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Abstract In this paper, we derive the consistent ther-
modynamics of the four-dimensional Lorentzian Reissner-
Nordström-NUT (RN-NUT), Kerr–Newman-NUT (KN-NUT),
and RN-NUT-AdS spacetimes in the framework of the (ψ −
N )-pair formalism, and then investigate their topological
numbers by using the uniformly modified form of the gen-
eralized off-shell Helmholtz free energy. We find that these
solutions can be included into one of three categories of those
well-known black hole solutions, which implies that these
spacetimes should be viewed as generic black holes from
the perspective of the topological thermodynamic defects.
In addition, we demonstrate that although the existence of
the NUT charge parameter seems to have no impact on the
topological number of the charged asymptotically locally flat
spacetimes, it has a remarkable effect on the topological num-
ber of the charged asymptotically locally AdS spacetime.

1 Introduction

In recent years, the study of the topology of black holes has
attracted much interest and attention, including light rings
[1–5], timelike circular orbits [6,7], thermodynamics [8–17],
phase transitions [18–23], as well as thermodynamic topolog-
ical classifications [24–37], and so on. In particular, a novel
approach has been recently suggested in Ref. [24] to study
the thermodynamic topological properties of black holes by
interpreting black hole solutions as topological thermody-
namic defects, creating topological numbers, and then classi-
fying all black holes into three separate categories based upon
their different topological numbers, which sheds new light on
the fundamental properties of black holes and gravity. Due to
its adaptability and simplicity, the topological approach sug-
gested in Ref. [24] quickly gained widespread acceptance.
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As a result, it was successfully applied to explore the topo-
logical numbers of several well-known black hole solutions
[25–36], for examples, the static Gauss-Bonnet-AdS black
holes [25], the static black hole in nonlinear electrodynamics
[26], the Kerr and Kerr–Newman black holes [27], the Kerr-
AdS and Kerr–Newman-AdS as well as three-dimensional
BTZ black holes [28], some static hairy black holes [29],
the dyonic black hole in nonlinear electrodynamics [30], the
black hole in de Sitter spacetimes [31], and the black hole in
massive gravity [32,33], the static dyonic AdS black holes
in different ensembles [34], some Bardeen black holes [35],
as well as the static Born-Infeld-AdS black holes [36]. Very
recently, we have investigated the topological numbers for the
cases of the four-dimensional Lorentzian Taub-NUT, Kerr-
NUT, and Taub-NUT-AdS4 spacetimes [37], and demon-
strated that these spacetimes should be viewed as generic
black holes from the viewpoint of the thermodynamic topo-
logical approach. It is then natural for us to extend that work
to the more general charged cases with a pure electric charge
to examine whether the four-dimensional Lorentzian charged
Taub-NUT spacetimes are generic black holes, which serves
as our motivation for the present work.

In this paper, within the framework of the (ψ − N )-pair
formalism, we will first utilize the generalized Komar super-
potential [38] to derive the consistent thermodynamics of
the four-dimensional Lorentzian Reissner-Nordström-NUT
(RN-NUT), Kerr–Newman-NUT (KN-NUT), and RN-NUT-
AdS spacetimes, and to investigate their topological number
via the uniformly modified form of the generalized off-shell
Helmholtz free energy. We find that these spacetimes should
also be viewed as generic black holes from the thermody-
namic topological perspective.

The remaining part of this paper is organized as follows.
In Sect. 2, we give a brief review of the novel thermody-
namic topological approach for Taub-NUT-type spacetimes.
In Sect. 3, we first derive the consistent formulation of ther-
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modynamic properties of the four-dimensional Lorentzian
RN-NUT spacetime and then investigate its topological num-
ber. In Sect. 4, we turn to discuss the case of the Lorentzian
KN-NUT spacetime. In Sect. 5, we then extend to discuss the
more general Lorentzian RN-NUT-AdS4 spacetime. Finally,
we present our conclusions in Sect. 6.

2 Thermodynamic topological approach for
Taub-NUT-type spacetimes

In accordance with the thermodynamic topological approach
suggested in Ref. [37], it is possible to introduce the modified
form of the generalized off-shell Helmholtz free energy

F = M − S

τ
− ψN , (1)

for a Taub-NUT-type black hole thermodynamical system
with the mass M , the entropy S, and the Misner potential
ψ , as well as the gravitational Misner charge N , where τ

is an extra variable that can be treated as the inverse tem-
perature of the cavity surrounding the Taub-NUT-type black
hole. Only when τ = T−1, the modified form of the gener-
alized Helmholtz free energy (1) is on-shell and reduces to
the common Helmholtz free energy: F = M − T S − ψN
of the Taub-NUT-type black holes [39–41].

According to Ref. [24], a core vector φ is defined as

φ =
(∂F

∂rh
, − cot � csc �

)
, (2)

where the two parameters satisfy the ranges: 0 < rh < +∞,
0 ≤ � ≤ π , respectively. The component φ� is divergent at
� = 0 and � = π , indicating that the direction of the vector
is outward there.

