylor identity

In this section, we turn our attention to the STI satisfied by
the full vertex I�αμν(q, r, p). As we will show in detail, when
the gluon propagator is finite at the origin (massive), the STI
imposes an extended pole content on the three-gluon vertex.
Specifically, the only way to achieve self-consistency is by
introducing mixed poles in Vαμν(q, r, p); the form factors
associated with these poles must satisfy strict constraints,
which preclude their vanishing.

We emphasize that the central assumption underlying this
analysis is that both the BRST symmetry6 and the associated
STIs remain intact when the gluon acquires a mass through
the action of the Schwinger mechanism. This assumption
is strongly corroborated by the STI-driven extraction of the
C(q) using lattice inputs [14,63–65]; for a variety of related
discussions and approaches, see [27,36,94–98], and refer-
ences therein.

5.1 Abelian STI with a hard mass

To fix the ideas, let us consider first the simplified situation
where the three-gluon vertex satisfies the Abelian STI given
by

qαI�αμν(q, r, p) = Pμν(p)�
−1(p) − Pμν(r)�

−1(r).

(5.1)

Moreover, let the gluon propagator be given by the tree-level
form, i.e., �−1(q) → q2 − m2, corresponding to a simple
massive propagator in Minkowski space.

Then, after substitution, the STI becomes

qαI�αμν(q, r, p) = gμν(p
2 − r2) + rμrν − pμ pν

+m2
(
pμ pν

p2 − rμrν
r2

)
. (5.2)

Evidently, the form factors associated with the tensor struc-
tures pμ pν and −rμrν on the r.h.s. of Eq. (5.2) contain poles
in p2 and r2, respectively, whose residue is m2. In fact, these
tensor structures are longitudinal to the uncontracted legs of
the vertex, i.e., those carrying momenta r and p.

Hence, the self-consistency of Eq. (5.2) requires that
I�αμν(q, r, p) should contain longitudinally coupled poles
of the form rμ/r2 and pν/p2. Evidently, from the cyclic per-
mutations of Eq. (5.2) (equivalently, from Bose symmetry),

6 We employ the standard BRST symmetry of QCD, to be distin-
guished from the modified BRST symmetry of the refined Gribov-
Zwanziger action [92,93].
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I�αμν(q, r, p) must also contain massless poles longitudi-
nally coupled to qα , i.e., of the form qα/q2. Thus, the STI
implies that I�αμν(q, r, p) must assume the special form of
Eq. (2.5), with a nonzero pole part, Vαμν(q, r, p).

At this point, let us assume that the pole-free part of
the vertex, �αμν(q, r, p), reduces to the tree-level form

given in Eq. (3.4), i.e., �αμν(q, r, p) → �
(0)
αμν(q, r, p),

such that, from Eq. (2.5), I�αμν(q, r, p) = �
(0)
αμν(q, r, p) +

Vαμν(q, r, p). Then, Eq. (5.2) can be recast into an STI for
Vαμν(q, r, p), namely

qαVαμν(q, r, p) = m2
(
pμ pν

p2 − rμrν
r2

)
, (5.3)

together with its cyclic permutations.
Next, assume that Vαμν(q, r, p) satisfies the longitudinal-

ity condition of Eq. (3.1), as required by both the Schwinger
mechanism and lattice QCD. Expanding out the transverse
projectors in that equation, and using Eq. (5.3) and its per-
mutations, one straightforwardly obtains

Vαμν(q, r, p) = m2

2

[
qαrμ
q2r2 (q − r)ν + rμ pν

r2 p2 (r − p)α

+ pνqα

p2q2 (p − q)μ

]
, (5.4)

which shows that Vαμν(q, r, p) must contain mixed double
poles, with residues proportional to the gluon mass. Note that
this result amounts to the constant mass limit of the Ansatz
given in [24], constructed therein for a momentum-dependent
mass, m2(q). Furthermore, the combination �

(0)
αμν(q, r, p)+

Vαμν(q, r, p), with Vαμν(q, r, p) given by Eq. (5.4) repro-
duces the effective three-gluon vertex of Cornwall [99,100].
Lastly, comparing Eqs. (4.4) and (5.4) we read off the expres-
sions for the form factors

V7(q, r, p) = V8(q, r, p) = V9(q, r, p) = m2

2
, (5.5)

with all other Vi vanishing in this simple case.
If the form of the pole-free part is not known, as is

generally the case, the complete momentum dependence of
Vαμν(q, r, p) cannot be determined. Nevertheless, the values
of the form factors Vi (q, r, p) of Eq. (4.4) at zero momenta
can be obtained unequivocally from the STI. In particular, in
the toy model of Eq. (5.2)

V9(q) = m2/2, (5.6)

independently of the exact form of �αμν , where we use
Eq. (4.6) and define

V9(q) := V9(q,−q, 0) = V9(0, q,−q). (5.7)

Evidently, the same result holds for V8(q,−q, 0) = V8(q,

−q, 0) = V7(q, 0,−q) = V7(0, q,−q).

5.2 General case: mixed poles and the residue function

Having fixed the general ideas, we now turn to the full form
of the STI, and demonstrate how to obtain from it expressions
for the Vi when one of the momenta vanishes.

