
Eur. Phys. J. C (2023) 83:807
https://doi.org/10.1140/epjc/s10052-023-11986-x

Regular Article - Theoretical Physics

On the renormalization of non-polynomial field theories

Andrea Santonocito1,3,a, Dario Zappalà2,3,b

1 Dipartimento di Fisica, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
2 INFN, Sezione di Catania, Via S. Sofia 64, 95123 Catania, Italy
3 Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania, Italy

Received: 12 July 2023 / Accepted: 28 August 2023 / Published online: 11 September 2023
© The Author(s) 2023

Abstract A class of scalar models with non-polynomial
interaction, which naturally admits an analytical resumma-
tion of the series of tadpole diagrams is studied in perturba-
tion theory. In particular, we focus on a model containing
only one renormalizable coupling that appear as a multi-
plicative coefficient of the squared field. A renormalization
group analysis of the Green functions of the model shows that
these are only approximated solutions of the flow equations,
with errors proportional to powers of the coupling, therefore
smaller in the region of weak coupling. The final output of
the perturbative analysis is that the renormalized model is
non-interacting with finite mass and vanishing vertices or,
in an effective theory limited by an ultraviolet cut-off, the
vertices are suppressed by powers of the inverse cut-off. The
relation with some non-polynomial interactions derived long
ago, as solutions of the linearized functional renormalization
group flow equations, is also discussed.

1 Introduction

The ultraviolet (UV) properties of the four-dimensional
scalar quantum field theories are substantially under control
thanks to a huge amount of results and indications coming not
only from the standard perturbative techniques [1,2], but also
from different non-perturbative approaches including formal
investigations [3,4], or Montecarlo simulations of lattice the-
ories [5–8], or renormalization group (RG) analysis [9–14],
all pointing toward the existence of a single fixed point (FP),
the Gaussian FP, which admits only a renormalized free field
theory, or equivalently an effective scalar field theory whose
validity is limited by an UV cut-off, that shows an interaction
strength which grows at larger energy scales up to a Landau-
like pole.
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Despite this tight scenario, the activity of searching for
alternative mechanisms, capable of reshaping the UV struc-
ture associated to scalar interactions, has been (and still
is) quite active, not only to refine or establish novel non-
perturbative techniques on a more formal side, but also to
investigate on any possible modification of the high energy
picture of all contexts where scalar fields are involved, from
the UV completion of the Higgs field in the Standard Model
to the effective description of the inflaton field in cosmology
[15–30].

An old attempt to renormalize quantum field theory by
enlarging the derivative sector of the action through the
introduction of additional terms containing higher space-
time derivatives of the field, [31–33], was reconsidered more
recently both for scalar models that present space and time
derivatives in equal number, and for anisotropic models
where the number of space derivatives in the action is larger
than the time derivatives. This is due to the basic principle
that an increase of the number of derivatives raises the power
the momentum in the propagator, thus reducing the global
degree of divergence of a generic quantum correction dia-
gram.

The renormalization of these models, represented in
Euclidean space, can be traced back to the structure of the
associated Lifshitz FPs, that may appear if higher derivative
terms are present in the action [34–36]. So, for instance, the
isotropic case with four space and four time derivatives in
four dimensions presents a non-trivial phase structure, with
a line of Lifshitz FPs, that shares many properties with the
two-dimensional Kosterlitz–Thouless transition [37–42].

However, since the presence of time derivatives of order
larger than two leads to the Ostrogradski instability, associ-
ated with Hamiltonians unbounded from below which vio-
late unitarity [43], it is preferable to maintain only two
time derivatives thus avoiding any problem with unitarity in
the UV sector. This point of view leads to the anisotropic
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case where only two derivatives are kept in one direc-
tion (Euclidean time) and a larger number of derivatives is
reserved to the other (space) directions. This scheme was pro-
posed in [44] to make the gravitational action renormalizable,
but it is also applied to the study of the UV sector of various
field theories [45–53]. In fact, even in anisotropic form, a
sufficiently high number of space derivatives improves the
UV behavior of the theory to the point of converting a UV
unstable Lifshitz point into a stable one.

In the anisotropic framework, the role of tadpole diagrams
is crucial as, for a sufficiently large number of space deriva-
tives, only this class of diagrams is UV divergent, which
makes the renormalization procedure easier to implement.
Moreover, as noticed in [49,52,53], under specific assump-
tions on the couplings of the theory, it is possible to sum the
whole series of tadpole diagrams into a compact form and
also to prove that the corresponding theory is asymptotically
free. Clearly, this renormalization property of the tadpole
diagrams follows from the specific structure of the derivative
sector, but it is worthwhile to investigate on the the analogous
mechanism for a scalar action with standard derivative sector
(i.e. two space and two time derivatives), especially because
the summable tadpole diagram series comes from a poten-
tial that is non-polynomial in the fields and, in principle, one
expects these interactions to be non-renormalizable.

Therefore, in this paper we analyse a scalar toy model
with standard derivative sector and non-polynomial interac-
tion, that is representative of a class of models which natu-
rally lead to a summable series of tadpole diagrams, to find
out whether the mentioned property could lead to interest-
ing consequences even in this case. It turns out that the sum
of the tadpole series is sufficient to guarantee the perturba-
tive renormalizability of such a model, although generating
a renormalized free scalar theory.

In addition, it must be recalled that a study of the UV sec-
tor of scalar non-polynomial theories in four dimensions was
conducted long ago in a different context, namely the Renor-
malization Group (RG) analysis of the Wilsonian action, and
the conclusion was achieved that the differential flow equa-
tion, suitably linearized around the Gaussian FP, admits a
class of relevant solutions, (i.e. solutions that fall into the
the Gaussian FP, when the UV limit of the RG energy scale
k → ∞ is taken), in contrast with the well settled pic-
ture of the trivial scalar theory [15,17,18]. In addition, these
solutions can be expressed in the form of a non-polynomial
expansion in powers of the field and, they show many simi-
larities with the toy model here considered.

After some debating [12–25,29], these solutions were
considered incorrect because (see [29] for a definite expla-
nation), the assumption of uniform smallness of the solution,
which is essential when the linear version of the RG flow
equation is considered, is in fact violated, at least at large
values of the field and, consequently, their flow is not cor-

rectly predicted by the linear RG flow equation and the con-
clusion that they represent asymptotically free interaction is
wrong. Then, a comparison of this RG solution with the toy
model here considered is mandatory and we need to analyse
the RG flow of the latter and point out the differences with
the former.

