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Abstract In this manuscript, we inspect the stable geom-
etry of thin-shell wormholes in the framework of static,
spherically-symmetric quantum corrected charged black hole
solution bounded by quintessence. In this regard, we develop
thin-shell wormholes from two equivalent copies of black
hole solutions through the cut and paste approach. Then,
we employ the linearized radial perturbation to discuss the
stability of the developed wormhole geometry by assuming
variable equations of state. We obtain the maximum stable
configuration for massive black holes for both barotropic and
Chaplygin variables equations of state. It is found that the
quantum correction affects the stability of thin-shell worm-
holes and the presence of charge over the geometry of black
holes enhances the stable configuration of thin-shell worm-
holes.

1 Introduction

The study of wormhole (WH) solutions is recognized as
the most fascinating speculation in general relativity (GR),
which has gained much attention from several authors.
According to GR, such exotic geometries are possible
because of the deformability of spacetime caused by mat-
ter/energy. In fact, the WHs are bridges between distinct
points at a manifold. In general, the WHs are asymptoti-
cally flat and the notion associated with their structures was
first proposed by Flamm [1] and later suggested by Einstein
and Rosen [2]. The structure introduced by the latter is char-
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acterized as the “Einstein–Rosen bridge” and is known as a
vacuum solution of Einstein’s field equations. Such types of
WHs are constructed with the Schwarzschild solution by tak-
ing into account two black holes (BHs) connecting two dis-
tinct regions of spacetime. Due to the presence of singularity,
it was shown that such WH geometry is not traversable. Fuller
and Wheeler [3] adopted Kruskal components to narrate the
structure of Schwarzschild WH depicting its non-traversable
nature. They demonstrated that if the WH were to open, it
would close so swiftly that not even a single photon could
get over it.

Great cosmologists as well as astrophysicists have started
to inspect the possibility of the occurrence of traversable
WHs by considering the theoretical predictions of
Schwarzschild WHs and Einstein–Rosen bridges. The first
structure of traversable WH is displayed by Morris and
Thorne [4] as a connection that joins two eras of the same
cosmos or two different universes via a throat that permits the
way from one spacetime era to another. The same researchers
explained that to get through this era, the matter incorpo-
rating those structures must violate the general energy con-
straints [4–7]. Thus, in the background of GR, the “exotic
matter” violating the usual energy constraints is required to
obtain a traversable WH. No doubt, it is a serious theoretical
problem to deal with such type of matter that has not been
straightly examined. To overcome this issue, thin-shell WHs
were introduced in which the quantity of exotic matter inside
the throat or thin-shell can be restricted as small as required
constructing such type of WH geometries that violate the
energy constraints only in this era [8,9]. The construction
of such WH geometry is done by considering the famous
cut-and-paste method in which cutting and pasting the two
manifolds create an entirely new one with a shell inserted
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in the connection surface. In this process, the exotic matter
needed for their presence is concentrated in the shell or WH
throat. Since it cannot be entirely ignored, therefore, we can
focus our research on a thin-shell model. The constituents of
the surface stress-energy tensor at the WH throat are eval-
uated by employing the Darmois–Israel condition [10,11],
that provides the Lanczos equations [12–14]. One can deter-
mine the dynamic change in the WH structure by solving the
Lanczos equation with the help of the equation of state (EoS)
for the exotic matter on the thin-shell.

As those astrophysical objects are of significant impor-
tance if they show stability against perturbations. For this
purpose, many authors explored the stable geometries of WH
as well as thin-shell WHs with linear perturbations to main-
tain the original symmetries. Poisson and Visser [15] pre-
sented the stability of Schwarzschild thin-shell WH. Lobo
and Crawford [16] discussed the stable structure of spheri-
cally symmetric thin-shell WHs with cosmological constant
and exhibited that the stable WH solutions occur just for the
positive range of cosmological constant. Eiroa and Romero
[17] investigated the WH geometry and its stability using lin-
earized perturbations with the existence of an electric field
and found the stable structure of WHs for suitable values
of charge parameter. Bronnikov et al. [18] analyzed the sta-
bility of WH as well as regular BH with a phantom scalar
field. Sharif and Azam [19] demonstrated the thin-shell WH
with charged regular BH in a non-linear electrodynamics
field and found a stable structure corresponding to some par-
ticular choice of parameters. On the same ground, several
researchers studied the thin-shell WH geometries and their
stability adopting different conjectures like charge, various
EoS, and other distinct physical parameters [20–36].

