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Abstract We propose a logarithmic parametrization form
of energy density for the scalar field dark energy in the
framework of the standard theory of gravity, which supports
the necessary transition from the decelerated to the acceler-
ated behavior of the Universe. The model under considera-
tion is constrained by available observational data, includ-
ing cosmic chronometers data-sets (CC), Baryonic Acous-
tic Oscillation (BAO) data-sets, and Supernovae (SN) data-
sets, consisting of only two parameters α and β. The com-
binedCC+BAO+SN data-sets yields a transition redshift of
ztr = 0.79+0.02

−0.02, where the model exhibits signature-flipping
and is consistent with recent observations. For the combined
data-sets, the present value of the deceleration parameter is
calculated to be q0 = −0.43+0.06

−0.06. Furthermore, the analy-
sis yields constraints on both the parameter density value for
matter and the present value of the Hubble parameter, with
values of �m0 = 0.25849+0.00026

−0.00025 and H0 = 67.79+0.59
−0.59

km/s/Mpc, respectively, consistent with the results obtained
from Planck 2018. Finally, the study investigates how the
mass of a black hole evolves over time in a Universe with
both matter and dark energy. It reveals that the black hole
mass increases initially but stops increasing as dark energy
dominates.
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1 Introduction

In recent years, cosmological observational data from various
probes such as Type Ia supernovae (SN) [1,2], BAO [3,4],
Cosmic Microwave Background (CMB) [5,6], Large Scale
Structure (LSS) [7,8], and recent Planck collaboration [9]
have revealed a startling discovery that has challenged our
understanding of the Universe. The expansion of the Universe
does not appear to be slowing as expected but rather acceler-
ating at an alarming rate. This unexpected behavior has been
attributed to an exotic and poorly understood force known as
Dark Energy (DE). DE is a mysterious kind of energy that
has a repulsive force that counteracts the attractive force of
gravity. This strange phenomenon is supposed to be respon-
sible for the accelerating expansion of the Universe, which
was first observed in the late 1990s [1,2]. Despite numerous
efforts, the nature of DE remains a mystery and continues to
baffle cosmologists and theorists alike. The discovery of DE
has transformed our view of the Universe, and cosmologists
have offered various ideas to explain its nature and origin,
despite its lack of comprehension.

Generally, to address the issue at hand, there are two possi-
ble approaches that could be pursued. The first involves mod-
ifying the energy–momentum tensor, which may be respon-
sible for producing an anti-gravitational force that drives the
expansion of the Universe. The second approach involves
modifying the geometry component of the Einstein–Hilbert
(EH) action, which is equivalent to changing the General The-
ory of Relativity (GR) [10–13]. In fact, these two approaches
aim to provide alternative explanations for the accelerating
expansion of the Universe, which is a phenomenon that can-
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not be accounted for by classical Newtonian mechanics or
the original version of GR.

The cosmological constant (�) is by far the most simple
and widely accepted candidate. The cosmological constant
is a mathematical term developed by Albert Einstein in his
GR. It represents a constant energy density that is dispersed
uniformly over space-time, and it has an equation of state
(EoS) parameter ω� = −1. This value of ω� suggests that
the cosmological constant has a negative pressure that pro-
duces a repulsive force i.e. p� = −ρ�, which is assumed
to be responsible for the Universe’s observed acceleration.
Although the cosmological constant has been presented as
a candidate for DE, cosmologists are divided on the sub-
ject. Some researchers claim that the theoretically expected
value of the cosmological constant is much larger than the
observed value (fine-tuning problem) [14,15], implying that
it may not be the accurate explanation for DE. Others sug-
gest that the cosmological constant is a manifestation of
a more complicated and dynamic phenomenon. Therefore,
cosmologists have developed a class of models known as
dynamical DE models to address these challenges [16–18].
According to these ideas, the DE density is not constant but
varies over time, with a rate of change that depends on the
evolution of the Universe. These models can better explain
observable features of the Universe, such as the accelera-
tion of its expansion, by enabling the DE density to vary
dynamically. Dynamical DE models come in various forms,
including scalar field models, modified gravity models, and
models based on extra dimensions. While each model has its
unique features and predictions, they all share the common
goal of resolving the difficulties associated with the cosmo-
logical constant model. One of the most popular and widely
accepted forms of DE is the quintessence scalar field φ with
EoS ω > −1 [19,20], which is a type of scalar field that
serves as a dynamical quantity with a variable density in
space-time. Unlike the cosmological constant model, which
assumes a constant energy density for DE. Depending on the
ratio of its kinetic energy (KE) to potential energy (PE), the
quintessence scalar field can be either attractive or repulsive.
If the KE is larger than the PE, the scalar field is repulsive and
causes the Universe’s accelerated expansion. When the PE
exceeds the KE, the scalar field attracts and slows the expan-
sion of the Universe. In other terms, if the KE of the scalar