One can define the topological current by using Duan’s
φ-mapping topological current theory [42–44] as follows:

jμ = 1

2π
εμνρεab∂νn

a∂ρn
b , μ, ν, ρ = 0, 1, 2, (3)

where ∂ν = ∂/∂xν and xν = (τ, rh, �). The unit vector n
is n = (nr , n�), where nr = φrh/||φ|| and n� = φ�/||φ||.
Since it is easy to prove that the above current (3) is con-
served, and one can quickly obtain ∂μ jμ = 0 and then indi-
cate that the topological current is a δ-function of the field
configuration [43,44]

jμ = δ2(φ)Jμ
(φ

x

)
, (4)

where the three dimensional Jacobian Jμ(φ/x) obeys:
εab Jμ(φ/x) = εμνρ∂νφ

a∂ρφb. It is easy to demonstrate that
jμ equals to zero only when φa(xi ) = 0, and one can easily

obtain the topological number W as follows:

W =
∫

�

j0d2x =
N∑
i=1

βiηi =
N∑
i=1

wi , (5)

where βi is the positive Hopf index that counts the number
of the loops of the vector φa in the φ-space when xμ are
around the zero point zi , while ηi = sign(J 0(φ/x)zi ) = ±1
is the Brouwer degree, and wi is the winding number for the
i-th zero point of φ that is contained in the domain �. In
addition, if two different closed curves �1 and �2 enclose
the same zero point of φ, the corresponding winding number
must equal. On the other hand, if there is no zero point of φ

in the enclosed region, one must have W = 0.
Note that the local winding number wi can be used to char-

acterize the local thermodynamic stability, with positive and
negative values corresponding to thermodynamically stable
and unstable black holes, respectively, and the global topo-
logical numberW represents the difference between the num-
ber of thermodynamically stable black holes and the num-
ber of thermodynamically unstable black holes of a classical
black hole solution at a fixed temperature [24]. Therefore,
not only can one distinguish between different black hole
phases (thermodynamically stable or unstable) of the same
black hole solution at a specific temperature based upon the
local winding number, but also can classify the black hole
solutions based upon the global topological number. Further-
more, according to this classification, black holes with the
same global topological number (even if they are of differ-
ent geometric types) have similar thermodynamical topology
properties.

3 RN-NUT spacetime

As the simplest charged case, we will investigate the four-
dimensional Lorentzian RN-NUT solution [45–47], and
adopt the following line element in which the Misner strings
are symmetrically distributed along the polar axis:

ds2 = − f (r)

r2 + n2 (dt + 2n cos θ dϕ)2 + r2 + n2

f (r)
dr2

+(
r2 + n2)(dθ2 + sin2 θ dϕ2) , (6)

where

f (r) = r2 − 2mr − n2 + q2 ,

in which m, n and q are the mass, the NUT charge, and the
electric charge parameters, respectively. The event horizon
radius: rh = m + √

m2 + n2 − q2 is the largest root of the
equation: f (rh) = 0. In addition, the electromagnetic gauge
potential one-form is given by

A = qr

r2 + n2 (dt + 2n cos θ dϕ) , (7)
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with which a convenient gauge choice is made so that its
temporal component vanishes at infinity.

The metric (6) with the Abelian gauge potential (7) is
an exact solution to the field equations derived from the
Lagrangian density: L = √−g

(
R − F2

)
/(16π). For lat-

ter convenience, we introduce a generalized Komar super-
potential (see Eq. (5.20) of Ref. [38]) as follows:

�ab[ξ ]=∇aξb−∇bξa+(4ξ cFab+2ξa Fbc+2ξbFca)Ac ,

(8)

associated with a Killing vector ξ and the Faraday-Maxwell
field strength tensor: Fab = ∇aAb − ∇bAa defined by F =
dA. It can be shown that ∇b�

ab = 0.

3.1 Consistent thermodynamics

As we are only focused on the purely electrically charged RN-
NUT solutions, so we will first rederive the consistent ther-
modynamics of the four-dimensional Lorentzian RN-NUT
spacetime within the framework of the (ψ − N )-pair for-
malism.

The Bekenstein–Hawking entropy is one quarter of the
area of the event horizon

S = A

4
= π

(
r2
h + n2) , (9)

the Gibbons-Hawking temperature is proportional to the sur-
face gravity κ on the event horizon

T = κ

2π
= f ′(rh)

4π
(
r2
h + n2

) = 1

4πrh

(
1 − q2

r2
h + n2

)
, (10)

in which a prime represents the partial derivative with respec-
tive to its variable.

Secondly, the total electric charge distribution over a two-
dimensional sphere with a finite radius r is given by the
Gauss’ integral

Q(r) = −1

4π

∫

S2

�F = q
r2 − n2

r2 + n2 ,

which clearly shows it is radial-dependently distributed and
should be on the Misner string singularities [48]. So the elec-
tric charge on the event horizon is

Qh = q
r2
h − n2

r2
h + n2

. (11)

The corresponding electrostatic potential at the event hori-
zon simply reads

� = (Aμχμ)|r=rh = qrh
r2
h + n2

, (12)

where χ = ∂t is the timelike Killing vector normal to the
event horizon.