In Einstein’s field equations, the cosmological constant
is usually employed to characterize the current state of the
cosmos. The various astronomical observations manifest that
the current rapid expansion of the cosmos is due to some fac-
tor having large negative pressure. To describe this negative
pressure, the quintessence is considered a significant alterna-
tive candidate of cosmological constant [37,38]. The solution
of the Einstein equation corresponding to quintessence was
first determined by Kiselev in 4-dimensions [39]. Chen et al.
[40] presented the solution of Einstein’s equation associated
with quintessence in higher dimensional spacetime. Baner-
jee et al. [41] inspected the stability of a thin-shell wormhole
in d-dimension with quintessence.

A novel semi-classical strategy for quantum gravity has
recently been proposed in [42], where it is demonstrated that
the Raychaudhuri equation is corrected by substituting quan-
tal trajectories for classical geodesics. Thus, by the Hawking-
Penrose theorem [43], these new quantum corrections will
have an impact on all plausible spacetimes that are incom-
plete or singular in some particular sense. It has been discov-
ered that the quantum Raychaudhuri equation inhibits the cre-

ation of singularities by preventing the focussing of geodesics
[42]. In cosmology using the Friedmann–Robertson–Walker
universe model, it is observed that the big bang singular-
ity can be avoided by employing quantal geodesics [44].
Moreover, it was discovered that the Friedmann equation
acquires a quantum correction factor that is equivalent to
a cosmological constant and provides a feasible approx-
imation of its observed value [44,45]. Motivated by this
Ali and Khalil [46] first inspected the BH physics with
quantum correction. Shahjalal [47] discussed the thermody-
namic properties of quantum-corrected Schwarzschild BH
with quintessence. Jusufi [48] examined the stable structure
of quantum-corrected thin-shell WH and found that quantum
correction greatly affects the stability of WH.

It is well-known that the stability of thin-shell WHs is
widely affected by the choice of BH as well as EoSs. Due
to this reason, various researchers adopted different EoSs to
discuss the different physical aspects of WHs and Chaplygin
gas (CG) EoS have attained great attention in this respect.
Eiroa and Simeone [49] constructed the spherically symmet-
ric thin-shell WHs using CG and analyzed the stability of
their solutions. They also found the parametric values for
which stable solutions exist. Eiroa [50] explored the struc-
ture of spherical thin-shell WHs with generalized CG and
studied their stability with the electric field as well as the
cosmological constant. Sharif and Azam [51,52] considered
charged BH for the creation of a thin-shell WH with CG
and generalized CG. They observed the stability of static
solutions and found stable/unstable structures for cylindri-
cal thin-shell WHs. Varela [53] determined the stable thin-
shell WH models with Schwarzschild BH using variable EoS
and presented the perturbative analysis of WH equation of
motion for variable Chaplygin EoS. Eid [54] presented the
dynamical analysis of charged thin-shell WHs by employ-
ing the variable EoS. Sharif and Javed inspected the stabil-
ity of thin-shell WHs constructed by Bardeen BH [55] as
well as Bardeen AdS BH [56] by using different choices
of variable EoS. The same authors [57] compared the sta-
ble structures of thin-shell (internal Minkowski metric and
the external Reissner–Nordström BH) and charged thin-shell
(inner and outer Reissner–Nordström BH) WHs using gener-
alized barotropic, generalized phantom-like, and CG EoSs.
Recently, Li et al. [58] obtained a (3+1)-dimensional static
spherically-symmetric BH solution to the Einstein field equa-
tions in the background of dark fluid and Chaplygin-like EoS.
They also investigated the physical characteristics of BH
solutions, i.e., thermodynamics, shadow, and critical values
of temperature and pressure.

Motivated by all the above-mentioned works, in the
present article, we examine the stability of thin-shell WH
with quantum-corrected charged BH surrounded by
quintessence. The manuscript is arranged as follows: next
section provides the general interpretation of quantum cor-
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rected charged BH and the thin-shell WH are constructed
with the help of two similar forms of adopted BHs via cut
and paste technique. Section 3 is dedicated to observing the
stable structure of constructed geometries via radial perturba-
tion corresponding to the barotropic, generalized phantom-
like, and Chaplygin-like EoS. The last section summarizes
our important results.