field is very small in comparison to PE i.e.
.
φ

2

2 << V (φ),
acceleration in the Universe can be predicted [21–24]. In
addition, a number of dynamical DE models exist, includ-
ing phantom with EoS ω < −1 [25,26], k-essence [27,28],
Chaplygin gas model [29–31], tachyon [32], fermion fields
[33] and generalized scalar-fermion fields (g-essence) [34].

Recently, Singh et Nagpal [35], has explored the properties
and behavior of DE in the Friedmann-Lemaître-Robertson-
Walker (FLRW) cosmology using the EDSFD parametriza-

tion. The EDSFD model, which describes the evolution of a
scalar field over time, is used to investigate the large-scale
evolution of the Universe and the properties of DE. The
authors presented analytical and numerical solutions for the
EDSFD model and analyze its behavior under different con-
ditions. Pacif et al. [36] used a scalar field source to examine
late-time acceleration in the Universe. The authors investi-
gated the observational constraints on the scalar field model
and use statefinder diagnostics to analyze the properties of
the scalar field. Their results suggest that the scalar field
model is consistent with observational data and could pro-
vide a viable explanation for the late-time acceleration of the
Universe. Moreover, Bairagi [37] examined the properties of
DE models in the context of non-canonical scalar fields in
the framework of Einstein–Aether Gravity. The author pro-
posed parametrizations of the DE model that can be used
to study the evolution of the Universe and investigate the
properties of the non-canonical scalar field. Debnath and
Bamba [38] investigated the behavior of DE models in a
D-dimensional fractal Universe. The authors considered a
non-canonical scalar field in the background of the Universe
and propose several parametrizations to model the DE. Kar
et al. [39] investigated the relationship between two theo-
retical frameworks in physics, namely the Dirac-Born-Infeld
scalar field DE model and f (Q) gravity. The authors inves-
tigated how the coupling between these two models affects
the mass accretion of condensed bodies. Sharma, et al. [40]
investigated the behavior of the scalar field models of Barrow
holographic DE in the context of f (R, T ) gravity.

Motivated by the previous discussions, we consider the
parametric reconstruction approach to investigate the behav-
ior of the DE model within the framework of GR while
considering the presence of the scalar field. This approach
involves finding an appropriate parameterization of the cos-
mological parameters that can accurately represent the evo-
lution of the Universe and its components, such as DE and
dark matter, over time [41–43]. In this work, we have inves-
tigated a parametrization of scalar field energy density ρφ