After introducing the scalar toy model and studying its
main properties in perturbation theory in Sect. 2 (and those
of similar models in Appendix B), in Sect. 3 we pass to a
description of the Halpern–Huang solutions and to an investi-
gation on their limits through a diagrammatic analysis. Then,
Sect. 4 we apply the RG machinery to our scalar model and
show the level of approximation at which it can be taken as
a solution of the full flow equation. In addition, the relation
with the solution of [15,18] is discussed. Conclusions are
reported in Sect. 5.

2 Non-polynomial toy model in perturbation theory

2.1 Main characteristics of the model

In this section we focus on the particular model, whose
Euclidean action in four dimensions, SE = ∫

d4x( 1
2∂μφ ∂μφ + V (φ)

)
has the following non-polynomial poten-

tial

V (φ) = M4

(
g0φ

2

2!M2 + g2
0φ4

4!M4 + g3
0φ6

6!M6 + · · ·
)

= M4
[

cosh

(√
g0

φ

M

)

− 1

]

, (1)

where M is a fixed (not subjected to renormalization) mass
scale, g0 > 0 is the bare coupling constant and the field
independent term is set to zero. The structure of V (φ) is
non-polynomial: it is a series where any even power of the
field φ is included and the coefficients are arranged in such
a way that the sum of the series is a known function, namely
the hyperbolic cosine of

(√
g0 φ/M

)
. This implies that there

is only one independent parameter g0 (besides M), but the
powers of g0 increase proportionally to the powers of the
field φ in the various terms of the potential, and this allows
us to arrange the diagrams in a perturbative series in powers
of g0. Another peculiar feature is that the only dimensional
parameter of Eq. (1) is M2 and, in particular, the bare square
mass of the theory is g0M2; as a consequence the dimensional
content of any renormalized quantity can be expressed in
terms of M .

If we want to compute the quantum corrections of the
Green Functions, first we need to determine the degree of
divergence of each diagram which is different from the stan-
dard results, as in this case we deal with vertices with any
possible (even) number of legs. Therefore we introduce the
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notation: P = total power of g0 of a diagram; N = number
of legs of a specific vertex; E = number of external lines of
a diagram; H = number of internal lines of a diagram; L =
number of loops of a diagram; VN = number of vertices with
N legs of a diagram; V = ∑

vertices VN = total number of
vertices of a diagram. The following relations hold:

P =
∑

vertices

N

2
,

∑

vertices

N = E + 2H, L = H − V + 1

(2)

and we notice that the total power P of each diagram is
not just the total number of vertices, but it depends on the
specific vertices that enter the diagram itself. By combining
the first two equations, we get P = E/2 + H and finally
the superficial degree of divergence of a diagram, measured
as the resulting power of the momentum cut-off � used to
regulate the UV divergent integrals, is given by:

D� = 2P − E − 4V + 4 (3)

in contrast to the standard quartic interaction result, D� =
4− E . Equation (2) indicates that, for a given E-point Green
function, at a fixed perturbative order in g0, i.e. at fixed P , the
most divergent contribution comes from the diagrams with
minimum V , which clearly correspond to the tadpoles with
V = 1, and we notice that, due to the presence of the tower of
couplings appearing in Eq. (1), diagrams with V = 1 could
still contain an arbitrary number of tadpoles.

This property can now be exploited when considering the
order by order renormalization of the model. We start from
the 2-point function which, up to the fourth order in g0, reads:

=

︸ ︷︷ ︸
g0

+

︸ ︷︷ ︸
g2

0

+

︸ ︷︷ ︸
g3

0

+

+ +

︸ ︷︷ ︸
g4

0

+ · · · =

= g0M
2 + g2

0 I + g3
0

1

2!
I 2

M2 + g4
0

(
1

3!
I 3

M4 + S

)

+ O(g5
0) (4)

In Eq. (4) the cross indicates the zero-th order vertex and I
denotes half of the tadpole integral, which can be computed
by means of a four-momentum cut-off �

I ≡ = 1

2

∫
d4k

(2π)4

1

k2 + m2

= c

(

�2 − m2 log
�2

m2

)

(5)

where c = 1/(32π2) andm indicates the renormalized mass,
while S(p) is the sunset integral with external momentum p:

S(p) ≡

= 1

3!
∫

d4a

(2π)4

∫
d4b

(2π)4

1

a2 + m2

1

b2 + m2

× 1

(a + b + p)2 + m2 (6)

that, with the same regularization, can be written as (see Eq.
(A2) in Appendix A)

S(p) = 1

6(4π)2

[

3�2 + p2
(

α + β log
�2

m2

)

+O

(

log
�2

m2

)

+ O(p2,m2)

]

(7)

with α and β constants. It must be noticed that the most
divergent contribution of the tadpole integral is I� ∼ �2,
as for the sunset integral. Thus, in the fourth order diagrams
shown in Eq. (4), the diagram with 3 tadpoles is far more
divergent that the sunset and this is just a particular case of
the more general property discussed above that, at any given
order in perturbation theory, the most divergent diagram is the
one with one vertex, namely the one consisting of a product
of tadpoles.

Then, in a perturbative scheme, we want to write g0 as a
series expansion of the renormalized coupling gR :

g0 = gR + g2
R δ1 + 1

2!g
3
R δ2 + 1

3! g
4
R δ3 + O(g5

R) (8)

where δ1, δ2, δ3, …are counterterms that must be fixed so
that the Green Functions remain finite in the limit � → ∞.
At order O(g0) we define:

δ1 = c

M2

(

μ2 − �2 − m2 log
μ2

�2

)

(9)

where μ is a finite arbitrary scale to be fixed by a renormal-
ization condition, so that the dangerous terms when � → ∞
get cancelled:

J (μ,m2) = I + δ1M
2 = c

(

μ2 − m2 log
μ2

m2

)

(10)

Moreover, at higher order, we choose:

δ2 = δ2
1 − 2 δ1

I

M2

δ3 = δ3
1 + 6 δ1

I 2

M4 − 9 δ2
1

I

M2 − 6
S(p2 = μ2)

M2 (11)

where the external momentum p in Eq. (7) is set equal to the
renormalization scale μ and the expansion in Eq. (4) takes

123



807 Page 4 of 14 Eur. Phys. J. C (2023) 83 :807

the simple form:

= gRM
2 + g2

R J + g3
R

1

2!
J 2

M2

+g4
R

1

3!
J 3

M4 + O(g5
R). (12)

Then, any divergent term in the limit � → ∞ is cancelled.
With the help of Eq. (11), and by retaining only the most
divergent contributions of the integrals I and S, the expansion
in Eq. (8) becomes

g0 ∼ gR − g2
R

�2

M2 + g3
R

3

2

�4

M4 − g4
R

(
8

3

�6

M6 − 6
�2

M2

)

(13)

and the second term in brackets, coming from the sunset
diagram, can be neglected.