2 Equation of motion of thin-shell wormholes

This section deduces the equation of motion of the thin-shell
wormholes mathematically constructed from two equivalent
copies of quantum corrected charged BHs surrounded by
quintessence. The considered BH metric can be displayed as

ds2 = −F(r)dt2 + 1

F(r)
dr2 + r2d�2, (1)

in which F(r) is a lapse function based upon the radial com-
ponent r and dθ2 + sin2θdφ2 = d�2. The lapse function
can be defined as [47,59]

F(r) =
√
r2 − a2

r
− 2M

r
− χ

r3ωq+1 + Q2

r2 , (2)

here a denotes the quantum correction factor, M represents
the mass of BH, χ symbolizes the quintessence field and
ωq denotes the quintessence state parameter and Q shows
the the electric charge of the BH. Also, a corresponds to the
behavior of spherical symmetric quantum fluctuations via
a ≡ 4l p where l p is the Planck length [47,59]. In the absence
of χ and Q, we get the quantum corrected Schwarzschild BH
solution [47].

In order to create thin-shell WHs, we take two similar
copies of the proposed BH solution. The cut and paste tech-
nique is used to define thin-shell WHs. It is well known that
the geometry of WHs joins two distant and distinct regions
of the spacetimes with the help of a tunnel recognized as the
WH throat. In cosmology as well as astrophysics, the descrip-
tion of the observers moving from one region to another via
WH throat is a fascinating scenario. No observer is able to
move freely through the WH throat because of its rapidly
collapsing and expanding phenomenon. To prevent the WH
throat from collapsing, a certain kind of matter distribution
must be needed for traversable WH. As we know that there
must occur some matter configuration with exotic charac-
teristics because the ordinary matter is not feasible for the
traversable WH. The matter with exotic features does not
fulfill the weak and null energy bounds and is termed exotic
matter. To reduce the amount of such matter components,
Visser defined the cut and paste strategy to create thin-shell
WHs by combining two similar forms of BH metrics at the
hypersurface. We employ this strategy in this manuscript to
create thin-shell WHs in the framework of two similar forms

of BH along with the nonlinear impact of electrodynamics.
In this respect, we cut this metric as follows

M± = {
r± ≤ λ, λ > rh

}
, (3)

with λ acts as a radius of WH throat and rh exhibits the
event horizon radius. Such manifolds are joined at (2+1)-
dimensional manifold known as hypersurface provided by

� = {
r± = λ, λ > rh

}
. (4)

This technique provides a unique regular manifold and
mathematically, it is displayed as M = M+ ∪M−. Notice
that by considering λ > rh , the singularity and event hori-
zon formation in the constructed geometry can be prevented.
In accordance with the Darmois and Israel junction condi-
tions, the components of hypersurface and manifolds yield
the forms ξ i = (τ, θ, φ) and xγ = (t, r, θ, φ), respectively
with τ as the proper time on the hypersurface. These systems
are linked together with the coordinate transformation given
by

gi j = ∂xγ

∂ξ i

∂xβ

∂ξ j
gγβ. (5)

For the hypersurface, the associated parametric equation is
written by � : R(r, τ ) = r − λ(τ) = 0. The geometry
of a thin shell is investigated by taking into account the
dependency of shell radius (λ) on the proper time. Hence,
the shell radius is depicted as a function of proper time given
by λ = λ(τ). The respective induced metric becomes

ds2
� = λ2(τ ) sin2 θdφ2 + λ2(τ )dθ2 − dτ 2. (6)

The matter components of the thin shell possess a signifi-
cant role in the dynamics as well as the stability of the WH
throat. The Lanczos equations are derived to describe the
field equations at the boundary surface, such as the surface
of a massive object or a BH event horizon. In this regime,
the gravitational field is expected to behave classically, as the
quantum effects become significant only at very small scales,
such as the Planck scale. Therefore, macroscopic objects
described by the Lanczos equations do not experience signif-
icant quantum-generated corrections. For very small scales,
quantum gravity effects become important, and one expects
deviations from the classical equations of GR. These effects
are negligible for macroscopic objects or on scales that are
relevant to the applications of the Lanczos equations. It is
only in extreme conditions, such as near the singularity of a
BH or during the very early stages of the universe, that quan-
tum gravitational effects become dominant. At the hypersur-
face, the physical factors of matter are derived via reduced
expressions of GR equations. Such equations are recognized
as Lanczos equations presented by