as a logarithmic function of redshift in flat FLRW space-
time (Sect. 3 studied the fundamental features of the speci-
fied ρφ), causing a phase transition from early deceleration to
present cosmic acceleration. The model parameters are con-
strained using the cosmic chronometers (CC), BAO, and SN
Ia data-sets. Further, in many cosmological models, the fate
of black holes in a Universe filled with DE is still a topic of
debate [44–46]. Thus, it is important to have a comprehen-
sive understanding of these astrophysical objects and their
behavior throughout the evolution of the Universe [47]. This
paper aims to investigate the effect of the accretion process of
scalar field DE on black holes in a spatially flat FLRW Uni-
verse. The paper is presented as follows: The basic equations
of GR coupling with the scalar field are presented in Sect. 2.
In Sect. 3, we obtain the cosmological solutions using a loga-
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rithmic parametrization of the scalar field energy density and
then derive the corresponding cosmological parameters. In
Sect. 4, we employ the combined CC+BAO+SN data-sets
to obtain the best-fit values of model parameters. Moreover,
we investigate the behavior of cosmological parameters for
model parameter values constrained by observational data-
sets. In Sect. 5, We use statefinder diagnostic to distinguish
our scalar field cosmological model from other DE models.
Further in Sect. 6, we investigate the evolution of black hole
mass. Finally, we discuss and reach a conclusion on our find-
ings in Sect. 7.

Throughout the paper, we have adopted the convention of
setting 8πG = c = 1.

2 Basic equations of the model

The gravitational interactions in GR theory are governed by
the following action,

SEH = −
∫

1

2
R
√−gd4x +

∫
Lm

√−gd4x, (1)

where R and Lm represent the Ricci scalar and the matter
Lagrangian density, respectively. The determinant of the met-
ric is represented by g.

The Einstein field equations for the GR theory, derived by
varying the action (1) with respect to the metric tensor gμν ,
are given by

Rμν − 1

2
gμν R = Tμν, (2)

where Tμν is the energy–momentum tensor for the perfect
type of fluid described by

Tμν = −2√−g

δ
(√−gLm

)
δgμν

. (3)

Taking into consideration the spatial isotropy and homo-
geneity of the Universe. Here, we presume the flat FLRW
metric which represents a four-dimensional space-time that
is both homogeneous, in the sense that it has the same prop-
erties at each and every point in space, and isotropic, in the
sense that it appears the same in all directions. This assump-
tion allows us to model the Universe’s large-scale structure
and study the evolution of its geometry through time,

ds2 = dt2 − a2(t)[dx2 + dy2 + dz2], (4)

where a(t) is the scale factor used to estimate cosmic expan-
sion at time t . The Ricci scalar derived corresponding to the
above line element is R = −6(Ḣ + 2H2), where H = .

a
a

is the Hubble parameter. We assumed a flat geometry in our
analysis because it is a natural prediction of the inflation-
ary paradigm and is also supported by various cosmological
observations, including the CMB measurements [5,6] and

the LSS surveys [7,8]. Further, a flat universe has the advan-
tage of being the simplest and most economical model, as
it requires only one more parameter than the base �CDM
model.

The energy–momentum tensor for a perfect fluid, which
will be assumed here, is written in a form that takes into
account the fluid’s energy density, pressure, and velocity.
This tensor is a key notion in GR that defines how matter and
energy are distributed throughout space-time. When dealing
with a perfect fluid, the energy–momentum tensor reduces
to a diagonal form, with each component corresponding to a
different physical quantity of the fluid. This tensor is crucial
in predicting the behavior of astrophysical objects such as
stars, galaxies, and even the entire Universe. The energy–
momentum tensor is, Tm

μν = (ρm+ pm)uμuν− pmgμν , where
ρm and pm are respectively the energy density and pressure
of matter.

The Friedmann equations, which explain the dynamics of
the Universe in GR theory, are written as,

3H2 = ρm, (5)

and

2Ḣ + 3H2 = −pm . (6)

The action of the scalar field is given by a mathematical
expression that illustrates how the scalar field interacts with
gravity. The scalar field is a hypothetical field that has been
postulated to explain numerous physics phenomena, such as
DE, inflation, and the Higgs mechanism. The action of the
scalar field is a fundamental concept in scalar-tensor theories
of gravity, which attempt to generalize Einstein’s theory of
GR. In this context, the scalar field plays a crucial role in
modifying the strength of the gravitational force, leading to
a rich variety of physical phenomena. The action of the scalar
field (or quintessence model) is usually written as a function
of the scalar field itself, and its derivatives,

Sφ =
[

1

2
∂μφ∂μφ − V (φ)

] √−gd4x, (7)

where φ is the scalar field and V (φ) is the scalar field poten-
tial.