Furthermore, if we discard, order by order, all terms with
non-leading powers of �, we end up with the sum of the
multiple tadpole diagrams which, as already discussed, pro-
vide at each order, the contribution with the largest power of
�. This is an essential point. In fact, the various numerical
factors of the couplings of the potential in (1) are suitably
chosen so that the tadpole series can always be summed to
an exponential function as for instance in the case of the
six-point vertex:

+ + + . . .

= g3
0

M2 eg0 I/M2
. (14)

The same holds true for any 2n-point vertex. Moreover, it
is simple to show by induction that any vertex of a generic
diagram can be dressed by the exponential tadpole series as
indicated below, for instance, for one vertex of the sunset
diagram

+ + + · · ·

= g4
0 e

g0 I/M2
S (15)

Therefore, we shall exploit this property to set a renor-
malization condition for the coupling g, and we shall check
that this is sufficient to fully renormalize the model. The
renormalization condition is directly read from the tadpole

dressing of the mass term

+ + · · ·

= M2g0 e
g0 I/M2 = M2gR e

gR J/M2
(16)

i.e. from the following equation that involves both g0 and the
renormalized coupling gR :

g0 e
g0 I/M2 = gR e

gR J/M2
(17)

It is understood that the right hand side of (17) does not
depend on the cut-off � and since, according to (10), J =
J (μ,m2), it follows gR = gR(μ), which guarantees the μ-
independence of the left hand side of (17).

Equation (17) has the structure of the Lambert equation
z = wew, with complex w and z, that admits a multi-valued
solution, made by the branches of the the Lambert function
wk(z) (where k indicates the specific branch). In the case of
real w and z, the principal branch of the Lambert function
w0(z) exists only in the range z ≥ 0 and −1/e ≤ z < 0, and
the large z → ∞ behavior of w0(z) is

w0(z) ∼ log z − log log z (18)

If we treat the right hand side of Eq. (17) as a fixed
quantity computed at a particular value of μ, and identify
(I/M2) g0 with the Lambert function w0 and also identify
(gR I/M2) exp [gR J/M2)] with the variable z, we derive
the dependence of g0 on the cutoff � directly from (18). In
fact, by recalling that I ∼ �2, and defining �̂2 = �2/M2,
we find, for �̂2 → ∞,

g0 ∼ log �̂2 − log log �̂2

�̂2
(19)

and it is easy to check that Eq. (19) is consistent with our
renormalization condition (17)

g0 e
g0 I/M2 = finite (20)

Equation (20) in turn implies: 1/g0 ∼ exp [g0 I/M2], when
�̂ → ∞.

It is worth noticing that also the mass renormalization con-
dition, obtained from the 2-point Green Function by taking
the renormalizations scale μ = m,

m2 = M2 gR(m2) egR(m2) J (m,m2)/M2
(21)

reduces to a Lambert equation for gR(m2), once the two
scales m and M are chosen.

2.2 Renormalization to all orders

The next step consists in showing that the renormalization
prescription in (17) ensures the cancellation of all divergent

123



Eur. Phys. J. C (2023) 83 :807 Page 5 of 14 807

terms. To this purpose we reconsider Eq. (3) where the super-
ficial degree of divergence of a generic diagram is displayed
and check how it gets modified when we dress each vertex of
the diagram by the full series of tadpoles and, consequently,
include the cut-off dependence of g0 given in Eq. (19).

In other words, we recalculate the degree of divergence
of a generic diagram, after inserting the full tadpole series at
each vertex of the original diagram and after renormalizing
each coupling g0 according to Eqs. (17) and (19). Then, the
diagram shows the following cut-off dependence for �̂ → ∞
(

log �̂2 − log log �̂2

�̂2

)P−V

�̂2P−E−4V+4

=
(

log �̂2 − log log �̂2
)P−V

�̂E+2V−4
(22)

where the term in brackets in the left hand side comes from the
P contributions corresponding to the total count of couplings
g0 of the diagram, minus the number V of vertices, because
the tadpole dressing at each vertex transforms one factor g0

into a �̂-independent, renormalized coupling.
If we neglect the logarithmic corrections in Eq. (22), for

any diagram with fixed E and V , the trend for large �̂ is
the same, regardless of the form of the specific vertices that
enter the diagram itself. This is because any increment by one
power of g0/M2 in any vertex requires to be compensated, at
dimensional level, by a factor �2; however, as g0 ∼ 1/�̂2, in
the end there is no change in the overall trend of the diagram.
Logarithmic divergences not taken into account so far, will
be analyzed below.

From Eq. (22), it is clear that a larger number of vertices,
as well as a larger number of external legs, favours the con-
vergence of the diagram and, as we have already covered
(and renormalized) the one-vertex diagrams, the worst pos-
sible scenario is represented by the case (V = 2, E = 2). For
this type of diagrams, by neglecting the logarithmic contri-
bution, the cut-off dependence is proportional to 1/�̂2, thus
they give zero contribution when the limit �̂ → ∞ is taken.
Green functions with larger E and diagrams with V ≥ 2 have
more effective suppressing factor. As a further example, the
O(g9

0) diagram

has D� = 4 and, after dressing each vertex with the tadpole
series and after renormalizing the coupling g0, we are left
with a suppressing factor g6

0 ∼ 1/�̂12. Again, logarithmic
corrections have not been taken into account.

However, because of the characteristic �̂ dependence dis-
played in Eq. (22), the logarithmic corrections within a spe-
cific series of diagrams could in principle sum up to a power-

like divergent factor, which could potentially lead to an over-
all divergence. In order to show that this scenario is to be
excluded, we concentrate again on the worst possible case. It
is easy to realize that the set of diagrams where this effect is
maximized, corresponds to the first column in the grid shown
below

. . .

. . .

. . .

. . . . . . . . . . . .

(23)

In fact, along the first column, the sunset diagram on the top-
left corner is dressed with the progressive insertion of one
internal line that connects the two vertices, thus providing a
melonic-like series of diagrams, all with (V = 2, E = 2)
which, according to Eq. (22), gives the largest contribution
(apart from the one-vertex diagrams) in the UV limit ˆ� →∞.
Then, along each row, at both vertices of the diagram on the
left side of the row, we consider the dressing with the tadpole
series whose divergent sum is made finite by one power of
the coupling g0, as already shown.

To prove that the full sum of the diagrams in (23) does
not produce any dangerous divergence generated by the sum
of the logarithmic terms shown in Eq. (22), we proceed by
first summing and renormalizing the tadpole series along the
rows of (23), and then by making use of the following result,
derived in Appendix A in Eq. (A6) (b is a numerical constant),

Ŝ = + +

+ · · · ≤ g2
0 I + bM4

I

[

cosh

(

g0
I

M2

)

− 1 − 1

2
g2

0
I 2

M4

]

(24)

i.e. the melonic-like diagram series (where it is understood
that the full tadpole series is included to dress each vertex),
turns out to be smaller than the right hand side in (24).