In the Lorentzian RN-NUT spacetime, there are additional
Killing horizons (north/south pole axes) connected to the
Misner strings with the associated Misner potential being

ψ = 1

8πn
. (13)

In the language of exterior differential forms, the Hodge
dual two-form corresponding to the generalized Komar
superpotential (8) can be obtained as

��[χ ] = 2n(
r2 + n2

)2

(
− f + 4q2r2

r2 + n2

)
dr ∧

(dt + 2n cos θdφ)

−
[
f ′ − 2r f

r2 + n2 + 2q2r
(
r2 − n2

)
(
r2 + n2

)2

]
sin θdθ ∧ dφ ,

(14)

for the timelike Killing vector χ = ∂t .
Using the above generalized Komar superpotential two-

form (14) to replace the ordinary Komar one and following
the same pattern of the (ψ − N )-pair formalism as did in
Refs. [40,49] (namely, one deliberately separates the inte-
gral into three parts: the spatial infinity, the horizon, and two
Misner string tubes), one can derive the integral Bekenstein–
Smarr-like mass formula

M = 2T S + �Qh + 2ψN , (15)

and then verify that the differential first law can also be sat-
isfied:

dM = TdS + �dQh + ψdN . (16)

In the derivation of the Smarr-like formula, one can define
the conserved mass as

M = −1

8π

∫

S2∞

��[χ ] = −1

4

∫ π

0
dθ(

√−g�tr )
∣∣
r→∞

= m , (17)

which exactly coincides with the Komar mass calculated via
the usual Komar integral at infinity, since the well fall-off
asymptotic behavior of the Maxwell field. In the computa-
tion, we has used the determinant

√−g = (
r2 + n2

)
sin θ .

On the hand hand, we have instead

−1

8π

∫

S2
h

��[χ ] = 2T S + �Qh . (18)

The last thermodynamic quantity of the Misner charge
can be easily determined via the above Bekenstein–Smarr-
like mass formula as

N = 4πn3

rh

[
− 1 + q2 3r2

h + n2

(
r2
h + n2

)2

]
, (19)
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which is non-globally conserved. Alternately, it can also be
evaluated via the Misner tubes integral

N = n

2

∫

(T+−T−)

��[χ ] = πn
∫ ∞

rh
dr(

√−g�tθ )
∣∣θ=π

θ=0

= −8πn3

(
r2 + n2

)
(rh − m) − q2rh(
r2
h + n2

)2 ,

which reproduces the above expression (19) after using the
identity m = (

r2
h − n2 + q2

)
/(2rh).

It can be further identified that all the above thermody-
namic quantities are related to the Gibbs free energy of the
four-dimensional Lorentzian RN-NUT spacetime [50]

G = M − T S − ψN − �Qh , (20)

whose expression can be obtained via a Wick-rotated back
procedure from the Euclidean action of the Euclidean RN-
NUT spacetime:

IE = 1

16π

∫

M
d4x

√
g
(
R − F2)

+ 1

8π

∫

∂M
d3x

√
h(K − K0) , (21)

where h is the determinant of the induced metric hi j , K is the
trace of the extrinsic curvature tensor defined on the bound-
ary with this induced metric, and K0 is the subtracted one
of the massless uncharged Taub-NUT solution as the refer-
ence background. The computation of the Euclidean action
integral yields the following expression for the Gibbs free
energy

G = IE
β

= m

2
− q2 rh

(
r2
h − n2

)

2
(
r2
h + n2

)2 = 1

2
(M − �Qh) , (22)

where β = 1/T is the interval of the time coordinate.
By the way, it should be noted that the above results are

completely consistent with those given in Ref. [51] without
any “derivation”.

3.2 Topological number

Next, we will investigate the topological number of the four-
dimensional Lorentzian RN-NUT spacetime. We note that
the Helmholtz free energy simply reads

F = G + �Qh = M − T S − ψN . (23)

Replacing T with 1/τ in Eq. (23) and using m = (
r2
h −

n2+q2
)
/(2rh), then the generalized off-shell Helmholtz free

energy is

F = rh
2

− π
(
r2
h + n2

)

τ
+ q2 rh

(
r2
h − n2

)

2
(
r2
h + n2

)2 . (24)

Fig. 1 Zero points of the vector φrh shown in the rh − τ plane with
n/r0 = 1 and q/r0 = 1. The generation point for the RN-NUT space-
time is represented by the black dot with τc. At τ = τ1, there are two
RN-NUT spacetimes

Adopting the definition of Eq. (2), the components of the
vector φ can be easily calculated as follows:

φrh = 1

2
− 2πrh

τ
− q2 r

4
h − 6n2r2

h + n4

2
(
r2
h + n2

)3 ,

φ� = − cot � csc � . (25)

By solving the equation: φrh = 0, one can arrive at a curve on
the rh − τ plane. For the four-dimensional RN-NUT space-
time, one can obtain

τ = 4πrh
(
r2
h + n2

)3

(
r2
h + n2

)3 − q2
(
r4
h − 6n2r2

h + n4
) . (26)

We point out that Eq. (26) consistently reduces to the one
obtained in the case of the four-dimensional RN black hole
[24] when the NUT charge parameter n is turned off. Note
that the generation point satisfies the constraint conditions:

∂τ

∂rh
= 0 ,

∂2τ

∂r2
h

> 0 . (27)

Taking q/r0 = 1 and n/r0 = 1 for the four-dimensional
Lorentzian RN-NUT spacetime, we plot in Figs. 1 and 2,
respectively, for the zero points of the component φrh , and
for the unit vector field n on a portion of the �−rh plane with
τ = 7r0 in which r0 is an arbitrary length scale set by the size
of a cavity enclosing the RN-NUT spacetime. From Fig. 1,
one generation point can be found at τ/r0 = τc/r0 = 5.13.
It is clear that the RN-NUT spacetime behaves like the RN
black hole, showing that the NUT charge parameter appears
to have no impact on the thermodynamic topological classifi-
cation for the static charged asymptotically locally flat space-
time. Consequently, it would be fascinating to learn more
about the relationship between geometric topology and ther-
modynamic topology: for example, it would be very inter-
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Fig. 2 The red arrows represent the unit vector field n on a portion of
the rh − � plane for the RN-NUT spacetime with n/r0 = 1, q/r0 =
1 and τ/r0 = 7. The zero points (ZPs) marked with black dots are
at (rh/r0,�) = (0.23, π/2), and (0.86, π/2), respectively. The blue
contours Ci are closed loops enclosing the zero points

esting to investigate the topological number of ultraspinning
black holes [52–59] and their usual counterparts.