Si j = − 1

8π

([
Ki

j

]
− δi j K

)
. (7)
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where Ki
j indicates the constituents of extrinsic curva-

ture, while K acts as the trace part of extrinsic curvature
([Ki

i ] = K ) and diag(σ,V,V) = Si j manifests the stress-
energy tensor. The surface pressure and material energy den-
sity situated at � is specified by V and σ , respectively. This

matter configuration generates discontinuity in the external
as well as internal constituents of extrinsic curvature math-
ematically expressed by [Ki

j ] = K+i
j − K−i

j �= 0. The
extrinsic curvature of internal and external regions is pro-
vided by

K (±)
i j = −n(±)

μ

(
∂2xμ

∂ξ i∂ξ j
+ �

μ
γβ

∂xγ

∂ξ i

∂xβ

∂ξ j

)

�

. (8)

The radial as well as the temporal constituents of the unit
normals on M± lead to

n±
t = −λ̇, n±

r =
λ2

√
λ
(√

λ2−a2−2M−χλ−3ωq
)
+Q2

λ2 + λ̇2

λ
(√

λ2 − a2 − 2M − χλ−3ωq

)
+ Q2

,

respectively. Here, overdot describes the derivative corre-
sponding to proper time. The constituents of respective
extrinsic curvature are

K±
ττ = ±

− 3a2λ3

(λ2−a2)
3/2 + 2a4λ

(λ2−a2)
3/2 − 4λM − χ

(
9ωq

(
ωq + 1

) + 2
)
λ1−3ωq + 6Q2

2λ4

√
λ
(√

λ2−a2−2M−χλ−3ωq
)
+Q2

λ2 + λ̇2

, (9)

K±
θθ = ±λ

√√√√λ
(√

λ2 − a2 − 2M − χλ−3ωq

)
+ Q2

λ2 + λ̇2, (10)

and K±
φφ = sin2 θK±

θθ . Insertion of Eqs. (9) and (10) into
Lanczos equations (7) yields

2πλσ = −
√√

λ2 − a2

λ
+ λ̇2 − 2M

λ
− χ

λ3ωq+1 + Q2

λ2 , (11)

8πλV=
1
λ

(
2λ2−a2√

λ2−a2 +2λ̈λ2−2M−χλ−3ωq

)
+2λ̇2+3χωqλ

−3ωq−1

√
λ
(√

λ2−a2−2M−χλ−3ωq
)
+Q2

λ2 +λ̇2

.

(12)

Here, we suppose that the shell of the constructed model
does not pass through the radial direction at the equilibrium
radius of the shell λ0. So, it is worthwhile to write here that the
proper time derivative of the radius of the shell disappears,
i.e., λ̇0 = 0 = λ̈0. Thus, one can obtain

2πλ0σ0 = −
√√

λ2 − a2

λ
− 2M

λ
− χ

λ3ωq+1 + Q2

λ2 , (13)

8πλ2
0V0 =

λ−3ωq−1
(
−χ

√
λ2 − a2 − 2M

√
λ2 − a2λ3ωq + 3χ

√
λ2 − a2ωq + (

2λ2 − a2
)
λ3ωq

)

√
λ2 − a2

√
λ
(√

λ2−a2−2M−χλ−3ωq
)
+Q2

λ2

, (14)

in which σ0 and V0 interpret the matter energy density and
pressure at equilibrium points, respectively. There exist three
famous energy constraints, i.e., null (V + σ ≥ 0), weak
(V + σ ≥ 0, σ ≥ 0) and strong (3V + σ ≥ 0) energy con-
straints. Observed that σ0 < 0 provides the defiance of dom-
inant and weak energy bounds. This nullification displays
that the constructed geometry is occupied by exotic matter.
Such matter contents at the throat create abhorrence for col-
lapse and provide help to hold it open. Thus, our constructed
geometry is physically viable for the WH structure.

The equation of motion by adopting the shell energy den-
sity (11) leads to

λ̇2 = −ϒ(λ), (15)

and the shell effective potential is characterized by

ϒ(λ)=
√

λ2 − a2

λ
−4π2λ2σ 2−2M

λ
− χλ−3ωq−1+Q2

λ2 .

(16)

With the help of 4-acceleration of the observer, the attrac-
tive and repulsive features of WH throat are evaluated as

aβ = v
β

;λv
λ,

where the 4-velocity of the observer is exhibited by vλ =(
1√Y(r)

, 0, 0, 0
)

. Then, we get
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d2r

dτ 2 = −�r
tt

(
dt

dτ

)2

= −ar ,

providing

ar= 1

2λ3

(
a2λ√

λ2 − a2
+2λM+χ

(
3ωq+1

)
λ1−3ωq−2Q2

)
.