Moreover, the action Sφ varies with respect to the scalar
field, leading to the Klein–Gordon equation for metric (4) as,

..

φ + 3H
.

φ + V ′ (φ) = 0, (8)

where V ′ (φ) = dV
dφ

.
Hence, the energy–momentum tensor of the scalar field is

derived as,

T φ
μν = (ρφ + pφ)uμuν − pφgμν, (9)
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where ρφ and pφ are respectively the energy density and
pressure of the scalar field, given by [48,49]

ρφ = 1

2

.

φ
2 + V (φ) , (10)

and

pφ = 1

2

.

φ
2 − V (φ) . (11)

Here, the potential energy V (φ) and kinetic energy
.
φ

2

2 are
scalar field functions that correspond to each pair of (t, x) in
space-time.

In addition, the scalar curvature coupling, which couples
the scalar field to the Ricci curvature scalar, is commonly
used to introduce the coupling between the scalar field and
the gravitational field. This term changes the gravitational
constant, resulting in a change to the Einstein equations. The
coupled action can be expressed as,

S = SEH + Sφ,

= −
∫

1

2κ
R
√−gd4x +

∫
Lm

√−gd4x

+
[

1

2
∂μφ∂μφ − V (φ)

] √−gd4x . (12)

Hence, for a general scalar field with the matter as the
source, the Friedmann equations can be rewritten as,

3H2 = ρe f f , (13)

and

2Ḣ + 3H2 = −pef f , (14)

where ρe f f = ρm + ρφ and pef f = pm + pφ are the effec-
tive, total energy density, and pressure, respectively. Here, we
suppose that the total of the energy and matter included in
the Universe is made up of two types of fluid, one of which
corresponds to non-relativistic matter or pressure-less cold
dark matter (pm = 0) and the other a scalar field, which
works as a candidate for dynamical DE (varies with time t)
and represents cosmic acceleration in late time.

The continuity equation is written as,
.
ρm + 3ρmH + .

ρφ + 3
(
ρφ + pφ

)
H = 0. (15)

Now, we consider that matter and scalar field are both
conserved. Hence, the conservation equations for matter and
scalar field are derived as,

.
ρm + 3ρmH = 0, (16)

.
ρφ + 3

(
ρφ + pφ

)
H = 0. (17)

Solving Eq. (16), we obtain the solution for the matter-
energy density ρm as,

ρm = ρm0a
−3, (18)

where ρm0 is an arbitrary integration constant and is inter-
preted as the current value of the energy density of the matter.

Also, using Eq. (17), we obtain
.
ρφ = −3H

(
1 + ωφ

)
ρφ, (19)

where ωφ = pφ

ρφ
represents the EoS (Equation of State)

parameter of the scalar field φ.
Using Eq. (17), the EoS parameter can be calculated as,

ωφ = −1 − 1

3H

( .
ρφ

ρφ

)
, (20)

where the dot represents the derivative with respect to cosmic
time t .

3 The cosmological model

To solve a system of Eqs. (13) and (14) that comprises just
two independent equations with three unknowns H , ρφ and
pφ , we require some extra constraint equations. Investigating
models beyond the cosmological constant is essential since
the cosmological constant alone cannot adequately explain
the Universe’s accelerating expansion. One method for inves-
tigating these models is to explicitly parametrize the EoS
parameter or the energy density. In the context of DE, the
EoS parameter represents the relationship between pressure
and energy density. The EoS parameter is supposed to be
constant across time in the standard cosmological model,
with a value of −1 for the cosmological constant. However,
allowing the EoS value to change over time can give insight
into the underlying physics of DE. The Chevallier–Polarski–
Linder (CPL) parametrization is a simple two-parameter
model which may capture deviations from a constant EoS
value [50,51]. Much more complicated parametrizations,
such as the Jassal–Bagla–Padmanabhan (JBP) parametriza-
tion [52,53], the logarithmic parametrization [54,55], the BA
parametrization [56], can also be used to investigate DE sce-
narios beyond the cosmological constant. Another method is
to parametrize the energy density of DE as a function of red-
shift z (or equivalently, cosmic time t). This may be accom-
plished using a variety of ways, including polynomial expan-
sions and principal component analysis [35,57–60]. These
approaches can shed light on the behavior of DE during vari-
ous cosmic epochs. Here, we assume that the energy density
for the scalar field is appropriately parametrized as a source
of DE in the form,