In Fig. 2, the zero points are located at (rh/r0,�) =
(0.23, π/2), and (0.86, π/2), respectively. Thus, one can
read the winding numbers wi for the blue contours Ci :
w1 = 1, w2 = −1, which are similar to those of the RN
black hole [24]. In terms of the topological global proper-
ties, one can easily obtain the topological number W = 0 for
the RN-NUT spacetime from Fig. 2, which is also the same
one as that of the RN black hole. As a result, based upon
the viewpoint of the thermodynamic topological numbers,
the Lorentzian RN-NUT spacetime should be welcomed into
the black hole family. Furthermore, it can be indicated that,
while the RN-NUT spacetime and RN black hole are evi-
dently distinguished in geometric topology, they belong to
the same class in terms of thermodynamic topology.

4 KN-NUT spacetime

In this section, we will focus on the case of a rotating charged
Taub-NUT spacetime by considering the four-dimensional
KN-NUT solution [60–63], whose line element with the Mis-
ner strings symmetrically distributed along the rotation axis

is written in the Boyer-Lindquist coordinates as:

ds2 = −�(r)

�

[
dt + (

2n cos θ − a sin2 θ
)
dϕ

]2 + �

�(r)
dr2

+�dθ2 + sin2 θ

�

[
adt − (

r2 + a2 + n2)dϕ
]2

, (28)

where

� = r2 + (n + a cos θ)2 ,

�(r) = r2 − 2mr − n2 + a2 + q2 ,

in which m, n, a and q are the mass, the NUT charge, the
rotation and the electric parameters, respectively. The event
horizon radius is rh = m + √

m2 + n2 − a2 − q2. In addi-
tion, the electromagnetic gauge potential one-form is given
by

A = qr

�

[
dt + (

2n cos θ − a sin2 θ
)
dϕ

]
, (29)

in a gauge that its temporal component vanishes at infinity.

4.1 Consistent thermodynamics

Now, we investigate the consistent thermodynamics of the
four-dimensional Lorentzian KN-NUT spacetime within the
framework of the (ψ −N )-pair formalism. The Bekenstein–
Hawking entropy is taken as one quarter of the event horizon
area:

S = A

4
= π

(
r2
h + a2 + n2) . (30)

The Hawking temperature is proportional to the surface grav-
ity κ on the event horizon

T = κ

2π
= f ′(rh)

4π
(
r2
h + a2 + n2

) = rh − m

2π
(
r2
h + a2 + n2

) .

(31)

The angular velocity at the event horizon and the Misner
potential are, respectively,

� = a

r2
h + a2 + n2

, ψ = 1

8πn
. (32)

The electric charge Q on the event horizon can be computed
as

Qh = −1

4π

∫

S2
h

�F = q

(
r2
h + a2

)2 − n4

(
r2
h + a2 + n2

)2 − 4a2n2
, (33)

and its corresponding electrostatic potential at the event hori-
zon is

� = (Aμχμ)|r=rh = qrh
r2
h + a2 + n2

, (34)

where χ = ∂t +�∂ϕ is the Killing vector normal to the event
horizon.
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As for the conserved mass, one can compute it just like
the non-rotating case and get

M = −1

8π

∫

S2∞

��[∂t ] = m , (35)

for the timelike Killing vector ∂t . One can note that it exactly
coincides with the Komar mass evaluated via the usual Komar
integral at infinity.

One can anticipate that both the first law and the
Bekenstein–Smarr mass formula for the Lorentzian KN-
NUT spacetime should read

dM = TdS + �d Jh + �dQh + ψdN , (36)

M = 2T S + 2�Jh + �Qh + 2ψN , (37)

from which one can first solve Jh in terms of N from
the integral Smarr-like formula (37), and then solve N =
N (rh, q, n, a) from the differential first law. After abandon-
ing an integration constant, one can finally get the expressions
for the gravitational Misner charge and the angular momen-
tum as follows:

N = 4πn3

rh

{
− 1 + q2

[
3r6

h + (
7n2 − 3a2)r4

h

+(
5n4 + 2a2n2 − 7a4)r2

h − (
a2 − n2)3

]

×[(
r2
h + a2 + n2)2 − 2a2n2]−2

}
, (38)

Jh = a

{
m + n2

rh
+ q2n2

rh

[
3r6

h + (
7a2 − 3n2)r4

h

+(
5a4 + 2a2n2 − 7n4)r2

h + (
a2 − n2)3

]

×[(
r2
h + a2 + n2)2 − 4a2n2]−2

}
. (39)

We would like to point out that the above two expressions are
identical to those of Ñ and J̃ given by Eqs. (3.15) and (3.16)
in Ref. [41] in the case when the magnetic charge parameter
is turned off, namely, the asymptotic magnetic charge van-
ishes. The first law and the Bekenstein–Smarr mass formula
precisely correspond to the magnetic version of the full coho-
mogeneity first law [41] when the magnetic charge parameter
is set to zero.