The gravitational field surrounding by WHs can exhibit
two types of behavior: attractive or repulsive. For an attrac-
tive WH, it means that the gravitational field near the WH
pulls objects towards it. In this case, if an observer wants to
avoid being pulled into the WH, they must exert an outward
directed force. This means they need to move away from the
WH with a force that counteracts the attractive gravitational
pull. If they do not exert this outward force, they will be grad-
ually drawn towards the WH. On the other hand, a repulsive
WH has a gravitational field that pushes objects away from
it. In this case, in order to avoid being pushed by the WH,
an observer must have an inward directed force. By exerting
this force towards the WH, they can counteract the repulsive
gravitational force and maintain a distance from the WH. If
they do not exert this inward force, they will be pushed further
away from the WH. In summary, the attractive or repulsive
nature of a WH’s gravitational field determines the type of
force that an observer needs to exert to avoid being influenced
by the WH. Consequently, an attractive WH requires an out-
ward force, while a repulsive WH requires an inward force.
The radial part of the 4-acceleration describes the attractive
(ar > 0) and repulsive (ar < 0) behavior of the throat.

3 Stability analysis

In order to analyze the stable structure, we take the equilib-
rium shell radius λ0 and expanding the effective potential
ϒ(λ) around λ0 with the help of Taylor series up to second-
order factors given by

ϒ(λ) = ϒ(λ0) + ϒ ′(λ0)(λ − λ0) + 1

2
ϒ ′′(λ0)(λ − λ0)

2

+O[(λ − λ0)
3]. (17)

It is noteworthy that the throat demands that the potential
component and its 1st differential form must disappear at the
equilibrium point for both the stable and unstable structure of
the WH, i.e., ϒ(λ0) = 0 = ϒ ′(λ0). Thus, it can be derived
as:

• The stable configuration is obtained if the 2nd differen-
tial form of the potential at λ = λ0 is positive and if
ϒ ′′(λ0) < 0, then it shows unstable structure.

• If ϒ ′′(λ0) = 0, then it is neither stable nor unstable.

Equation (17) at equilibrium point leads to

ϒ(λ) = 1

2
ϒ ′′(λ0)(λ − λ0)

2. (18)

Notice that V and σ obey the conservation law expressed
by

V d

dτ
(4πλ2) + d

dτ
(4πλ2σ) = 0. (19)

The selection of matter configuration that can be character-
ized by EoS determines the exact solution associated with
the conservation equation. Now, we adopt two kinds of EoS
V = V(σ ) and V = V(σ, λ) [53]. The second case depicts
the generalized form where shell surface pressure is based
on both throat radius and surface energy density. For both
choices, one can get V ′ = dV(σ )

dσ
σ ′ and V ′ = dV

dσ
σ ′ + dV

dλ
,

respectively. Thus, the conservation equation leads to

σ ′ = −2

λ
{σ + V(σ, λ)}. (20)

Corresponding to different selections of variable EoS, every
result of Eq. (20) yields a particular expression of ϒ(λ).
At λ = λ0, the 2nd differential form of effective potential
becomes

ϒ ′′(λ0) = − 1

λ4

(
3a2λ3

(
λ2 − a2

)3/2 − 2a4λ
(
λ2 − a2

)3/2

+2
(

4π2λ4
(
λ2σ ′(λ)2 + λσ(λ)

(
λσ ′′(λ) + 4σ ′(λ)

) + σ(λ)2
)

+2λM − 3Q2
)

+ χ
(
9ωq

(
ωq + 1

) + 2
)
λ1−3ωq

)
.

Above equation and Eq. (20) express that the type of mat-
ter constituents situated at thin-shell contribute a remarkable
role to examine the stable state of the obtained structure. It is
obtained that ϒ ′′(λ0) is greatly based upon the EoS parame-
ters γ0 and β2

0 . In the next sections, we examine the influences
of barotropic as well as variable EoS on the stable state of
the constructed structure.