The STI is given by [72]

qαI�αμν(q, r, p) = F(q)
[
�−1(p)Pα

ν (p)Hαμ(p, q, r)

−�−1(r)Pα
μ (r)Hαν(r, q, p)

]
; (5.8)

the cases rμI�αμν(q, r, p) and pνI�αμν(q, r, p) are obtained
from Eq. (5.8) through permutations of the appropriate
momenta and indices. In the above equation, F(q) is the
ghost dressing function, defined in terms of the ghost prop-
agator Dab(q) = iδabD(q) by D(q) = F(q)/q2, while
Hμν(r, q, p) represents the ghost–gluon scattering kernel,
with r, q, p denoting the momenta of the anti-ghost, ghost,
and gluon, respectively.

The most general Lorentz structure of Hμν(r, q, p) is
given by [101]

Hμν(r, q, p) = gνμA1 + rμrν A2 + pμ pνA3

+pμrν A4 + rμ pνA5, (5.9)

where Ai ≡ Ai (r, q, p) and Ai ≡ Ai (r, q, p); the use of dis-
tinct notation for the third and fifth form factors will become
clear in what follows. At tree level, A(0)

1 = 1, while all
other form factors vanish. Note that since in Eq. (5.8) the
Hμν(r, q, p) is contracted by transverse projectors, only the
form factors A1, A4 and A3 contribute to the STI.

At this point, it is crucial to recognize that the Schwinger
mechanism induces poles not only to the vertex I�αμν(q, r, p)
but also to the ghost–gluon kernel Hμν(r, q, p). In particular,
the poles are longitudinally coupled, carrying the momentum
and Lorentz index of the incoming gluon leg. Therefore, they
are contained in the form factorsA3,5(r, q, p), which assume
the general form

A3,5(r, q, p) = Ap
3,5(r, q, p)

p2 + A3,5(r, q, p), (5.10)

where A3,5(r, q, p) denotes the pole-free part.
To determine the residues of the poles required by the STI,

we begin by decomposing both sides of Eq. (5.8) in the same
basis and equating coefficients of independent tensor struc-
tures. Since the tensors appearing in the STI have two free
Lorentz indices and two independent momenta, they can all
be decomposed in the same basis employed for Hμν(r, q, p)
in Eq. (5.9). In particular, the contracted pole-free part may
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be written as

qα�αμν(q, r, p) = S1gμν + S2rμrν + S3 pμ pν

+S4 pμrν + S5rμ pν, (5.11)

with Si ≡ Si (q, r, p). At tree level, S(0)
1 = p2−r2, S(0)

2 = 1,

S(0)
3 = −1, and S(0)

4 = S(0)
5 = 0. Note that, from Bose

symmetry, S1, S4 and S5 must be anti-symmetric under the
exchange of r ↔ p, such that

S1(0, r,−r) = S4(0, r,−r) = S5(0, r,−r) = 0. (5.12)

Then, since �αμν(q, r, p) is pole-free, its contraction with
qα vanishes when q = 0, such that Eqs. (5.11) and (5.12)
imply also that

S2(0, r,−r) = −S3(0, r,−r). (5.13)

As for the pole part, after contracting Eq. (4.4) with qα ,
we obtain

qαVαμν(q, r, p) = V1gμν + V 2

r2 rμrν + V 3

p2 pμ pν + V2 pμrν

+ V 5

r2 p2 rμ pν, (5.14)

with the V i ≡ V i (q, r, p) given by

V 2 = −V3 − (p · q)V4 − 2V7,

V 3 = −V5 − (r · q)V6 + 2V9,

V 5 = V10 + (p2 − r2)V8 − p2 [V3 + (q · p)V4 + V7]

− r2 [V5 + (q · r)V6 − V9] . (5.15)

As in the previous subsection, we now isolate the tensor
structures rμrν and pμ pν on both sides of Eq. (5.8); equating
their coefficients yields

S2 = 1

r2

{
F(q)

{
�−1(r) [A1(r, q, p) + (p · r)A4(r, q, p)]

+r2�−1(p)A3(p, q, r)
}
−V 2

}
,

S3 = − 1

p2

{
F(q)

{
p2�−1(r)A3(r, q, p) + �−1(p)

× [A1(p, q, r) + (p · r)A4(p, q, r)]} + V 3
}
. (5.16)

Since S3 is pole-free by definition, in the limit p → 0,
the term 1/p2 must be canceled by the content of the curly
bracket in Eq. (5.16). Thus, what appears to be a pole in p2

must be converted into an evitable singularity. The condition
for this to occur is given by

V9(q) = F(q)

2

[
m2A1(q) − �−1(q)Ap

3(q)
]
, (5.17)

where m2 = −�−1(0), in Minkowski space, and we used
Eq. (5.10) and defined

A1(q) := A1(0, q,−q), Ap
3(q) := Ap

3(q,−q, 0).

(5.18)

Note that setting the ghost-sector Green’s functions in
Eq. (5.17) to their tree level expressions in Eq. (5.17), i.e.,
F → 1, A1 → 1 and A3 → 0, leads to Eq. (5.6).

Similarly, the requirement that the S2 of Eq. (5.16) be
pole-free at r = 0 yields a relation identical to Eq. (5.17),
but with V9(q) substituted by V7(0, q,−q). This last result
follows also from Bose symmetry, according to Eq. (4.6).
For the same reason, Eq. (5.17) also holds with the left-hand
side substituted by any one of V7(0, q,−q), V8(q,−q, 0),
and V8(q, 0,−q).