ρφ (z) = ρc0 log (α + βz) , (21)

where α and β are constants, and ρc0 is the current critical
density of the Universe. These constants can be estimated
from observational data-sets. The specific choice of a log-
arithmic energy density for the scalar field is motivated by
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several reasons. Firstly, logarithmic potentials (or densities)
have been explored in the context of scalar fields in var-
ious high-energy physics theories and cosmological mod-
els. For example, logarithmic potentials can arise naturally
in the framework of supersymmetry or string theory, where
they can emerge as effective potentials in certain limits or as
the result of symmetry breaking mechanisms [61–63]. While
there is no direct theoretical prediction for the specific log-
arithmic potential used in our study, it is motivated by the
potential relevance and prevalence of logarithmic potentials
in the broader context of high-energy physics. Secondly, the
logarithmic parametrization allows for a flexible and versa-
tile description of the scalar field’s energy density. By intro-
ducing logarithmic dependence, the parametrization captures
potential deviations from more commonly used functional
forms and can account for different behaviors and features
of the scalar field [38]. It is important to note that our aim is
not to claim a specific high-energy physics theory that pre-
dicts the exact form of the logarithmic potential used in Eq.
(21). Rather, we adopt this parametrization as a phenomeno-
logical approach to investigate the behavior and implications
of the scalar field dark energy model. It serves as a tool to
explore the compatibility of the model with observational
data and to gain insights into the dynamics of DE. In addi-
tion, the relationship between redshift z and scale factor a (t)
is defined by the formula a (t) = a0

(1+z) , where a0 = 1 is the
present value of scale factor, which leads to the relationship:
.

H = − (1 + z) H (z) dH(z)
dz . Using this relationship, we can

express the energy density of matter field ρm as a function of
redshift z,

ρm (z) = ρm0 (1 + z)3 . (22)

From Eqs. (13), (21), and (22), we obtain

3H2 = ρm0 (1 + z)3 + ρc0 log (α + βz) . (23)

Now, we introduce the dimensionless density parameter,
which is a measure of the total density of the Universe relative
to the critical density ρc, i.e. � = ρ

ρc
, where ρc = 3 H2 is

defined as the density necessary for the Universe to have
a flat geometry (i.e., zero curvature). Using Eq. (23), the
dimensionless Hubble parameter E (z) in terms of matter
density parameter can be written as,

E2 (z) = H2 (z)

H2
0

= �m0 (1 + z)3 + log (α + βz) , (24)

where �m0 = ρm0

3H2
0

and H0 are the present values of the

matter density and Hubble (i.e. at z = 0) parameters, respec-
tively. Equation (24) introduces a logarithmic correction to
the DE term, which modifies the behavior of DE as the Uni-
verse evolves. This modification is a deviation from the stan-
dard �CDM model, which is the currently accepted standard
model of cosmology and is intended to account for the possi-

bility of new physics beyond the cosmological constant. The
cosmological constant � is a constant term that does not vary
with time or the expansion of the Universe. However, the log-
arithmic correction introduces a dependence on the Hubble
parameter, which means that the DE term can vary as the Uni-
verse evolves. For �CDM model (ωφ = −1), in the absence
of a scalar field, the general formula for the expansion rela-
tion (24) is given directly as, E2 (z) = �m0 (1 + z)3 + ��,
where �� = �

3H2
0

. Moreover, for z = 0, we can establish

an extra constraint on the parameters as α = exp (1 − �m0).
This reduces the model’s parameters to three i.e. H0, �m0,
and β, which will be constrained using the most recent cos-
mological observational data-sets. For �CDM model, the
extra constraint is given as �m0 + �� = 1.