It is then straightforward to check that each term of the
right hand side in (24) vanishes in the limit �̂ → ∞, accord-
ing to Eqs. (5) and (19) (note that the log log�̂2 in (19)
is essential to compute the correct limit of the hyperbolic
cosine). Then, at least in this case, no divergent term is gen-
erated by the sum of the logarithmic terms.

Actually, the same series of melonic-like diagrams shows
up when computing the 4, 6, 8, 10, . . .-point Green func-
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tions, even though the series in those cases have different
numerical coefficients (generally higher) in front, because of
the possible permutations of the external legs. In addition, all
possible insertion of different vertices must be counted: for
example the 6-point Green function can be constructed with
3 external legs at each of the two vertices, but also with 1 leg
in one vertex and 5 legs in the other, and so on. Nevertheless,
for these diagrams the suppressing factor is even stronger,
because the power of g0 is higher and because a larger E
must be inserted in Eq. (22)). Therefore, all contributions to
the 2n-point Green functions from the melonic-like series in
(23) vanish.

Moreover, concerning the 2n-point Green functions with
n > 1, there is the contribution of a similar series, see for
instance the 4-point Green function

+ + + · · · . (25)

But, in this case the first diagram of the series is only logarith-
mically divergent (in contrast to the sunset diagram which is
quadratically divergent). So, each diagram of the series is less
divergent than the corresponding in (24) and consequently,
as in the latter case, we find vanishing contribution. Then,
even in the worst-case scenario (namely the 2-point melonic
resummation) the logarithmic contributions sum up to a func-
tion that is still less divergent than the suppressing powers
of 1/�̂ coming from the dressed vertices; all other cases are
even more suppressed.

Therefore, only the 2-point Green function of this model
is finite, due to the tadpole series, while all other Green
functions are vanishing: we conclude that the theory is non-
interacting, yet it gets a mass renormalization.

Finally, in Appendix B we discuss some models con-
structed by introducing some modifications with respect to
the one in (1), but in all cases considered we end up either
with non-renormalizable theories or with structures that are
equivalent to the one studied here.

3 RG flow in linear approximation

Now, we reconsider the solutions of the linearized RG flow
equation first pointed out in [15,17,18], as they share some
crucial properties with the model discussed in Sect. 2. For our
purposes, it is sufficient to employ the Wegner–Houghton
equation that describes the flow of the running potential
Uk(φ) of a Wilsonian action, in terms of a coarse graining
scale k. In fact, as discussed in [29], the linearized equation
derived from the Polchinski flow or from the Legendre effec-
tive average action flow in the Local Potential approximation,
turn our to be equivalent to the previous one.

So, the Wegner–Houghton equation reads:

k∂kUk(φ) = −2ck4 log

(

1 + U ′′
k (φ)

k2

)

(26)

where ′ means derivative with respect to the field φ. In order
to determine the main properties of the flow around the Gaus-
sian FP, it is convenient to re-formulate the equation in terms
of dimensionless quantities, obtained by rescaling the dimen-
sional variables in units of the scale k. Therefore we define
(k0 is a boundary value for k)

t = ln

(
k0

k

)

, x = φ

k
, u(t, x) = Uk(φ)

k4 (27)

and, by replacing them in Eq. (26), we get the dimension-
less version of the Wegner–Houghton equation. Then, FPs
correspond to stationary (i.e. RG time t-independent) solu-
tions u(x)∗ of the dimensionless equation. In d = 4 the only
FP corresponds to the Gaussian solution u∗ = 0. Finally, in
order to determine the eigenvectors associated to the FP, we
add to u(x)∗ a perturbation proportional to a small parame-
ter δ and to the product of a generic function w(x) and the
exponential factor eλ t (with real λ):

u(x, t) = u(x)∗ + w(x) δ eλ t . (28)

With the ansatz in (28) referred to the Gaussian FP u∗ = 0,
the dimensionless Wegner–Houghton equation at linear order
in δ, reads

λw(x) + x
∂ w(x)

∂x
− 4w(x) = ∂2 w(x)

∂x2 (29)

which is a second order, homogeneous linear differential
equation for w(x), with eigenvalue λ. By imposing the
boundary ∂xw|x=0 = 0 associated to the symmetry require-
ment w(x) = w(−x), and because of the redundancy of
the overall normalization of w(x), due to the linearity of the
equation, one could expect a unique solution for every value
of λ. Then, according to the specific form of u(t, x) in (28),
the sign of λ determines whether the eigenmode is relevant
(λ > 0 and solution increasing with t) or irrelevant (λ < 0
and solution decreasing with t) or marginal (λ = 0 and no
evolution with t).

The direct resolution of Eq. (28), gives a set of solutions
with quantised eigenvalues λ and another set with continu-
ously varying λ. They can be summarized by (we shall make
use of the notation adopted in [20], and c0 is an arbitrary
normalization)

w(x) = c0

[

1 +
∞∑

n=1


n
j=1(λ + 2 j − 6)

(2n)! x2n

]

(30)

The quantised spectrum corresponds to λh = 4 − 2h with
h = 0, 1, 2, 3, . . ., that produces a truncation of the infinite
sum in (30) and therefore a polynomial solution wh(x). For
each integer value ofh,wh(x) can be expressed in terms of the
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orthogonal normalizable basis of the generalised Laguerre
polynomials.

On the other hand, any other real value of λ, different
from the above integers, gives a non-polynomial infinite sum
which can be expressed in terms of the Kummer (confluent
hypergeometric) function

M

(
λ − 4

2
,

1

2
,
x2

2

)

. (31)

The behavior of (31) with λ not belonging to the quan-
tised spectrum, is exponential at large values of the field
M(a, b, z) ∼ ez /z(5−λ)/2, differently from the polynomial
solutions which grow as a power of z. Furthermore, as
remarked in [29], due to the exponential behavior of the non-
quantised of solutions in (31), these cannot be obtained from
an expansion in terms of the the generalised Laguerre poly-
nomials.

As far as quantised polynomial solutions are concerned,
it is easy to realize that for h = 0 and h = 1, one selects
respectively a field independent or a quadratic solution in
the fields which, as well known, are relevant solutions. Then
h = 2 is a marginal (at tree level) solution quartic in the field
that, due to perturbative corrections, turns out to be irrelevant.
Finally all larger values of h represent polynomial irrelevant
solutions.