Returning to Eq. (5.17), it is clear that the only way for
V9 to vanish identically for all q (i.e., for Vαμν not to contain
the associated mixed pole) is for the r.h.s. to also vanish;
however, at least when q = 0, this cannot happen in the
Landau gauge. Indeed, as was demonstrated in [102], in this
gauge,

A1(0) = Z̃1, Ap
3(0) = 0, (5.19)

where Z̃1 is the renormalization constant of the ghost–gluon
vertex, which is finite by virtue of Taylor’s theorem [70].
Hence, at the origin, Eq. (5.17) reduces to

V9(0) = 1

2
Z̃1F(0)m2. (5.20)

Consequently, just as in the toy model of Eq. (5.2), the self-
consistency of the full STI in the presence of an infrared finite
gluon propagator requires the appearance of a pole associated
with the form factor V9.

The function V9(q), associated with the mixed pole
1/q2 p2 will be particularly important in the analysis that
follows. To understand its nature, consider a function of two
variables, x and y of the form f (x, y) = g(x, y)/xy, with
g(x, 0) 
= 0 and g(0, y) 
= 0, such that f (x, y) has sim-
ple poles as x → 0 and y → 0. In particular, if we take
y → 0, the residue of this pole is a function of x , given by
r(x) = g(x, 0)/x . In fact, if we subsequently take x → 0,
g(0, 0) 
= 0 is the residue of the function r(x). Evidently, in
this analogy, g(x, 0) plays the role of V9(q); in what follows,
we will refer to V9(q) as the “residue function”.

We conclude this discussion by pointing out that the tensor
structures gμν , rν pμ and rμ pν of Eq. (5.8), associated with
the pole-free form factors S1,4,5, lead to constraints on the
behavior of the remaining form factors, Vi , which are absent
from the simplified result of Eq. (5.4). These additional rela-
tions, however, constrain certain derivatives of the Vi , rather
than the values of the form factors themselves. Indeed, the
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Fig. 7 The diagrams contributing to the truncated SDE for three-gluon vertex that we employ; ghost and two-loop diagrams have been omitted.
The swordfish diagrams (e2,3,4) carry a symmetry factor of 1/2

constraint obtained from gμν is equivalent to the so-called
“Ward Identity displacement”, which has been analyzed in
detail in recent works [13,14,63,64]. On the other hand, the
rμ pν structure leads to a constraint on the form factor V10,
which amounts to a drastic reduction of the triple pole associ-
ated with it; the detailed demonstration of this point is given
in Sect. 8.

6 Residue function from the Schwinger–Dyson equation

The special relation given in Eq. (5.17) implies that, in the
presence of an infrared finite gluon propagator, the appear-
ance of mixed poles in the three-gluon vertex is an inevitable
requirement of the STI. In this section we explore this same
relation from the point of view of the SDE satisfied by the
three-gluon vertex. Specifically, we will show that, when
the dynamical structures imposed by the activation of the
Schwinger mechanism are duly taken into account, a trun-
cated form of the vertex SDE leads to an approximate version
of Eq. (5.17).

6.1 General considerations

In order to obtain from the vertex SDE the relation satis-
fied by the residue function V9(q) in Eq. (5.17), we fol-
low the same procedure employed in its derivation from the
STI: (i) we begin by contracting the vertex SDE by qα; (ii)
then, we isolate the tensor structure pμ pν from the result,
which yields V 3/p2 + S3 [recall Eqs. (5.11) and (5.14)]; (iii)
finally, we multiply by p2 and take the limit p = 0, where
V 3(q, r, p) → 2V9(q) [see Eq. (5.15)].

To streamline the application of this procedure, it is con-
venient to set up the vertex SDE with tree-level vertices in
the leg carrying momentum p, as in Fig. 7, rather than the
version shown in Fig. 1. With this choice, the contraction of
the SDE by qα triggers inside the diagrams the STIs for the
fully dressed vertices, with an incoming q-leg. These STIs, in
turn, simplify the identification of certain pole contributions
stemming from the four-gluon vertex, as we will see shortly.

We emphasize that the SDE given in Fig. 7 is truncated, by
keeping only “one-loop dressed diagrams” containing gluons
and the massless composite excitations associated with the
Schwinger mechanism. Note, in particular, the absence of
contributions originating from the ghost loop denoted by (c2)

in Fig. 3, and that the only representatives from graph (c3)

are diagrams (e3) and (e4). Given this truncation, we do not
expect to reproduce Eq. (5.17) in its entirety; in particular, it
is reasonable to expect that the termm2 will be approximated
by its one-loop dressed gluonic expression, m2

(a1)
, given in

Eq. (2.9). As we will see in what follows, this is indeed what
happens.

Recalling the diagrammatic analysis presented in Sect. 3,
it is relatively straightforward to establish that diagrams (e1),
(e3), and (e4) contain poles in the q- and r -channels, but
not in the p-channel, which is relevant for the derivation of
Eq. (5.17).