The deceleration parameter q (z) is a dimensionless quan-
tity that measures the acceleration of the expansion of the
Universe. It is defined as

q (z) = −
..
a (z) a (z)

.
a

2
(z)

. (25)

The deceleration parameter q (z) determines whether the
Universe’s expansion is accelerating or decelerating. If q <

0, the Universe is undergoing accelerated expansion, which
indicates that the rate of expansion is accelerating throughout
time. This scenario is commonly associated with the presence
of DE, a component that creates negative pressure and accel-
erates the expansion of the Universe. On the other hand, if
q > 0, then the expansion rate of the Universe is decreas-
ing over time. This means that the Universe is decelerating,
which can be caused by the presence of matter or radiation,
both of which create positive pressure and resist the Uni-
verse’s expansion. It is interesting to note that the decelera-
tion parameter q (z) can also be represented in terms of the
dimensionless Hubble parameter, as shown below,

q(z) = −1 + (1 + z)

E (z)

dE (z)

dz
. (26)

Using Eqs. (24) and (26), we get

q(z) = −1 +
(1 + z)

[
3�m0(1 + z)2 + β

α+βz

]

2
[
�m0(1 + z)3 + log(α + βz)

] . (27)

Using Eq. (20), the EoS parameter for the scalar field can
be written in terms of redshift z as,

ωφ (z) = −1 + β(1 + z)

3(α + βz) log(α + βz)
. (28)

Hence, the effective EoS parameter for our model is,

ωe f f = pef f
ρe f f

= pφ

ρm + ρφ

, (29)
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where pef f and ρe f f represent the total pressure and energy
density of the Universe, respectively. So we have

ωe f f (z) = β(1 + z) − 3(α + βz) log(α + βz)

3(α + βz)
[
�m0(1 + z)3 + log(α + βz)

] . (30)

The density parameters �m and �φ for matter and scalar
field in terms of z are obtained as,

�m (z) = ρm

3H2 = �m0(1 + z)3

log(α + βz) + �m0(1 + z)3 , (31)

and

�φ (z) = ρφ

3H2 = log(α + βz)

log(α + βz) + �m0(1 + z)3 , (32)

respectively.
From Eqs. (10), (11), (13) and (14), the expressions for

the potential energy V (φ) and kinetic energy
.
φ

2

2 of the scalar
field are obtained as,

V (φ) = H2
0

2

[
6 log(α + βz) − β(1 + z)

α + βz

]
, (33)

and
.

φ
2

2
= βH2

0 (z + 1)

2(α + βz)
. (34)

respectively. The model described in Eq. (24) is heavily
influenced by its parameters (H0,�m0, β), which dictate
its behavior and cosmological properties. To better under-
stand the implications of this model, we analyze recent
observational data-sets in the next section. Specifically, they
aim to constrain the values of key parameters (H0,�m0, β)

and examine how this affects the behavior of cosmological
parameters.

4 Data fittings and numerical results

To examine the validity of this scenario, we employ observa-
tional data-sets from Hubble measurements, BAO, and pan-
theon SNIa samples integrated with other SNIa data points.
In this section, we’ll go through how we use these data-sets.
To adapt the data-sets, we employ Bayesian statistical anal-
ysis and the emcee package [64] to perform a Markov chain
Monte Carlo (MCMC) simulation.