On the other hand, one can utilize the generalized Komar
superpotential (8) rather than the usual Komar one with
respect to the Killing vector χ = ∂t + �∂ϕ and follow the
same paradigm of the (ψ − N )-pair formalism as did in
Ref. [64] to derive the integral Bekenstein–Smarr-like mass
formula (37) and then check that the above thermodynamic
quantities simultaneously satisfy the differential first law as
well. In this way, it is facilitated to use the GRTensor II pack-
age to perform the algebraic manipulation to get the above
involved expressions of Jh and N . Here, we will not repeat
the “derivation” but just provide a simple and equivalent way

to evaluate the horizon angular momentum Jh by using our
generalized Koamr superpotential (8):

Jh = 1

16π

∫

S2
h

��[∂ϕ] = 1

8

∫ π

0
dθ

√−g�tr [∂ϕ]∣∣r=rh
, (40)

which reproduces the above expression after usingm = (r2
h−

n2 + a2 + q2
)
/(2rh).

Adopting the same procedure as did in Sect. 3.1, the cal-
culation of the Euclidean action integral (21) of the KN-NUT
spacetime yields the Gibbs free energy

G = m

2
− q2rh

(
r2 + a2 − n2

)

2
(
r2
h + a2 + n2

)2 − 8a2n2
= M − �Qh

2
, (41)

which coincides with the result of Eq. (3.1) given in Ref.
[41] in the case when the magnetic charge parameter g = 0
is turned off. Furthermore, it can be also identified as

G = M − T S − ψN − �Jh − �Qh . (42)

4.2 Topological number

In order to obtain the thermodynamic topological number of
the KN-NUT spacetime, we need to get the expression of the
generalized off-shell Helmholtz free energy in advance. The
Helmholtz free energy is given by

F = G + �Jh + �Qh = M − T S − ψN . (43)

It is a simple matter to obtain the generalized off-shell
Helmholtz free energy as

F = M − S

τ
− ψN = r2

h + a2

2rh
− π

(
r2
h + a2 + n2

)

τ

+ q2
(
r2
h + a2 − n2

)

2rh
[(
r2
h + a2 + n2

)2 − 4a2n2
]2

[(
r2
h + a2)3

+2
(
r4
h + 4a2r2

h − a4)n2 + (
r2
h + a2)n4

]
. (44)

Then, the components of the vector φ are given by

φrh = r2
h − a2

2r2
h

− q2X

2r2
h

[(
r2
h + a2 + n2

)2 − 4a2n2
]3 ,

−2πrh
τ

φ� = − cot � csc �, (45)

where

X = r12
h + 3

(
2a2 − n2)r10

h + (
15a4 + 39a2n2 − 14n4)r8

h

+2
(
10a6 + 41a4n2 − 20a2n4 − 7n6)r6

h

+3
(
a2 − n2)(5a6 + 15a4n2 + 27a2n4 + n6)r4

h

+(
a2 − n2)3(6a4 + 3a2n2 − n4)r2

h + a2(a2 − n2)5
.
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Fig. 3 Zero points of the vector φrh shown in the rh − τ plane with
n/r0 = 1, q/r0 = 1 and a/r0 = 1. The generation point for the KN-
NUT spacetime is represented by the black dot with τc. At τ = τ1,
there are two KN-NUT spacetimes. Obviously, the topological number
is: W = 1 − 1 = 0

Therefore, by solving the equation: φrh = 0, one can obtain

τ = 4πr3
h

[(
r2
h + a2 + n2

)2 − 4a2n2
]3

(
r2
h − a2

)[(
r2
h + a2 + n2

)2 − 4a2n2
]3 − q2X

(46)

as the zero point of the vector field φrh . We also point out
that Eq. (46) consistently reduces to the one obtained in the
case of the four-dimensional Kerr–Newman black hole [27]
when the NUT charge parameter n vanishes.

Taking n/r0 = 1 and q/r0 = 1 as well as n/r0 = 1 for the
KN-NUT spacetime, we plot the zero points of the compo-
nent φrh in Fig. 3, and the unit vector field n on a portion of the
�−rh plane in Fig. 4 with τ/r0 = 50, respectively. In Fig. 3,
one generation point can be found at τ/r0 = τc/r0 = 41.49.
At τ = τ1, there are one thermodynamically unstable KN-
NUT spacetime and one thermodynamically stable KN-NUT
spacetime, just like the Kerr–Newman black hole [27]. In
Fig. 4, one can observe that the zero points are located at
(rh/r0,�) = (1.70, π/2), and (3.41, π/2), respectively.
Based upon the local property of the zero points, we can
obtain the topological number: W = 1 − 1 = 0 for the KN-
NUT spacetime, which is the same one as that of the Kerr–
Newman black hole [27]. Therefore, the four-dimensional
KN-NUT spacetime should be present in the large family
of black holes. Additionally, it can be concluded that even
though the KN-NUT spacetime and Kerr–Newman black
hole have undoubtedly distinct geometric topologies, they
are the same type from the viewpoint of the thermodynamic
topology, just like the RN-NUT spacetime and RN black
hole, which have been addressed in Sect. 3 and Ref. [24],
respectively.