Instead, (e2) possesses a pole in the p-channel, as may be
deduced by means of two different (but ultimately equivalent)
arguments, both related to the nature of the fully-dressed
four-gluon vertex [103–113], I�abts

αμδτ .
The first argument is based on the observation that the

special diagram (d2) of Fig. 3 is part of I�abts
αμδτ ; evidently,

since the vertex SDE is now written with respect to the p-leg,
the appropriate replacement (e.g., q → p) must be carried
out in (d2), which acquires thusly a massless bound state
propagator i/p2.

The second is by noticing that the STI satisfied by I�abts
αμδτ

generates naturally a pole in the p-channel, provided that the
poles of the three-gluon vertices appearing in its r.h.s. are
properly included. Specifically, the STI reads [39,114,115]

qαI�abts
αμδτ (q, r, p − k, k) = F(q)

[
f tad f dbs Hγ

δ

× (k + r, q, p − k)I�γμτ (−k − r, r, k)

+ f sad f dbt Hγ
τ (−k − q, q, k)I�γμδ(k + q, r, p − k)

+ f bad f dst Hγ
μ(p, q, r) I�γτδ(−p, k, p − k)︸ ︷︷ ︸

Contains
pγ
p2

] + . . . ,

(6.1)
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where the ellipsis denotes terms involving a ghost–ghost–
gluon–gluon scattering kernel. Since this kernel has no tree-
level value [39,115], we expect it to be subleading and omit
it from our treatment. Evidently, the full three-gluon vertices
appearing on the r.h.s. of Eq. (6.1) enter with their entire pole
content. In particular, the underbrace in that equation high-
lights the explicit appearance of a pγ /p2 term, originating
from the vertex I�γτδ(−p, k, p − k).

It is clear that the two arguments presented above are inter-
linked: the r.h.s. of the STI in Eq. (6.1) contains a pole in 1/p2

because diagram (d2) is part of the four-gluon vertex, whose
contraction by qα appears on the l.h.s. This accurate balance
evidences once again the harmonious interplay between sym-
metry and dynamics.

6.2 The derivation

Armed with these observations, we now proceed to the
derivation of Eq. (5.17), following the three main steps, (i)–
(iii), mentioned above.

To that end, we start from the complete expression for
(e2),

(e2)
abc
αμν = − ig2Z3

2

∫
k
�ρδ(k − p)�στ (k)�(0)

νσρ

× (−p, k, p − k) f cst I�abts
αμδτ (q, r, p − k, k),

(6.2)

where we have factored out a g.
Then, following step (i), we contract Eq. (6.2) with qα ,

thus triggering the STI of Eq. (6.1). Then, Eq. (6.2) yields

qα(e2)αμν = −λZ3F(q)

p2

∫
k
�ρδ(k − p)�στ (k)�(0)

νσρ

× (−p, k, p − k)pγ Hγμ(p, q, r)

× [V1(−p, k, p − k)gδτ

+V2(−p, k, p − k)pδ pτ ] + . . . , (6.3)

where the color structure f abc has been canceled out from
both sides, and the ellipsis denotes terms that do not contain
1/p2 poles, and thus cannot contribute to V9(q).

Next, we evaluate the term pγ Hγμ(p, q, r) appearing in
Eq. (6.3) using the well-known STI [72]

pγ Hγμ(p, q, r) = I�μ(p, q, r), (6.4)

where I�abc
μ (p, q, r) = −g f abcI�μ(p, q, r) is the ghost–

gluon vertex, whose most general Lorentz decomposition
reads [67,101,116]

I�μ(p, q, r) = pμB1(p, q, r) + rμB2(p, q, r). (6.5)

Then, it follows from Eq. (6.4) that

pγ Hγμ(p, q, r) = pμB1(p, q, r) + rμB2(p, q, r), (6.6)

while Eq. (5.9) allows us to write the Bi in terms of the Ai

and Ai as [101,116]

B1(p, q, r) = A1(p, q, r) + p2A2(p, q, r)

+ (p · r)A4(p, q, r),

B2(p, q, r) = (p · r)A3(p, q, r) + p2
A5(p, q, r). (6.7)

Note that, since Ai (p, q, r) displays a pole when r = 0, so
does the B2(p, q, r); the pole amplitude associated with the
ghost–gluon vertex has been studied in detail in [33,43,63].

Now, we proceed to step (ii). Clearly, only the term
pμB1(p, q, r) of Eq. (6.6) can contribute to the tensor struc-
ture pμ pν , once inserted in Eq. (6.3) for qα(e2)αμν . Hence,
we can write

qα(e2)αμν=−λZ3F(q)B1(p, q, r)pμ

p2

∫
k
�ρδ(k−p)�στ (k)

× �(0)
νσρ(−p, k, p − k)

× [V1(−p, k, p − k)gδτ

+V2(−p, k, p − k)pδ pτ ] + . . . , (6.8)

where the ellipsis now denotes terms that cannot contribute
to V9(q) because they do not contain either a 1/p2 or a pμ.

In anticipation of the fact that we will take p → 0 at
the end of the calculation, we can already consider p to be
small. In this case, we can use into Eq. (6.8) the Taylor expan-
sion given in Eq. (2.8), and its analog with V1 substituted by
V2. Then, one sees that the term V2(−p, k, p − k) cannot
contribute to V9(q), since it is two orders higher in p than
V1(−p, k, p − k). Hence, we obtain explicitly

qα(e2)αμν = 3λZ3F(q)B1(p, q, r)

(
pμ pν

p2

)

×
∫
k
k2�2(k)C(k) + . . . , (6.9)

with the ellipsis now including terms that are higher-order in
the Taylor expansion around p = 0.