The case of non-quantised solutions is more subtle; in
fact, if one selects λ > 0 (with λ �= 2 and λ �= 4), the asso-
ciated Kummer function in (31) is an independent solution
(not representable as a linear combination of the quantised
polynomials [19]) of the linear equation (29), with positive
eigenvalue; therefore it corresponds, in principle, to a rele-
vant eigenmode which allows to take the continuum limit of
the corresponding scalar theory, as stated in [18]. However,
this conclusion is false as first discussed in [12] and thor-
oughly explained later in [29]; in fact, the exponential large
field behavior of the non-quantised solutions makes the linear
approximation adopted in Eq. (29) inadequate at large x2 and
consequently the t evolution of these solutions derived from
(29) is in contrast with the one derived from the complete flow
equation. Actually, these solutions, at least for large values
of x2, diverge in the UV limit t → −∞, instead of vanishing
as predicted by Eq. (29), [29]. Conversely, the solutions of
the quantised spectrum have a much smoother behavior at
large x2, and this implies that both the linear approximation
and the full flow equation, predict the same t evolution.

Then, statements on the t evolution (and therefore on the
relevance or irrelevance) deduced from Eq. (29) concerning
the quantised spectrum, are reliable as they are confirmed
at the level of the full flow equation. On the other hand,
the t evolution of the solutions with non-quantised spectrum
cannot be trusted as it is drastically modified when non-linear
effects are taken into account [29].

The solution (30) of the linearized flow equation (29)
strongly resembles the potential in (1) and it is natural to
apply the perturbative analysis developed in Sect. 2, to these
eigenmodes. To this purpose we first need to put back the
proper dimensions to the various parameters in (30) and the
dimensional potential corresponding to the dimensionless
solution in Eq. (28) (for the gaussian FP solution u∗ = 0),
according to Eq. (27), is

Uk(φ) = δ c0 k
4
(
k

k0

)−λ

×
[

1 +
∞∑

n=1


n
j=1(λ + 2 j − 6)

(2n)!
(

φ

k

)2n
]

= k4
0 h0(k)

[

1 +
∞∑

n=1

h2n(k)

(2n)!
(

φ

k0

)2n
]

(32)

where we introduced the couplings

h0(k) = δ c0

(
k

k0

)4−λ

(33)

h2n(k) =
(
k0

k

)2n


n
j=1(λ + 2 j − 6). (34)

By identifying k0 with M in (1), we observe that Uk(φ) in
(32) andV (φ) in (1) actually have similar structure. However,
there are also crucial differences; beside an additional field
independent term in (32) which is subtracted away in (1), the
couplings in the two expressions have unlike arrangements.

In fact, while in V (φ) increasing powers of the same cou-
pling appear in front of the various vertices, Uk(φ) in Eq.
(32) is globally proportional to the only coupling h0(k) that
contains undetermined parameters (the product δ c0 and the
eigenvalue λ) and the couplings h2n(k), associated to every
single vertex, have a well defined structure with no adjustable
parameter. In addition, the dependence of h0(k) and h2n(k)
on the scale k is totally determined by the resolution of the
linear flow equation. This latter property is essential in the
study of the UV properties of Uk(φ).

If we first focus on the k-dependence of the couplings
h2n(k) in Eq. (34), we notice that the powers of 1/k pre-
cisely compensate the powers of φ and the origin of this
is the nature of the general solution in Eq. (28), written as
the product of two functions, each depending on one of the
two dimensionless variables t and x . It is evident that, in the
computation of the Green functions, the powers of 1/k in
the couplings can compensate the divergence of the tadpoles
generated by each vertex, and the sum of the tadpole series
in each Green function can be computed (note however that
it does not sum up to an exponential as e.g. in (14), because
of the numerical coefficients in the series).

Therefore for the model (32) with λ real but not integer
(otherwise the potential reduces to a polynomial whose renor-
malization properties are well known), the sum of the tad-
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poles contributes to the vacuum fluctuations, 2-, 4-, 6-point
Green functions, in the following way:

V0 + + + · · ·

= k4−λ Q0(k0) (35)

+ + + · · ·

= k4−λ Q2(k0)

k2 (36)

+ + + · · ·

= k4−λ Q4(k0)

k4 (37)

+ + + · · ·

= k4−λ Q6(k0)

k6 (38)

where in the first line V0 = k4
0 h0(k) is the zero-th order vac-

uum contribution from (32), and, in all equations, we factored
out the k-dependent part of the sum and identified the UV
cut-off � of the tadpoles with the running scale k. The com-
mon factor k4−λ comes from the overall coefficient h0(k) in
Eq. (32) and, finally, Q0, Q2, Q4, Q6 are the k-independent
factors resulting from the sum of the tadpoles.

Whether Eqs. (35)–(38) vanish or diverge in the large k
limit clearly depends on the eigenvalue λ. In addition, we
notice that Eqs. (35)–(38) are indeed representative of the UV
behavior of the respective 2n-point Green functions because,
as discussed at length in Sect. 2, all other diagrams containing
more than one vertex are subdominant with respect to the tad-
pole series, because of the suppression factor O(1/kE+2V−4)

in Eq. (22).
Since integer values of λ, as discussed, correspond to trun-

cated polynomial potentials, whose renormalization proper-
ties are well known and do not contain asymptotically free
eigenmodes, in the analysis of Eqs. (35)–(38) we focus on
non-integer λ. We start with 4 < λ that, in the limit k → ∞,
clearly drives to zero Eqs. (35)–(38) and all higher 2n-point
functions, with increasing powers of 1/k. If 2 < λ < 4, again
all Green functions are vanishing, with the exception of the
sum of the vacuum diagrams that instead diverges; no further
k-dependent parameter (or, in other words, no further coun-
terterm) is available to cure this divergence. If 0 < λ < 2,
even the 2-point function becomes divergent without any pos-

sible cure. Further lowering of λ at negative values has the
effect of making divergent more and more Green functions.

Then, if we look at the case λ > 0 which, according to
[15,18], corresponds to asymptotically free modes, we find
that there is at least one divergent, non-renormalizable, Green
function if λ < 4 (or, by subtracting away from the beginning
the vacuum diagrams, the non-renormalizable vertex appears
for λ < 2). Only when λ > 4 (or λ > 2 if the vacuum
contribution is absent) divergent vertices are avoided, but a
suppressing factor in the limit k → ∞, is present in all 2n-
point functions. In the next section we show how this result
can be compared to the model in (1).