Fig. 4 The red arrows represent the unit vector field n on a portion of
the rh −� plane for the KN-NUT spacetime with n/r0 = 1, q/r0 = 1,
a/r0 = 1 and τ/r0 = 50. The zero points (ZPs) marked with black
dots are at (rh/r0,�) = (1.70, π/2), and (3.41, π/2), respectively.
The blue contour Ci are closed loops enclosing the zero points

5 RN-NUT-AdS4 spacetime

In this section, we turn to explore the Lorentzian charged
Taub-NUT spacetime with an negative cosmological con-
stant, namely, the Lorentzian RN-NUT-AdS4 spacetime,
whose metric and Abelian gauge potential are still given
by Eqs. (6)–(7), but now f (r) = r2 − 2mr − n2 + q2 +(
r4 + 6n2r2 − 3n4

)
/ l2, in which the AdS radius l is related

to the thermodynamic pressure P = 3/
(
8πl2

)
of the four-

dimensional AdS black hole [65–67]. One can show that
the generalized Komar superpotential now obey an identity:
∇b�

ab = −6ξa/ l2 in the present case.

5.1 Consistent thermodynamics

We now investigate the thermodynamical properties within
the (ψ−N )-pair formalism of the four-dimensional Lorentzian
RN-NUT-AdS spacetime. Since we are extending the results
already appeared in the Sect. 3.1, so we will mainly collect the
needed expressions and just outline the different aspects. For
the event horizon rh , which is the location of the largest root
of the radial function: f (rh) = 0, the Bekenstein–Hawking
entropy is

S = π
(
r2
h + n2) , (47)
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while the Hawking temperature has a different expression

T = f ′(rh)
4π

(
r2
h + n2

) = 1

4πrh

(
1 − q2

r2
h + n2

+ 3
r2
h + n2

l2

)
.

(48)

On the event horizon, the electric charge and and its corre-
sponding electrostatic potential

Qh = q
r2
h − n2

r2
h + n2

, � = qrh
r2
h + n2

. (49)

The conformal mass can be evaluated as

M = m , (50)

which is associated with the timelike Killing vector: χ = ∂t .
The Misner potential is

ψ = 1

8πn
. (51)

Using the metric determinant:
√−g = (

r2 + n2
)

sin θ , one
can define the thermodynamic volume

V = 2π

∫ θ

0
dθ

∫ rh

0

√−gdr = 4

3
πrh

(
r2
h + 3n2) , (52)

which is conjugate to the pressure: P = 3/
(
8πl2

)
.

Within the framework of the extended phase space, one
can substitute the above thermodynamical quantities into the
Bekenstein–Smarr mass formula

M = 2T S + �Qh + 2ψN + 2V P , (53)

and use the identity:m = (r2
h−n2+q2)/(2rh)+

(
r4
h+6n2r2

h−
3n4

)
/(2 l2rh) to acquire the expression of the gravitational

Misner charge:

N = 4πn3

rh

[
− 1 + 3

r2
h − n2

l2
+ q2 3r2

h + n2

(
r2
h + n2

)2

]
. (54)

Then one can verify that they also completely satisfy the first
law:

dM = TdS + �dQh + ψdN + VdP . (55)

We would like to point out that the mass formulae pre-
sented here exactly correspond to the magnetic-type first law
and Smarr-like mass formula of the unconstrained ψ − N
pair formalism of the consistent thermodynamics of the
dyonic RN-NUT-AdS4 spacetimes [49,50] when the asymp-
totic magnetic charge is turned off. In particular, the above
expression for the Misner charge (54) coincides with that of
N (2) explicitly given by Eq. (57) in Ref. [49] after setting the
magnetic charge parameter to zero.

One can also follow the same steps as did in Refs. [40,49]
to derive the above Smarr-like formula. To do so, in addition
to use the generalized Komar superpotential two-form (14),
one must also introduce a dual Killing co-potential �ω to

cancel the divergence at infinity. We shall not repeat this
algebraic excise here. Instead, there is another simple way
to regulate the divergence by making a subtraction from the
massless pure NUT-charged background.

One can obtain the Gibbs free energy [50]

G = m

2
− q2rh

(
r2
h − n2

)

2
(
r2
h + n2

)2 − rh
(
r2
h + 3n2

)

2l2

= M − �Qh

2
− V P , (56)

which coincides with those computed via the Euclidean
action integral, namely G = I/β. In order to obtain this
result, one can calculate the Euclidean action [50,68] for the
Euclidean spacetime

IE = 1

16π

∫

M
d4x

√
g
(
R + 6

l2
− F2

)

+ 1

8π

∫

∂M
d3x

√
h
[
K − 2

l
− l

2
R(h)

]
, (57)

where K andR(h) are the extrinsic curvature and Ricci scalar
of the boundary metric hμν , respectively. In order to remove
the divergence, the action includes, in addition to the ordinary
Einstein–Hilbert term, the Gibbons-Hawking boundary term
and the corresponding AdS boundary counterterms [69–73].
Note that the Gibbs free energy (56) should also be identified
with

G = M − T S − ψN − �Qh . (58)

5.2 Topological number

In the following, we will investigate the topological num-
ber of the four-dimensional Lorentzian RN-NUT-AdS space-
time. The Helmholtz free energy simply reads