At this point, recalling Eqs. (5.14) and (5.15), the scalar
coefficient of pμ pν in Eq. (6.9) yields a contribution to
V 3/p2 + S3, namely

V
(e2)

3 (p, q, r)/p2 + S(e2)
3 (p, q, r) = 1

p2 F(q)B1(p, q, r)

×
[

3λZ3

∫
k
k2�2(k)C(k)

]
+ . . . , (6.10)

where the superscript “(e2)” emphasizes that the above
expression contains only the contribution from diagram (e2).
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Fig. 8 Lattice data (points) of [67] for �−1(q) (left) and F(q) (right), together with their corresponding fits (blue solid lines), given by Eqs. (C6)
and (C11) of [63], respectively

Lastly, we perform step (iii), i.e., multiply Eq. (6.10) by
p2 and set p = 0. In doing so, we note from Eq. (6.7) that
B1(0, q,−q) = A1(q), while Eqs. (4.8) and (5.15) imply

that V
(e2)

3 (0, q,−q) = 2V (e2)
9 (q). Furthermore, since (e2) is

the only diagram of Fig. 7 that contributes to V9(q), we have
V9(q) = V (e2)

9 (q), such that

V9(q) = F(q)A1(q)

[
3λZ3

2

∫
k
k2�2(k)C(k)

]

= 1

2
F(q)A1(q)m2

(a1)
, (6.11)

where we used Eq. (2.9) to obtain the last equality.
Therefore, the SDE of Fig. 7 satisfies an approximate

form of Eq. (5.17), where only the term containing Ap
3(q)

in that equation is absent. This term could arise in the full
SDE either from the diagrams that we omitted in Fig. 7, or
from the ghost–ghost–gluon–gluon kernel that we dropped in
Eq. (6.1); its proper restoration requires a detailed treatment
that goes beyond the scope of the present work.

Finally, we point out that, at q = 0, the SDE result for
V9(0) satisfies the STI requirement of Eq. (5.20) exactly, by
virtue of Eq. (5.19).

7 Computing the residue function

We next turn to the numerical determination of the residue
function, V9(q), from Eq. (5.17). To this end, we first trans-
form Eq. (5.17) to Euclidean space, to obtain

V9(q) = F(q)

2

[
m2A1(q) + �−1(q)Ap

3(q)
]
. (7.1)

As we will explain below, for the determination of Ap
3(q)

we will make use of the displacement function C(q), shown
in Fig. 2. Since in [64,65] the C(q) has been computed in

the so-called “asymmetric MOM scheme” [52,54,67,102],
with μ = 4.3 GeV, the same renormalization prescription
will be employed in what follows. Note that, in this scheme,
the finite ghost–gluon renormalization constant appearing in
Eqs. (5.19) and (5.20) is given by Z̃1 = 0.9333 [14,64].

Then, for the F(q) and �(q) appearing in Eq. (7.1) we
use physically motivated fits to lattice data of [67], given
by Eqs. (C6) and (C11) of [63], respectively. These fits are
shown as continuous blue lines in Fig. 8, where they are
compared to the lattice data of [67] (points). Note that the
value of �−1(0) = 0.121 GeV−2 corresponding to this fit
leads to the previously mentioned value ofm = 348 MeV for
μ = 4.3 GeV. Moreover, the fitting functions for both �(q)

and F(q) were constructed in such a way that they reproduce
the respective one-loop resummed anomalous dimensions.

For the tree-level (classical) form factor A1(q) of the
ghost–gluon kernel, we employ the result of the SDE anal-
ysis of [101]7; the result is shown as red squares in the left
panel of Fig. 9, and is seen to deviate by at most 11%, at
q = 1.43 GeV, from the tree-level value, A(0)

1 (q) = 1.
Then, the only unknown ingredient in Eq. (7.1) is the

ghost–gluon pole term Ap
3(q), which may be computed as

follows. We start with the one-loop dressed truncation of the
SDE describing the ghost–gluon kernel, Hμν(r, q, p), see,
e.g., Fig. 3 of [101]. From this SDE, we derive a dynamical
equation for A3(r, q, p), using the projector T μν

3 , given in
Eqs. (3.7) and (3.8) of [101]. Then, recalling Eq. (5.10), we
obtain Ap

3(q) from the equation for A3(r, q, p) by multiply-
ing it by p2 and taking the limit p → 0. This procedure
furnishes a linear integral equation for Ap

3(q), which has the

7 In [101] the Taylor scheme [117–120] was employed; the conver-
sion to the asymmetric scheme proceeds through the relation Aasym

1 =
Z̃ ATaylor

1 .
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Fig. 9 Left: the form factor A1(q) of the ghost–gluon kernel, in the soft-antighost limit, taken from [101]. Right: pole amplitude Ap
3 (q) of the

ghost–gluon kernel, computed from the truncated SDE of Eq. (7.2)

form

Ap
3(q) =

∫
k
K1(k, q)Ap

3(k) +
∫
k
K2(k, q)C(k), (7.2)

where we notice the appearance of C(q), and the kernels
Ki (k, q) are comprised by combinations of �, F , and kine-
matic factors.