4 RG approach to the non-polynomial toy model

Before considering the full RG analysis of the model in Eq.
(1), we can easily determine the scale dependence of the only
parameter which gets renormalized in the scheme developed
in Sect. 2, namely the coupling gR(μ). In fact, from Eqs. (8)
and (9)

g0 = gR + g2
R

c

M2

(

μ2 − �2 − m2 log
μ2

�2

)

+ O(g3
R)

(39)

where c = 1/(32π2). Therefore, since g0 does not depend
on the renormalization scale μ, the lowest order β-function
of the coupling gR is

βg = μ
∂gR
∂μ

= −g2
R

c

M2

(
2μ2 − 2m2

)
(40)

where the last term proportional to m2 is neglected under the
assumption m2 << μ2.

Analogous result can be obtained from the full renor-
malization condition (17), since its left hand side is again
μ-independent, and therefore, by neglecting the logarithmic
contribution we get

βg = − 2cμ2g2
R

M2 + gRcμ2 (41)

which, in the lowest order approximation, reproduces Eq.
(40). Moreover, these β-functions reproduce as well the
dependence of the bare coupling g0 on the cut-off �. We
remark that the sign of the β-function in both (40) and (41)
is negative.

Incidentally, we mention that the analysis just described
has been reconsidered also by using dimensional regular-
ization; in this case however we could not reach the same
conclusions because the β-function within this scheme turns
out to be different from (41) and we also find inconsistencies
as, for instance, the corresponding Lambert equation cannot
be solved for positive ε = 4−d. This is not unexpected as our
model contains an infinite number of dimensional couplings
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that can be a source of problems if treated in dimensional
regularization, [54]. Therefore, we prefer to retain the reg-
ularization procedure based on the use of a UV cut-off that
should grasp more accurately the physical content of this
specific problem.

Now we turn to a complete RG analysis of the model in
(1), by means of the full (not linearized) Wegner-Houghton
equation introduced in (26), that in this case reads

M3φ k
.
g(k)

2
√
g(k)

sinh

(√
g(k)

φ

M

)

= −2ck4 log

[

1 + g(k) M2

k2 cosh

(
φ
√
g(k)

M

)]

(42)

where we introduced the notation ġ(k) = dg(k)/dk.
Equation (42) cannot be solved exactly for g(k). However,

by assuming g(k) << 1, an approximate solution can be
obtained by selecting the coefficients of the various powers
of the field φ on both sides of the equation or, in other words,
by considering the projections of Eq. (42) for the various
vertices at zero external momenta. In particular, the flow of
the 2-point function at zero momentum is obtained by taking
two derivatives with respect to φ and setting φ = 0. We get:

kġ(k) = − 2ck4g2(k)

k2M2 + M4g(k)
(43)

The resolution of the differential equation to the lowest order
gives:

g(k) = g(k0)

1 + c
M2 g(k0)

(
k2 − k2

0

) (44)

where g(k0) is the value of the coupling constant at the energy
scale k0 and, for large k, we get

.
g ∼ −(kg2)/M2 and

g ∼ M2

k2 (45)

Now, we are able to compare the running coupling found
in the perturbative and in the RG approach, namely in Eq.
(41) and in Eq. (43). We notice that, despite their agreement at
lowest order in g, they differ at higher orders. If we integrate
Eq. (41), which was obtained from Eqs. (17), we recover the
Lambert function that, as already shown in Eq. (19), for large
values of energy goes like (the scale μ is here replaced by k)

gR ∼ log k2 − log log k2

k2 (46)

Conversely, in the RG approach we only get g ∼ 1/k2; the
logarithmic corrections of the perturbative series are missing
and this mismatch is a consequence of the potential in Eq. (1)
being an approximate solution of the RG equation, so that the
two approaches are compatible only up to these logarithmic
terms. Hence, the potential (1) does not identically satisfy
the RG flow equation, but at least is a good approximate

solution for large values of energy scale (or equivalently for
small values of the coupling constant).

Next, we analyze the flow after taking four derivatives
with respect to the field in (42) and, to the lowest-order in g,
we get

g
.
g = −ckg3

M2 (47)

which, evidently, does not produce the same differential flow
equation for g as the one given in Eq. (43). However, if we
regard the left hand side of (43) and (47) as the differential
flow of the 2- and 4-point Green function respectively (apart
from some k-independent constants), we see that the the for-
mer is of order O(g2) from (43), and the latter is O(g3) from
(47). In other words, at large k (k2 >> M2), the discrep-
ancy between (47) and (43) can be regarded as a higher order
effect in g.

Green functions with larger number of external legs pro-
duce flow equations that are further suppressed. In fact, for
the 2n-point Green functions at zero external momenta:

n gn−1 .
g = −2ckgn+1

M2 (48)

and the suppression factor in the right hand side increases
with n. According to the scaling in (45), the 2n-point func-
tions at large k goes like ∼ (M2n/k2n).

This result is explanatory in understanding the relation
between the potential in (1) and the eigenmodes of the lin-
earized flow equation. In fact, if we use these k-dependent
2n-point vertices to compute the renormalized sum of the
tadpole series displayed in Eqs. (36)–(38) (Eq. (35) is not
considered here because in potential (1) the vacuum energy
contribution is cancelled out), we recover the result found
in Sect. 3 for the specific value λ = 2 (although it must be
recalled that Eqs. (35)–(38) in Sect. 3 require non-integer λ).
In other words, the potential in (1) represents a sort of pecu-
liar structure that reproduces the results in Eqs. (36)–(38) for
λ = 2, which instead is not covered by the the eigenmodes of
the linearized flow equation. Then, we remark that in Eq. (36)
with λ = 2, any dependence on k is cancelled and we are left
with a finite renormalized 2-point function, while Eqs. (37),
(38), …depend on inverse powers of k so that they vanish for
k → ∞, which corresponds to the findings of Sect. 2, i.e.
a renormalized trivial theory with finite mass and vanishing
interactions. On the other hand, the same computation with
non-integer λ > 2 yields an unphysical vanishing limit for
all relations in (36)–(38) and higher order 2n-point vertices,
i.e. the model with all null renormalized Green functions is
meaningless.

Before concluding this paragraph we comment on the
physical implications associated to our findings. By taking
the point of view of treating the model in (1) as an effec-
tive theory with a large but finite physical cut-off k, instead
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of ending with a trivial free theory, we can write down an
effective potential at the scale k

V (φ) = 1

2
me(k)

2φ2 + λe(k)

4
φ4 (49)

where higher powers of the field are suppressed by larger
inverse powers of the scale k and the effective mass and cou-
pling can be related to the parameters of the original potential
in (1) through the RG derived relation in (45),

me(k)
2 = M4

k2 , λe(k) = M4

6 k4 (50)

By eliminating k in (50), we find

M = me(k)
4
√

6λe(k)
(51)

which generates an effective mass suppression mechanism:
because of the interaction effects at large k, we expect a small
coupling λe(k) and consequently a large ratio between the
fixed mass and the renormalized effective mass, M/me(k).
Moreover, the decreasing trend of λe(k) with k in (50), marks
a neat difference, potentially testable, with respect to the scale
dependence of the quartic coupling of the standard renormal-
izable φ4 theory.