3.1 Barotropic EoS

This is the first case in which we adopt barotropic EoS to
inspect the stable structure of thin-shell WHs. It is related to
the energy density and surface pressure associated with the
matter components by

V = γ σ, (21)

here γ symbolizes the parameter for barotropic EoS. Utiliz-
ing the Eqs. (21) in (20), we get

σ ′(λ) = −2

λ
(1 + γ )ρ(λ), (22)

which yields

σ(λ) = σ(λ0)

(
λ0

λ

)2(1+γ )

. (23)
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Fig. 1 Region plots of uncharged quantum corrected thin-shell WHs
effective potential ϒ ′′(λ0) verses λ0 and χ for barotropic EoS with dif-
ferent values of a as 0 (first plot), 0.2 (second plot), 0.3 (third plot) using
M = 0.5, Q = 0, ωq = −2/3. Here, the colored region represents the
stable region (ϒ ′′(λ0) > 0) and remaining region shows unstable con-

figuration (ϒ ′′(λ0) ≤ 0). The region bounded by the red lines shows
the behavior of the metric function F(r) > 0 and other white as well as
filled region shows F(r) < 0. It is noted that the inner red line shows
the position of the event horizon. Hence, the stable configuration found
after the position of the event horizon

The form of effective potential yields

ϒ(λ) =
√

λ2 − a2

λ
− 4π2λ2σ 2

0

(
λ0

λ

)4(γ+1)

− 2M

λ

−χλ−3ωq−1 + Q2

λ2 , (24)

The first derivative associated with throat radius “λ′′ at λ0

takes the form

ϒ ′(λ0) =
a2λ0√
λ2

0−a2
+ 2(2γ + 1)

(
λ0

(√
λ2

0 − a2 − 2M − χλ
−3ωq
0

)
+ Q2

)
+ 2λ0M + χ

(
3ωq + 1

)
λ

1−3ωq
0 − 2Q2

λ3
0

.

It is noted that ϒ ′(λ0) vanishes if and only if

γ =
λ0

⎛

⎝

(
2M

√
λ2

0−a2+a2−2λ2
0

)
λ

3ωq
0

√
λ2

0−a2
− 3χωq + χ

⎞

⎠

4

(
λ0

((√
λ2

0 − a2 − 2M

)
λ

3ωq
0 − χ

)
+ Q2λ

3ωq
0

) .

(25)

Also, it is found that

ϒ ′′(λ0) = − 3a2

λ0
(
λ2

0 − a2
)3/2 + 2a4

λ3
0

(
λ2

0 − a2
)3/2

−64π2γ 2σ 2
0 − 80π2γ σ 2

0 − 4M

λ3
0

−9χω2
qλ

−3ωq−3
0 − 2χλ

−3ωq−3
0

−9χωqλ
−3ωq−3
0 + 6Q2

λ4
0

− 24π2σ 2
0 .

This equation is very useful to discuss the dynamical con-
figuration of thin-shell WH in the background of barotropic
EoS. In this regard, we consider the region plot as shown in
Figs. 1 and 2 along λ0 and χ with suitable values of physical
parameters. To discuss the stability of the developed struc-
ture with charged quantum corrected BHs surrounded by a
quintessence field, we consider regions. It is worth writing
that the region bounded by red cures represents the posi-
tive behavior of the lapse function while in the remain-

ing region, the lapse function shows negative behavior. The
red line between the bounded region and the filled as well
as the white region shows the position of the event hori-
zon for different values of physical parameters. It is found
that stable and unstable configurations of the shell must be
evaluated after the position of the event horizon. The sta-
ble regions for different values of physical parameters via
the effective potential are displaced through the filled region
(ϒ ′′(λ0) > 0) while white region (ϒ ′′(λ0) < 0) shows unsta-
ble configuration as shown in Figs. 1 and 2. It is found that the
Schwarzschild BH surrounded by the quintessence parameter
shows more stability in the absence of a quantum correction
parameter. Also, the charge of the BH geometry enhances
the stable regions of the developed thin-shell WHs as shown
in Fig. 2. By using a particular range that is obtained in the
quantum Schwarzschild BH and quantum charged BH, we
get ϒ ′′(λ0) > 0 as shown in Fig. 3. Hence, the presence of
charge over the geometry of BHs enhances the stable form
of thin-shell WHs.
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Fig. 2 Region plots of quantum corrected charged thin-shell WHs effective potential ϒ ′′(λ0) verses λ0 and χ for barotropic EoS with different
values of a as 0 (first plot), 0.4 (second plot), 0.6 (third plot) using M = 0.5, Q = 0.5, ωq = −2/3

Fig. 3 Plots of uncharged and charged quantum corrected thin-shell WHs effective potential ϒ ′′(λ0) by considering the range of stable regions as
given for the parameters M = 0.5, Q = 0, ωq = −2/3, a = 0.3 (left plot) and M = 0.5, Q = 0.5, ωq = −2/3, a = 0.6 (right plot)