Then, we solve Eq. (7.2) numerically through the Nys-
tröm method [121], employing forC(q) the result of [64,65],
shown in Fig. 2. Through this procedure, we obtain the result
shown as red squares in the right panel of Fig. 9.

For convenience, we provide fits for the functions A1(q)

and Ap
3(q), which, in conjunction with the fits for �(q)

and F(q), allow V9(q) to be computed most expeditiously.
Specifically, both A1(q) and Ap

3(q) can be accurately fitted
by the low-degree rational functions

A1(q) = Z̃1 [1 + R1(q)] , Ap
3(q) = Z̃1R2(q), (7.3)

where

R1(q) = q2/a1 + (
q2/a2

)2 + (
q2/a3

)3

1 + q2/b1 + (
q2/b2

)2 + (
q2/b3

)3 ,

R2(q) = q2/c1

1 + q2/d1 + (
q2/d2

)2 , (7.4)

with fitting parameters given by a1 = 1.71 GeV2, a2 =
2.68 GeV2, a3 = 4.51 GeV2, b1 = 0.410 GeV2, b2 =
1.30 GeV2, b3 = 1.89 GeV2, c1 = −27.3 GeV2, d1 =
0.419 GeV2 and d2 = 1.03 GeV2.

We emphasize that the fits in Eq. (7.3) preserve certain
limits of the original functions, A1 and Ap

3. First, at the ori-
gin, the fits for A1(q) and Ap

3(q) satisfy Eq. (5.19). Next,
a one-loop calculation reveals that, at large values of the
momentum, A1(q) saturates to a constant [101]; in addition,

Fig. 10 Residue function, V9(q), computed from Eq. (5.17), using
the Ap

3(q) shown in Fig. 9 (blue continuous), compared to the result
obtained if Ap

3(q) is set to zero (red dashed line)

the numerical SDE result indicates that, in the same kine-
matic limit, Ap

3 ∼ 1/q2. It is straightforward to verify that
these ultraviolet features are correctly captured by the fits
given by Eq. (7.3).

Using the above ingredients in Eq. (7.1), we obtain the
V9(q) shown as a solid blue curve in Fig. 10. Comparing this
result to that for F(q), shown in the right panel of Fig. 8,
it is clear that the shape of V9(q) is dominated by the ghost
dressing function in Eq. (7.1).

Next, we test the effect of Ap
3 on V9. To this end, we set

Ap
3(q) to zero in Eq. (7.1), in which case we obtain the result

shown as a red dashed line in Fig. 10. Note that the latter
becomes equal to the full result (blue continuous) at q = 0,
by virtue of Eq. (5.19), but differs significantly from it for
q > 1 GeV.
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To understand this difference, let us note that although
Ap

3(q) itself is small in comparison to the corresponding
pole of the three-gluon vertex, C(q) [cf. Fig. 2 and Fig. 9],
or even the saturation value of V9(q), it appears multiplied
by �−1(q). Since the latter increases rapidly in the ultravio-
let, the product Ap

3(q)�−1(q) can contribute a considerable
amount to V9(q) at large q, as indeed is observed.

8 Absence of mixed triple pole

In this section, we analyze the infrared behavior of the form
factor V10(q, r, p), which is accompanied by a denominator
q2r2 p2 in Eq. (4.4). As such, at first sight, one expects that
this term should act as a triple mixed pole.

Consider, for instance, taking all momenta to zero by first
taking p → 0, which implies also r = −q, and then taking
q → 0. In this case, if V10(0, 0, 0) were nonvanishing, one
would have

lim
q,p→0

V10(q, r, p)

q2r2 p2 = V10(0, 0, 0)

q4 p2 , (8.1)

where we use the shorthand notation

lim
q,p→0

:= lim
q→0

lim
p→0

. (8.2)

However, as we will demonstrate in Sect. 8.1, the STI of
Eq. (5.8) requires V10(q, r, p) to vanish in this limit as

lim
q,p→0

V10(q, r, p) = 2(q · p)q2 f (0), (8.3)

where f (q) is some pole-free function at q = 0. Conse-
quently, in Euclidean space,

lim
q,p→0

V10(q, r, p)

q2r2 p2 = lim
q,p→0

2 cos θ

|q||p| f (0), (8.4)

where q · p = |q||p| cos θ and |q| denotes the magnitude of
the Euclidean momentum q.

Moreover, an approximate SDE analysis presented in
Sect. 8.2 shows that this particular requirement is enforced by
the Schwinger mechanism, and especially due to the validity
of Eq. (2.8).

Note that the divergence in Eq. (8.4) is in fact weaker than
that associated with the form factors V7, V8, and V9, namely

lim
q,p→0

V9(q, r, p)

q2 p2 = lim
q,p→0

Z̃1F(0)m2

2q2 p2 , (8.5)

where we used Eq. (5.20).