5 Conclusions

We analysed a non-polynomial class of scalar potentials that
allow to sum the series of tadpole diagrams, as this series
contains the most severe UV divergences, and taking care
of the latter does guarantee the vanishing of the subleading
divergences coming from multiple vertex diagrams. In order
to systematically classify the diagrams according to their
number of vertices, we adopted a particular toy model that
depends on one single renormalizable coupling g0 in such a
way that the potential is an expansion in powers of g0φ

2/M2,
where M is a fixed mass scale. This naturally allows for a
perturbative treatment of the radiative corrections. Despite
the infinite tower of non-renormalizable couplings in (1) the
perturbative analysis shows that the model is renormaliz-
able, but unfortunately, it is substantially trivial, as only the
2-point Green function at zero external momentum is finite,
while all other vertices with at least four external legs van-
ish in the infinite UV cut-off limit � → ∞. Although the
effect of the interaction modifies the value of the mass scale
M into the renormalized mass m, the model is practically
indistinguishable from a free theory. Slightly different non-
polynomial interactions are also investigated (see Appendix
B), but either they are non-renormalizable or, again, repro-
duce a trivial renormalized theory.

The RG analysis shows a negative β-function of g(k),
produced by the scaling of the 2-point function, and we find

g(k) ∝ k−2, rather than ∝ 1/log(k) as e.g. for the non-
Abelian Yang–Mills theory. Then, once the flow of g(k) is
established, the 2n-vertices with n > 1 proportional to gn ,
scale accordingly, i.e. the larger n the stronger the power-like
suppression at large k. It must be remarked that the model
in (1) is not a full solution of the RG flow, as the numerical
coefficient in front of the gn in each vertex with n > 1 (the
case n = 1 is used to determine the flow of g), is not consis-
tent with the flow equation of that particular vertex. However,
due to the increasing power of g with the power of the field
in the vertices, one can regard the model as an approximate
solution with an error that is suppressed both by the absolute
size of g << 1 and by the power n of g, characteristic of
each vertex.

If, according to the decreasing size of the vertices for
increasing n, we consider a two-parameter effective model,
valid up to some UV scale k, where all vertices with n > 2 are
neglected, we find a very weakly interacting theory. However,
unlike the two-parameter renormalizable standard φ4 scalar
theory, in this case the effective coupling decreases in the UV
limit and, potentially, this feature has experimentally testable
consequences.

The potentials introduced in [15,18], can be included in
our analysis due to the similarities in the form of the non-
polynomial interaction which allows to sum the tadpole dia-
grams. However, the scale dependence of these potentials
is entirely established by the resolution of the flow equation,
linearized around the Gaussian fixed point. Once these eigen-
modes are converted in dimensional form, one finds that each
vertex is normalized by the proper inverse power of the run-
ning scale k, in addition to an overall factor k4−λ, exhibiting
the eigenvalue λ which establishes the UV properties of the
solution.

These solutions cannot be retained as asymptotically free
eigenmodes, because they do not respect the linear approxi-
mation at large values of the field and consequently the pre-
dicted RG-time evolution is wrong, as clearly explained in
[29]. The counterpart of these conclusions within our pertur-
bative analysis is that these eigenmodes, depending on the
value of λ, are either not renormalizable, because of some
residual divergence, or unphysical, because all Green func-
tions are vanishing. Furthermore, these eigenmodes do not
include the case of integer λ, while we found that the poten-
tial in (1) corresponds to the scaling of Eqs. (35)–(38) with
λ = 2.
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Appendix A

In this appendix we analyze the leading divergence of the
sum of the melonic-like diagrams Ŝ, depicted in Eq. (24), in
cut-off regularization. First, let us define:

�k = 1

k2 + m2 (A1)

Thus, the first integral of the series Ŝ, i.e. the sunset diagram
with external momentum p and loop momenta a and b, is
given by:

S(p) ≡ = g4
0

3!
∫

d4a

(2π)4

×
∫

d4b

(2π)4 �a �b �a+b+p

= g4
0

6(4π)2

[

3�2 + p2
(

α + β log
�2

m2

)

+O

(

log
�2

m2

)

+ Q(p,m)

]

(A2)

where the result of the integration is taken from [2], and
α and β are constants. We will neglect the contribution

O
(

log �2

m2

)
because it is clearly subdominant if compared

to �2. In addition, important contributions could come from
Q(p,m) when we use the above result for the subsequent
diagrams (see below); however it is straightforward to real-
ize that, when p ∼ �, the most divergent contribution is
proportional to �2:
∫

d4a

(2π)4

∫
d4b

(2π)4 �a �b �a+b+p

p∼�−→ 1

�2

∫
d4a

(2π)4

∫
d4b

(2π)4

1

a2b2 ∼ �2 (A3)

In other words, there is no contribution that goes like
�2 log �2

m2 and, in the following, we can neglect terms pro-
portional to β in (A2).

Let us now compute the subsequent diagram of the series,
this time with external momentum p = 0 and with e and f
as the additional loop momenta:

= g6
0

5! M4

∫
d4a

(2π)4

∫
d4b

(2π)4

∫
d4e

(2π)4

×
∫

d4 f

(2π)4 �a �b �e � f �a+b+e+ f

= g6
0

5! M4

∫
d4e

(2π)4

∫
d4 f

(2π)4 [3! S(e + f )] �e � f

= g6
0

5! M4

∫
d4e

(2π)4

∫
d4 f

(2π)4 �e � f

×
[

3�2

(4π)2 + α

(4π)2 (e + f )2
]

= g6
0

5! M4

∫
d4e

(2π)4

∫
d4 f

(2π)4 �e � f

×
[
c1 I + c2

(
e2 + f 2 + 2e f cos θe f

)]
(A4)

where θe f is the angle between momenta e and f , I is the
tadpole integral already evaluated in Eq. (5), and we defined:
c1 = 6 and c2 = α/(4π)2.