4.1 Cosmic chronometer (CC) data-sets

The χ2 function is a statistical tool used in cosmology to
determine the best-fit values for the parameters of a given
cosmological model based on observational data. In this case,
we are considering Hubble parameter measurements derived
from the differential age (DA) method, which is also known
as CC data-sets. To be more exact, we are using 31 points

from the Refs. [65–67]. These points show Hubble parameter
observations at various redshifts, which can be employed to
constrain the Universe’s expansion history and test various
cosmological scenarios. The χ2 function is defined as,

χ2
CC =

∑
i

[H(θ, zi ) − Hobs(zi )]2

σ(zi )2 , (35)

where i runs over the 31 data points, H(θs, zi ) denotes the
predicted value of the Hubble parameter at redshift zi for
a given set of cosmological parameters θ = (H0,�m0, β),
Hobs(zi ) denotes the observed value of the Hubble param-
eter at redshift zi , and σ(zi ) denotes the uncertainty in the
measurement of Hi . The goal is to find the values of θ that
minimize the value of χ2

CC . Typically, an MCMC approach
is used, which explores the parameter space and determines
the regions with the greatest likelihood given the data.

4.2 Baryon acoustic oscillations (BAO) data-sets

BAOs are a feature of the large-scale structure of the Universe
that emerge from primordial density perturbations in the
baryon-photon plasma in the early Universe. These pertur-
bations produced pressure waves, which propagated through
the plasma until the Universe became transparent to photons,
a process known as recombination. At this point, the pres-
sure waves imprinted a characteristic scale on the distribution
of matter, which can still be seen in the clustering of galax-
ies today. BAO emerge as peaks in the cosmic microwave
background radiation power spectrum and in the distribu-
tion of galaxies on large angular scales. We can deduce the
characteristic scale of the BAO by measuring the position
of these peaks, which is connected to the sound horizon at
recombination and serves as a standard ruler for cosmic dis-
tance measurements. In this regard, we use BAO data-sets
from several surveys, including the Six Degree Field Galaxy
Survey (6dFGS), the Sloan Digital Sky Survey (SDSS), and
the LOWZ samples of the Baryon Oscillation Spectroscopic
Survey (BOSS) [68–70]. These studies have yielded precise
measurements of the positions of the BAO peaks in the clus-
tering of galaxies at various redshifts, allowing us to constrain
the expansion history of the Universe and test various cos-
mological scenarios. This work examines six points of BAO
data-sets as well as the cosmology stated below,

dA(z) =
∫ z

0

dy

H(y)
, (36)

Dv(z) =
[
d2
A(z)z

H(z)

]1/3

, (37)

where dA(z) is the comoving angular diameter distance, and
Dv is the dilation scale. Moreover, the χ2 function for BAO

123



Eur. Phys. J. C (2023) 83 :670 Page 7 of 14 670

data-sets is defined as,

χ2
BAO = XTC−1

BAO X. (38)

Here, X depends on the considered survey and C−1
BAO is

the inverse covariance matrix [70].

4.3 Type Ia supernova (SN Ia) data-sets

SN Ia are one of the most significant cosmic probes used to
investigate the nature of DE and the Universe’s accelerating
expansion. These SN are assumed to be the consequence of a
white dwarf star exploding in a binary system, and they have
a highly distinctive light curve, making them great “stan-
dard candles” for estimating cosmic distances. By compar-
ing the observed luminosity of SN Ia to their predicted intrin-
sic luminosity, we can determine their distance from us and
chart the expansion history of the Universe. This approach
has been widely employed in modern cosmology and has
produced significant evidence for the presence of DE, the
enigmatic component responsible for the Universe’s acceler-
ating expansion. In this perspective, the Pantheon collection
of SN Ia is an especially valuable data-sets, with 1048 data
points spanning a wide range of redshifts, from 0.01 to 2.26.
The Pantheon sample is constructed from the DE Survey and
the Supernova Legacy Survey, among other sources, and has
been extensively calibrated to eliminate systematic errors and
increase the accuracy of distance estimations [71,72].

The χ2 function for SN data-sets is defined as,

χ2
SN =

1048∑
i, j=1

�μi

(
C−1
SN

)
i j

�μ j , (39)

where �μi = μth − μobs represents the difference between
the observational and theoretical distance modulus, and C−1

SN
denotes the data’s inverse covariance matrix. In addition, we
define μ = mB − MB , where mB represents the measured
apparent magnitude at a certain redshift and MB represents
the absolute magnitude. The nuisance parameters in the pre-
vious equation were calculated using a new approach called
as BEAMS with Bias Corrections (BBC) [73]. The theoreti-
cal value is calculated as,

μth(z) = 5log10
dL(z)

1Mpc
+ 25, (40)

dL(z) = (1 + z)
∫ z

0

dy

H(y, θ)
, (41)

where dL(z) represents the luminosity distance.