8.1 Demonstration from the STI

For the derivation of Eq. (8.3) from the STI of Eq. (5.8), we
begin by noting that Eq. (4.8) already implies that

lim
p→0

V10(q, r, p) = 2(p · q)V ′
10(q),

V ′
10(q) :=

[
∂V10(q, r, p)

∂r2

]
p=0

. (8.6)

Then, to obtain Eq. (8.3) we need to show that

lim
q→0

V ′
10(q) = q2 f (0). (8.7)

In order to constrain V10 from the STI, let us first note
that this form factor appears in Eq. (5.8) through the combi-
nation V 5, defined in Eqs. (5.14) and (5.15). Then, isolating
its respective tensor structure, rμ pν , and equating the corre-
sponding coefficients on each side of Eq. (5.8), we obtain

S5 = 1

r2 p2

{
(p · r)F(q)

[
p2�−1(r)A3(r, q, p)

−r2�−1(p)A3(p, q, r)
]

− V 5

}
, (8.8)

where we note the term r2 p2 in the denominator. Since S5 is
pole-free, the r.h.s of Eq. (8.8) must be an evitable singularity
at p = 0 and r = 0, which implies that the term in curly
brackets must vanish sufficiently fast in those limits.

Then, since S5 is antisymmetric under the exchange or r
and p, it suffices to consider the p = 0 limit of Eq. (8.8);
hence, we expand the term in brackets around p = 0.

Using the Bose symmetry relations of Eqs. (4.6) and (4.7),
it is straightforward to show that the zeroth order term van-
ishes. However, the linear term yields the nontrivial con-
straint

V
′
5(q) = − F(q)

2

{
m2

[
q2A3(0, q,−q) + Ap

3(0, q,−q)
]

+�−1(q)Ap
3(q)

}
, (8.9)

where we emphasize that Ap
3(q) [see Eq. (5.18)] corresponds

to a kinematic limit (soft-gluon) different from Ap
3(0, q,−q)

(soft-antighost), and define

V
′
5(q) :=

[
∂V5(q, r, p)

∂r2

]
p=0

. (8.10)

Next, we further expand Eq. (8.9) around q = 0. The
zeroth order term is easily seen to vanish, while the first
nonvanishing term is given by

V
′
5(q) = q2 f1(0), (8.11)
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where

f1(0) := − F(q)m2

2

{
A3(0, 0, 0) +

[ d

dq2

(
Ap

3(0, q,−q)

−Ap
3(q,−q, 0)

) ]
q=0

}
. (8.12)

Then we relate V ′
10 to V

′
5 by expanding Eq. (5.15) around

p = 0. In doing so, we make extensive use of the Bose sym-
metry relations of Eqs. (4.6) and (4.7), and invoke Eq. (2.8).
After some algebra, this procedure yields

V ′
10(q) = V

′
5(q) + q2 f2(q), (8.13)

where

f2(q) : = C(q) − q2
[
∂V2(p, q, r)

∂r2

]
p=0

+
[

∂

∂r2 (V7(r, p, q) − V7(q, p, r))

]
p=0

. (8.14)

Finally, combining Eqs. (8.11) and (8.13) we obtain the
announced result, Eq. (8.7), by identifying f (0) := f1(0) +
f2(0).

8.2 SDE realization

Now, we show how Eq. (8.7) follows from the SDE of the
three-gluon vertex. Note that, by virtue of Eq. (8.13), which
is a consequence of Bose symmetry, it suffices to demonstrate
Eq. (8.11).

To this end, we employ a procedure similar to that used
in Sect. 6 to obtain V9(q). Specifically, (i) we contract the
vertex SDE of Fig. 7 by qα; (ii) then, we isolate the tensor
structure rμ pν from the result, which yields a contribution
to V 5/(r2 p2)+ S5; (iii) next, we multiply the result by r2 p2

and expand to lowest order in p = 0, thus obtaining V
′
5; (iv)

lastly, we expand V
′
5 to lowest order around q = 0.

In carrying out step (i) above, we note that diagrams (e1),
(e3) and (e4) of Fig. 7 do not contribute to V10, for the exact
same reasons that they do not contribute to V9, as discussed
in Sect. 6. Hence, we focus on diagram (e2). Moreover, after
triggering the STI of Eq. (6.1) for the four-gluon vertex in
(e2), we see that only the term highlighted with an underbrace
can contribute to V 5. Hence, we are led back to Eq. (6.3).

Then, we carry out step (ii). Evidently, only the term
rμB2(p, q, r) of Eq. (6.6) contributes to the tensor structure
rμ pν . Hence, we can write

qα(e2)αμν=−λZ3F(q)B2(p, q, r)rμ
p2

∫
k
�ρδ(k−p)�στ (k)

× �(0)
νσρ(−p, k, p − k)

× [V1(−p, k, p − k)gδτ

+V2(−p, k, p − k)pδ pτ ] + . . . , (8.15)

with the ellipsis denoting terms that cannot contribute to V 5

because they do not contain either a 1/p2 or a rμ.
Then, for small p, we can expand Eq. (8.15) around p = 0,

using Eq. (2.8). Note that to first order in p, Eq. (6.7) implies
B2(p, q, r) = −(p · q)A3(0, q,−q). Hence, we obtain

qα(e2)αμν = −F(q)(q · p)q2
A3(0, q,−q)

(
rμ pν

r2 p2

)

×
[

3λZ3

∫
k
k2�2(k)C(k)

]
+ . . . , (8.16)

with ellipsis now including terms that are dropped in the
expansion around p = 0.