3.2 Phantomlike variable EoS

Here, we take phantom-like variable EoS to inspect the stable
geometry of thin-shell WHs [53]. It’s mathematical expres-
sion is given by

V = N
λn

σ, (26)

where N depicts the EoS parameter while n acts as a real
constant. This equation manifests the modified expression
of phantom-like EoS. It is converted into phantom-like on
putting n → 0. The conservation equation by implementing
this EoS leads to

σ(λ) = σ0e
N
n

(
1

λn − 1
λn0

) (
λ0

λ

)2

. (27)

The associated effective potential function becomes

ϒ(λ) =
√

λ2 − a2

λ
− 4π2λ2σ 2

0

(
λ0

λ

)4

e

(2N )

(
1

λn
− 1

λn0

)

n

−2M

λ
− χλ−3ωq−1 + Q2

λ2 . (28)

Notice that the effective potential disappears at λ = λ0 and
the first derivative of this is calculated as

ϒ ′(λ0) = 1

λ3
0

(
a2λ0√
λ2

0 − a2
+ 8π2σ 2

0 λ4−n
0

(N + λn0
)

+2λ0M + χ
(
3ωq + 1

)
λ

1−3ωq
0 − 2Q2

)
, (29)

By taking ϒ ′(λ0) = 0, we obtain

N = − λn−4
0

8π2σ 2
0

(
a2λ0√
λ2

0 − a2
+ 8π2λ4

0σ
2
0 + 2λ0M

+χ
(
3ωq + 1

)
λ

1−3ωq
0 − 2Q2

)
. (30)

Hence, we have

ϒ ′′(λ0) = − 1

λ4
0

(
3a2λ3

0(
λ2

0 − a2
)3/2 − 2a4λ0

(
λ2

0 − a2
)3/2

+8π2σ 2
0 λ4−2n

0

(
2N 2 + N (n + 5)λn0 + 3λ2n

0

)
+ 4λ0M

+χ
(
9ωq

(
ωq + 1

) + 2
)
λ

1−3ωq
0 − 6Q2

)
.
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Fig. 4 Region plots of uncharged quantum corrected thin-shell WHs effective potential ϒ ′′(λ0) verses λ0 and χ for phantomlike variable EoS
with different values of n as 0 (first plot), 0.35 (second plot), 0.65 (third plot) using M = 0.5, Q = 0, ωq = −2/3

Fig. 5 Region plots of charged quantum corrected thin-shell WHs effective potential ϒ ′′(λ0) verses λ0 and χ for phantomlike variable EoS with
different values of n as 0 (first plot), 0.35 (second plot), 0.65 (third plot) using M = 0.5, Q = 0.5, ωq = −2/3

Fig. 6 Plots of ϒ ′′(λ0) for phantomlike variable EoS by considering the range of stable region as given for the parametersq = 1,� = −1,M = 0.5
(left plot) and q = 0.5,� = −1,M = 0.5 (right plot)

Figures 4 and 5 are considered to explore the stable ranges
of the shell composed with phantomlike variable EoS and
observe the effects of quantum correction parameters on the
stable ranges of the physical parameters. It is found that the
phantomlike EoS n=0 shows more stable behavior as com-
pared to variable phantomlike EoS (n �=0). It is found that for

higher values of n the stable ranges of the physical parame-
ters of shell decreases. By considering the specific ranges as
obtained for charged and uncharged geometry, we obtain the
stable configuration of the shell ϒ ′′(λ0). Hence, the stable
structure is greatly based upon the physical parameters as
well as the matter thin layer located at the WH throat (Fig.
6).
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Fig. 7 Region plots of uncharged quantum corrected thin-shell WHs effective potential ϒ ′′(λ0) verses λ0 and χ for Chaplygin variable EoS with
different values of n as 0 (first plot), 0.35 (second plot), 0.65 (third plot) using M = 0.5, Q = 0, ωq = −2/3

Fig. 8 Region plots of charged quantum corrected thin-shell WHs effective potential ϒ ′′(λ0) verses λ0 and χ for Chaplygin variable EoS with
different values of n as 0 (first plot), 0.35 (second plot), 0.65 (third plot) using M = 0.5, Q = 0.5, ωq = −2/3

3.3 Chaplygin variable EoS

Now, Chaplygin variable EoS is taken into account which is
expressed by [53]