By exploiting the symmetry in the last line in Eq. (A4) we
find:

= g6
0

5! M4

∫
d4e

(2π)4

×
∫

d4 f

(2π)4 �e � f
(
c1 I + 2c2e

2)

= g6
0

5! M4

(

c1 I
3 + 2c2 I

∫
d4e

(2π)4

e2

e2 + m2

)

= g6
0

5! M4

(
c1 I

3 + 2c2 I c3�
4) = g6

0

5! M4

(
c1 I

3 + 2c2c4 I
3)

where c3 and c4 are constants. By following the same proce-
dure with the successive diagram of the series Ŝ, we get

= g8
0

7! M8

(
c1 I

5 + 4c2c4 I
5
)

(A5)

and so on and so forth for all the other diagrams of the series.
Before adding everything up, we have to remember that

each vertex must be “dressed” with the tadpole diagrams
sum, and this means that a global factor g2

0 (a factor g0 for
each vertex) must be discarded from the global count of the
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powers of � in each diagram of Ŝ. Then, the sum reads

+ + + · · ·

∼g2
0 I+

g4
0

5! M4 (c1+2c2c4) I
3+ g6

0

7! M8 (c1+4c2c4) I
5+ · · ·

= g2
0 I + c1

(
g4

0

5! M4 I
3 + g6

0

7! M8 I
5 + · · ·

)

+c2c4

(
2

5! M4 g
4
0 I

3 + 4

7! M8 g
6
0 I

5 + · · ·
)

< g2
0 I + c1, M4

I

(
g4

0 I
4

4! M8 + g6
0 I

6

6! M12 + · · ·
)

+c2c4 M4

I

(
g4

0 I
4

4! M8 + g6
0 I

6

6! M12 + · · ·
)

= g2
0 I + b M4

I

[

cosh

(
g0 I

M2

)

− 1 − g2
0 I

2

2 M2

]

(A6)

where in the last step we have defined b = c1 + c2c4. The
inequality derived in Eq. (A6) is the one reported in Eq. (24).

Appendix B

In principle, the potential studied in Sect. 2 can be modified to
adjust its UV behavior with the aim of obtaining a significant
interacting theory. Unfortunately, in all cases here analyzed,
the resulting model turns out to be either not practicable or
equivalent to the original one and, below, we discuss a few
representative cases.

Actually, one of these models is already considered in
Sect. 3. It is the one coming from the direct resolution of the
RG flow equation, suitably linearized around the Gaussian
fixed point, that can be expressed as an expansion in powers of
the field but with a rather different structure of the couplings.

Another model, alternative to (1), but very similar in struc-
ture, is given by

V (φ) = M4

g0

(
g0φ

2

2!M2 + g2
0φ4

4!M4 + g3
0φ6

6!M6 + . . .

)

= M4

g0

[

cosh

(√
g0

φ

M

)

− 1

]

(B1)

where, as in (1), we do not renormalize the parameter M (i.e.
it contains no counterterms), and the only renormalizable
parameter is g0, so that the only difference with respect to the
original model is an overall rescaling of the factor 1/g0. Then,
by repeating the same analysis of Sect. 2, we immediately
realize that the sum of the tadpoles (the most divergent dia-
grams), in the two point function yields M2 eg0 I/M2

, which

is equal to the result in (16), up to the mentioned rescaling of
1/g0 and the same result holds for all 2n-point Green func-
tions. It is clear that the renormalization condition adopted in
Sect. 2 in this case would be insufficient to make the 2-point
Green function finite and we need a different prescription. In
particular, if we take

M2eg0 I/M2 = M2egRcμ
2/M2 ⇒ eg0 I/M2 = egRcμ

2/M2

(B2)

we find the quite simple dependence of g0 on the UV cut-off
�

g0(�) = gR
μ2

�2 (B3)

which is the same as the one found in Eq. (19), apart from the
logarithmic corrections. However, the result in (B3) means
that it is not possible to frame this renormalization scheme
within the standard series expansion of g0 in powers of gR ;
in other words, here we do not have the usual cancellation of
the divergence through the subtraction of an equally diver-
gent counterterm, and we are forced to adopt a multiplicative
cancellation.

By following the same power counting analysis performed
in Sect. 2, we find that the relation displayed in (B3), leaves
finite the sum of the tadpole series in the 2-point Green func-
tion and forces to zero all the subleading non-tadpole dia-
grams. In addition, the tadpole series contributing to all other
2n-point functions identically vanishes, because of further
suppressing multiplicative powers of g0; as a consequence
all but the 2-point Green function are null. Then, we con-
clude that the renormalized model (B1) is identical to the
renormalized (1), although the latter admits a perturbative
treatment in terms of counterterms which cannot be applied
to the former.

A different approach to the renormalization of this kind of
models is instead obtained by allowing for the renormaliza-
tion of the other parameter appearing in the potential, namely
M . So, for instance, we can reconsider the previous case but
with the substitution M → M0, i.e. a bare mass that under-
goes renormalization:

V (φ) = M4
0

g0

(
g0φ

2

2!M2
0

+ g2
0φ4

4!M4
0

+ g3
0φ6

6!M6
0

+ · · ·
)

= M4
0

g0

[

cosh

(√
g0

φ

M0

)

− 1

]

(B4)

Of course, the sum of the tadpoles discussed in the previous
case still holds, but now we find the ratio g0/M2

0 instead of
g0/M2 in the exponent.

If we now look at the output of the tadpole sum in the 2-
point and 4-point functions we get M2

0e
g0 I/M2

0 and g0eg0 I/M2
0

respectively. These results are both finite only if the same
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counterterms are taken for g0 and M2
0 . Then, these countert-

erms get cancelled in the ratio g0/M2
0 but they can be chosen

in such a way that the tadpole series in the 2-point and 4-point
functions is finite. In this case however, we also find that the
tadpole series remains finite in any 2n-point function, as for
instance in the 6-point function

+ + + · · ·

= g2
0

M2
0

eg0 I/M2
0 = g0

M2
0︸︷︷︸

finite

g0 e
g0 I/M2

0
︸ ︷︷ ︸

finite

(B5)

This, in turn, implies that any 2-vertex diagram (like for
instance the sunset diagram) with the tadpole series summed
at each vertex, produces a divergence that cannot be cured
because all counterterms coming from g0 and M2

0 have
already been used.

We notice that even considering the possibility of renor-
malizing the mass term M0 in the original potential in (1),
i.e.

V (φ) = M4
0

(
g0φ

2

2!M2
0

+ g2
0φ4

4!M4
0

+ g3
0φ6

6!M6
0

+ · · ·
)

= M4
0

[

cosh

(√
g0

φ

M0

)

− 1

]

(B6)

we would get g0 M2
0 e

g0 I/M2
0 and g2

0e
g0 I/M2

0 as output of the
tadpole sum in the 2-point and 4-point functions and con-
sequently, as before, the same renormalization counterterms
for g0 and M2

0 are required. Then, the same flaw encountered
in the previous example shows up even in this case, namely
the requirement to fix the counterterms by imposing a finite
tadpole series, implies as well the presence of uncured diver-
gences in the diagrams containing at least two vertices, such
as the sunset diagram.
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