To complete step (ii), we note that the form factor of the
tensor rμ pν is V 5/p2r2 + S5. Hence, invoking Eq. (2.9),

V
(e2)

5

p2r2 + S(e2)
5 = V 5

p2r2 + S(e2)
5

= − (q · p)
r2 p2 F(q)q2

A3(0, q,−q)m2
(a1)

+ . . . . (8.17)

Note that in the first equality, we used the fact that only (e2)

contributes to V 5, i.e., V 5 = V
(e2)

5 , whereas S5 may receive
contributions from other diagrams.

Proceeding to step (iii), we multiply Eq. (8.17) by r2 p2

and expand the result to the first order in p. Using Eq. (8.10),
we find

V
′
5(q) = − F(q)m2

(a1)

2

[
q2A3(0, q,−q) + Ap

3(0, q,−q)
]
.

(8.18)

Note that this result is nearly identical to Eq. (8.9), differing
from it only by the substitutionsm → m(a1) and Ap

3(q) → 0.
Finally, we perform (iv), i.e., expand Eq. (8.18) around

q = 0. Using Eq. (5.19), we obtain

V
′
5(q) = q2 f3(0), f3(0) := − F(0)m2

(a1)

2

⎧⎨
⎩A3(0, 0, 0)

+
[
d Ap

3(0, q,−q)

dq2

]
q=0

⎫⎬
⎭ , (8.19)

which is Eq. (8.11), with f (0) := f3(0).
As in the previous section, the STI results given by Eqs.

(8.11) and (8.12), and the SDE result in Eq. (8.19) are strik-
ingly similar; again, the observed discrepancy is due to the
SDE truncation, or the approximate nature of the STI in
Eq. (6.1).
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9 Conclusions

The intense scrutiny of the correlation functions of QCD by
means of continuous methods [9,23,27,34,79,122–124], and
lattice simulations [66,125–130], supports the notion that the
gluons acquire a nonperturbative mass [63,64] through the
action of the celebrated Schwinger mechanism. In a non-
Abelian context, the main dynamical characteristic of this
mechanism is the formation of composite massless poles in
the vertices of the theory [15–21]. These poles display the
crucial feature of being completely longitudinally coupled,
a fact that guarantees the absence of divergences in (Landau
gauge) lattice form factors.

In this article we have analyzed the pole content of the
three-gluon vertex, whose role is known to be instrumental
in the realization of the Schwinger mechanism, accounting
for the bulk of the gluon mass [13,14,63,64]. It turns out that
the resulting structures are quite rich, being imposed by Bose-
symmetry and the STI satisfied by the three-gluon vertex. In
particular, we have focused on the appearance and role of
the mixed double and triple poles, of the type 1/q2 p2 and
1/q2r2 p2, respectively, which are inert as far as the direct
act of mass generation is concerned.

It turns out that the mixed double poles are an indispens-
able requirement for the flawless completion of the STI satis-
fied by this vertex in the presence of an infrared finite (mas-
sive) gluon propagator. In fact, the STI imposes powerful
constraints relating the so-called “residue function” to all
other components entering in the STI. We emphasize that, at
this level, the presence of these poles is dictated solely by the
STI, and is not related to any particular dynamical realization.
In that sense, it appears to be of general validity, hinging only
on the longitudinal nature of the poles. The picture emerging
from the bound-state realization of the Schwinger mecha-
nism, as captured by the vertex SDE [22,24,43,44], satisfies
the general constraints imposed by the STI, thus passing a
highly nontrivial self-consistency check.

As for the mixed triple pole, our analysis reveals that their
strength is substantially reduced (i.e., weaker than a dou-
ble mixed pole), again by virtue of inescapable requirements
imposed by the STI. Interestingly enough, the salient quali-
tative features of this result are recovered by the vertex SDE,
exposing once again the complementarity between symmetry
and dynamics.

Our analysis strongly indicates that higher n-point func-
tions functions (i.e., Green’s functions with n incoming glu-
ons, and n > 3) will also possess an extended structure of
poles. This is already seen at the level of the four-gluon vertex
I�abts

αμδτ (n = 4), which enters in the demonstration of Sect. 6.

In particular, I�abts
αμδτ is forced by the STI of Eq. (6.1), namely

by the V -parts of the three-gluon vertices appearing on the
r.h.s., to have poles in all channels carrying the momenta
of the external legs, together with the channels obtained by
forming sums of momenta, as happens in the case p = q+r .
A preliminary study reveals that the diagrammatic interpre-
tation of all these poles is fully consistent with the notions
and elements introduced in Sect. 3. We hope to report the
results of a detailed inquiry in the near future.

It would be clearly important to unravel an organizing
principle that accounts for the pole proliferation in the funda-
mental vertices of QCD. A possible approach is the construc-
tion of low-energy effective descriptions of Yang–Mills theo-
ries with a gluon mass, in the spirit of the gauged non-linear
sigma model proposed by Cornwall, see [21,99,100,131].
In this model, the addition of a gluon mass at the level of
the effective Lagrangian is compensated by the presence of
angle-valued scalar fields, which act as would-be Nambu-
Goldstone particles. When the equation of motion of these
scalars is solved as a power series in the gauge field, and the
solution is substituted back into the Lagrangian, the various
vertices acquire longitudinally coupled massless poles, see,
e.g., Eq. (5.4). A systematic comparison between the pole
patterns obtained within this model (or variants thereof) and
those induced by the Schwinger mechanism at the level of
the fundamental theory, as detailed here, might afford clues
on the structure of possible low-energy effective descriptions
of QCD.
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