F = G + �Qh = M − T S − ψN . (59)

Replacing T with 1/τ and substituting l2 = 3/(8π P), then
the generalized off-shell Helmholtz free energy is given by

F = rh
2

− π
(
r2
h + n2

)

τ
+ q2rh

(
r2
h − n2

)

2
(
r2
h + n2

)2

+4π P

3
rh

(
r2
h + 3n2) . (60)

Thus, the components of the vector φ are obtained as follows:

φrh = 1

2
− 2πrh

τ
− q2 r

4
h − 6n2r2

h + n4

2
(
r2
h + n2

)3

+4π P
(
r2
h + n2) ,

φ� = − cot � csc �, (61)
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Fig. 5 Zero points of the vector φrh shown on the rh − τ plane with
q/r0 = 1, n/r0 = 1, and Pr2

0 = 0.2 for the RN-NUT-AdS4 spacetime.
The annihilation point for this spacetime is represented by the red dot
with τc. There are two RN-NUT-AdS4 spacetimes when τ = τ1. Clearly,
the topological number is: W = −1 + 1 = 0

from which one can obtain the zero point of the vector field
φrh as

τ = 4πrh
(
r2
h + n2

)3

8π P
(
r2
h + n2

)4 + (
r2
h + n2

)3 − q2
(
r4
h − 6n2r2

h + n4
) ,

(62)

which consistently reduces to the one obtained in the four-
dimensional RN-AdS4 black hole case [24] when the NUT
charge parameter n is turned off. We also point out that the
annihilation point satisfies the constraint conditions:

∂τ

∂rh
= 0 ,

∂2τ

∂r2
h

< 0 . (63)

Taking the pressure Pr2
0 = 0.2 and the NUT charge

parameter n/r0 = 1 as well as the electric charge param-
eter q/r0 = 1 for the RN-NUT-AdS4 spacetime, we plot the
zero points of φrh in the rh − τ plane in Fig. 5 and the unit
vector field n on a portion of the � − rh plane with τ = r0

in Fig. 6, respectively. In Fig. 5, one annihilation point can
be found at τ/r0 = τc/r0 = 1.10. From Fig. 6, one can find
that the zero points are located at (rh/r0,�) = (0.74, π/2),
and (1.84, π/2), respectively. According to the conclusions
in Ref. [15], it can be inferred that the second-order phase
transition occurs in the RN-NUT-AdS4 spacetime system.
Thus, it is very interesting to explore the phase transitions
of the RN-NUT-AdS4 spacetime, such as the Hawking-Page
phase transitions [74] and the P–V criticality [75] to check
the correctness of the above conjecture. In addition, for the
RN-NUT-AdS4 spacetime, we observe that the topological
number is: W = 0, and is different from that of the RN-
AdS4 black hole, which has: W = 1 [24], because the third
zero point of the RN-AdS4 black hole solution vanishes once

Fig. 6 The red arrows represent the unit vector field n on a portion of
the rh − � plane with q/r0 = 1, n/r0 = 1, Pr2

0 = 0.2 and τ/r0 = 1
for the RN-NUT-AdS4 spacetime. The zero points (ZPs) marked with
black dots are at (rh/r0,�) = (0.74, π/2), (1.84, π/2) for ZP1 and
ZP2, respectively. The blue contours Ci are closed loops surrounding
the zero points

Table 1 The topological number W , numbers of generation and anni-
hilation points for the four-dimensional Lorentzian charged Taub-NUT
spacetimes

Solutions W Generation
point

Annihilation
point

RN-NUT 0 1 0

KN-NUT 0 1 0

RN-NUT-AdS 0 0 1

the NUT charge parameter is introduced. Therefore, it indi-
cates that the NUT charge parameter has a remarkable effect
on the topological number for the static charged asymptoti-
cally local AdS spacetime. As a result, at least according to
the viewpoint of the thermodynamic topological approach,
the Lorentzian RN-NUT-AdS4 spacetime should be included
into a member of the black hole family.

6 Conclusions

Our results found in the present paper are now summarized
in the following Table 1.

In this paper, we first derive the consistent thermodynam-
ics of the four-dimensional Lorentzian charged RN-NUT,
KN-NUT, and RN-NUT-AdS spacetimes within the frame-
work of the (ψ − N )-pair formalism, which exactly cor-
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respond to the magnetic version of the full cohomogene-
ity (unconstrained) first law [41,49,50] of the dyonic NUT-
charged spactimes when the magnetic charge parameter van-
ishes. Then we investigate their topological numbers by using
the uniformly modified form of the generalized off-shell
Helmholtz free energy. We found that the RN-NUT space-
time has: W = 0, which is the same one as that of the RN
black hole [24]. We showed that the KN-NUT spacetime has:
W = 0, which is identical to that of the Kerr–Newman black
hole [27]. In addition, we also indicated that the RN-NUT-
AdS4 spacetime has: W = 0, which is different from that
of the RN-AdS4 black hole (W = 1) [24]. Therefore, one
can conclude that although the existence of the NUT charge
parameter seems to have no impact on the topological number
of the charged asymptotically locally flat spacetimes, it has
an important effect on the topological number of the charged
asymptotically locally AdS spacetime. Furthermore, it can be
demonstrated that the four-dimensional RN-NUT, KN-NUT
and RN-NUT-AdS spacetimes should be treated as generic
black holes from the standpoint of the thermodynamic topo-
logical approach.