V = 1

λn

K
σ

, (31)

whereK indicates the parameter of EoS. This transforms into
Chaplygin EoS on substituting n → 0. In terms of surface
energy density, the solution of the conservation equation is

σ 2(λ) = 4K (
λ4λn0 − λnλ4

0

) + σ 2
0 λn+4

0 λn(n − 4)

(n − 4)λn+4λn0
. (32)

The associated potential function with respect to this matter
configuration is obtained and found that ϒ(λ0) = 0. Further,
ϒ ′(λ) is calculated and adopting ϒ ′(λ0) = 0, we get

K = − λn−4
0

16π2

(
a2λ0√
λ2

0 − a2
+ 8π2λ4

0σ
2
0 + 2λ0M

+χ
(
3ωq + 1

)
λ

1−3ωq
0 − 2Q2

)
. (33)

The second differential form of potential function associated
with the radius of the shell at λ = λ0 is expressed as

ϒ ′′(λ0) = 1

λ4
0

(
− 3a2λ3

0(
λ2

0 − a2
)3/2 + 2a4λ0

(
λ2

0−a2
)3/2 −24π2λ4

0σ
2
0

+2
(
−8π2K(n + 1)λ4−n

0 − 2λ0M + 3Q2
)

−χ
(
9ωq

(
ωq + 1

) + 2
)
λ

1−3ωq
0

)
. (34)

To observe the effect of Chaplygin variable EoS on the stable
structure of thin-shell WH, we use region plots for different
values of n as shown in Figs. 7 and 8. It is noted that the
system becomes more stable as n ⇒ 0 and stability regions
decrease rapidly for higher values of n. The quantum correc-
tion parameter decreases the uncharged and charged stable
ranges of the physical parameters. Hence, the Chaplygin vari-
able EoS plays a remarkable role to maintain the stability of
the shell. We obtain the maximum stable ranges for such type
of matter contents of the shell. As the variable n ⇒ 0, the
stable ranges of the physical parameters of the shell enhance
(Fig. 9).
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Fig. 9 Plots of ϒ ′′(λ0) for Chaplygin variable EoS by considering the range of stable regions as given for the parameters q = 1,� = −1,M = 0.5
(left plot) and q = 0.5,� = −1,M = 0.5 (right plot)

4 Concluding remarks

This article is dedicated to discussing the influences of quan-
tum correction, quintessence, and charge on the dynamical
configuration of thin-shell WHs developed from two similar
forms of charged quantum corrected BHs with quintessence
field. We have considered the cut and paste strategy to over-
come the formation of event horizon and singularity in the
geometry of thin-shell WH. Then, we used the Einstein field
equations for the hypersurface to calculate the energy den-
sity and surface pressure of matter thin layer situated at the
shell. These matter constituents are very interesting and pos-
sess a very important role to preserve the stability of the WH
throat. In order to discuss the effects of matter contents on the
stability of WH structure, we have considered three distinct
EoS, i.e., barotropic, phantom-like, and Chaplygin variable
EoS. For the choice of variable EoS, the shell stability can be
determined more effectively as compared to other choices of
EoS.

First, we have considered the barotropic EoS to inspect
the stability of the shell via region plots for a charge as
well as uncharged quantum corrected BHs with quintessence.
It is found that the Schwarzschild BH surrounded by the
quintessence parameter shows more stability in the absence
of a quantum correction parameter. Also, the charge of the BH
geometry enhances the stable regions of the developed thin-
shell WHs as shown in Fig. 2. Moreover, corresponding to the
specific range that is attained in the quantum Schwarzschild
BH and quantum charged BH, we have obtained ϒ ′′(λ0) > 0
(Fig. 3).

Secondly, we have considered the phantom-like variable
EoS to examine the stable regions of thin-shell WH with and
without charge as shown in Figs. 4 and 5. It is worth stating
that phantom-like EoS enhances the stability of WH struc-
ture while variable EoS decreases the stable ranges (Fig. 4).
Hence, the stable geometry is widely based upon the physi-
cal parameters as well as the matter thin layer present at the

WH throat. Finally, Chaplygin variable EoS is considered to
explore the stable structure of thin-shell WH. We have used
region plots for several choices of n as displayed in Figs.
7 and 8. It is noted that the system becomes more stable
as n → 0 and stability regions decrease rapidly for higher
values of n.

It is concluded that thin-shell WH becomes more stable
for the choice of Chaplygin EoS with minimum values of
quantum correction parameter.
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