There are two promising further topics that can be pursued
in the future. As mentioned above, one intriguing topic is to
explore the phase transitions of the RN-NUT-AdS4 space-
time. Another one is to extend the present work to the more
general dyonic cases [76] and higher-even dimensional cases
[77,78].
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39. R.A. Hennigar, D. Kubizňák, R.B. Mann, Thermodynamics of
Lorentzian Taub-NUT spacetimes. Phys. Rev. D 100, 064055
(2019). https://doi.org/10.1103/PhysRevD.100.064055

40. A.B. Bordo, F. Gray, R.A. Hennigar, D. Kubizňák, Misner gravita-
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for rotating NUTs. Phys. Lett. B 798, 134972 (2019). https://doi.
org/10.1016/j.physletb.2019.134972

65. S. Wang, S.-Q. Wu, F. Xie, L. Dan, The first laws of thermodynam-
ics of the (2+1)-dimensional BTZ black holes and Kerr-de Sitter
spacetimes. Chin. Phy. Lett. 23, 1096 (2006). https://doi.org/10.
1088/0256-307X/23/5/009

66. D. Kastor, S. Ray, J. Traschen, Enthalpy and the mechanics of AdS
black holes. Class. Quantum Gravity 26, 195011 (2009). https://
doi.org/10.1088/0264-9381/26/19/195011

123

http://arxiv.org/abs/2304.14988
https://doi.org/10.1103/PhysRevLett.129.191101
https://doi.org/10.1103/PhysRevD.107.064023
https://doi.org/10.1103/PhysRevD.107.064023
https://doi.org/10.1007/JHEP01(2023)102
https://doi.org/10.1007/JHEP01(2023)102
https://doi.org/10.1103/PhysRevD.107.024024
https://doi.org/10.1103/PhysRevD.107.024024
https://doi.org/10.1103/PhysRevD.107.084002
https://doi.org/10.1103/PhysRevD.107.084002
https://doi.org/10.1103/PhysRevD.107.084053
http://arxiv.org/abs/2303.06814
http://arxiv.org/abs/2303.13105
http://arxiv.org/abs/2304.02889
http://arxiv.org/abs/2306.13286
http://arxiv.org/abs/2304.05695
https://doi.org/10.1016/j.aop.2023.169391
https://doi.org/10.1016/j.aop.2023.169391
http://arxiv.org/abs/2306.11212
https://doi.org/10.1140/epjc/s10052-023-11561-4
https://doi.org/10.1140/epjc/s10052-023-11561-4
https://doi.org/10.1007/JHEP10(2022)174
https://doi.org/10.1007/JHEP10(2022)174
https://doi.org/10.1103/PhysRevD.100.064055
https://doi.org/10.1088/1361-6382/ab3d4d
https://doi.org/10.1007/JHEP05(2020)084
https://doi.org/10.1007/JHEP05(2020)084
https://doi.org/10.1142/9789813237278_0001
https://doi.org/10.1142/9789813237278_0001
https://doi.org/10.1016/S0550-3213(97)00777-3
https://doi.org/10.1016/S0550-3213(97)00777-3
https://doi.org/10.1103/PhysRevD.61.045004
https://doi.org/10.1103/PhysRevD.61.045004
https://doi.org/10.1103/PhysRev.133.B845
https://doi.org/10.1103/PhysRev.133.B845
https://doi.org/10.1103/PhysRevD.100.101501
https://doi.org/10.1103/PhysRevD.100.101501
http://arxiv.org/abs/2210.17504
https://doi.org/10.1103/PhysRevD.12.3019
https://doi.org/10.1103/PhysRevD.100.104016
https://doi.org/10.1103/PhysRevD.100.104016
https://doi.org/10.1007/JHEP07(2019)119
https://doi.org/10.1007/JHEP07(2019)119
https://doi.org/10.1007/s11433-020-1659-0
https://doi.org/10.1007/s11433-020-1659-0
https://doi.org/10.1103/PhysRevD.89.084007
https://doi.org/10.1103/PhysRevD.89.084007
https://doi.org/10.1103/PhysRevLett.115.031101
https://doi.org/10.1007/JHEP01(2014)127
https://doi.org/10.1007/JHEP01(2014)127
https://doi.org/10.1103/PhysRevD.103.104020
https://doi.org/10.1103/PhysRevD.101.024057
https://doi.org/10.1103/PhysRevD.102.044007
https://doi.org/10.1103/PhysRevD.103.044014
https://doi.org/10.1007/JHEP11(2021)031
https://doi.org/10.1007/JHEP11(2021)031
http://adsabs.harvard.edu/abs/1966BAPSS...14.653N
http://adsabs.harvard.edu/abs/1966BAPSS...14.653N
https://doi.org/10.1007/BF03399503
https://doi.org/10.1007/BF03399503
https://doi.org/10.1063/1.1664958
https://doi.org/10.1063/1.1666343
https://doi.org/10.1016/j.physletb.2019.134972
https://doi.org/10.1016/j.physletb.2019.134972
https://doi.org/10.1088/0256-307X/23/5/009
https://doi.org/10.1088/0256-307X/23/5/009
https://doi.org/10.1088/0264-9381/26/19/195011
https://doi.org/10.1088/0264-9381/26/19/195011


589 Page 12 of 12 Eur. Phys. J. C (2023) 83 :589
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