4.4 CC+BAO+SN data-sets

To perform the combined data-sets: CC, BAO, and SN sam-
ples, we employ the total joint χ2 function as, χ2

total =

χ2
CC +χ2

BAO +χ2
SN . The best-fit values of the model param-

eters can be estimated by minimizing the corresponding χ2

value, which is analogous to the maximum likelihood anal-
ysis. By using the aforementioned combined CC+BAO+SN
data-sets, Fig. 1 depicts the statistical findings for the model
with 1 − σ and 2 − σ likelihood contours. Table 1 also
corresponds to the values of the parameter space estimated
from the combined data-sets. Figures 2 and 3 depict the
error bar plots for the considered model and the �CDM or
standard cosmological model, with matter density parame-
ter �0

m = 0.315 ± 0.007 and H0 = 67.4 ± 0.5 km/s/Mpc
[9]. So, as seen in the figures, our model closely matches
the observed data. In this study, we have combined data-sets
from three different observational techniques, namely, CC,
BAO, and SN data-sets, to estimate the current value of H0

at z = 0. Our analysis yielded a value of H0 = 67.79+0.59
−0.59

km/s/Mpc, with a statistical uncertainty of ±0.59 km/s/Mpc.
This is in agreement with the recent findings of Aubourg et
al. [74], who also utilized a combination of BAO measure-
ments, CMB data, and a reanalysis of SN data to constrain
cosmological parameters and test DE models. Remarkably,
our results align with their outcomes, further supporting the
robustness of our analysis. Notably, our approach is model-
independent, allowing us to obtain consistent measurements
of the present value of the Hubble parameter H0 that is fully
in line with the results from the Planck-2018 study on the
standard cosmological model (�CDM) [9]. Moreover, the
parameterization method has been employed in various DE
models to obtain a comparable value for the Hubble param-
eter H0 [75–77].

4.5 The model’s cosmological parameters and their
behavior

The deceleration parameter plays a fundamental role in
understanding the dynamics and evolution of the Universe.
By studying the rate at which the Universe is expanding,
we can learn about its past and future behavior. Equation
(27) used to calculate the deceleration parameter contains
three parameters that are constrained by observational data.
With these numerical data, we can examine the evolution
of the deceleration parameter and draw predictions about
the Universe’s expansion rate. This knowledge can help
us better comprehend the fundamental features of the Uni-
verse. Furthermore, investigating the deceleration parameter
might help us assess the validity of our cosmological model.
Whereas the negative value of q represents the accelerat-
ing phase, the positive value of q represents the decelerating
phase. From Fig. 4, the deceleration parameter q varies with
z from positive to negative. This shows a transition from
early deceleration q > 0 to the Universe’s current accel-
eration q < 0. The transition redshift is ztr = 0.79+0.02

−0.02
corresponding to the combined CC+BAO+SN data-sets
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Fig. 1 The curves for the 1 − σ

and 2 − σ confidence levels can
be observed for the model
parameters H0, �m0, and β,
when using the CC+BAO+SN
data-sets

Fig. 2 The variation of Hubble parameter H(z) concerning redshift z can be observed through the graph. The black dashed line displays the
�CDM model, while the red line represents the logarithmic model curve. The blue dots in the graph depict error bars

Table 1 The best-fit values for the parameter space can be determined by utilizing the combined CC+BAO+SN data-sets

Parameters H0 �m0 α = exp (1 − �m0) β q0 ztr ω0

Priors (60, 80) (0, 1) − (−10, 10) − − −
CC + BAO + SN 67.79 ± 0.59 0.25849+0.00026

−0.00025 2.0991+0.00054
−0.00052 0.77+0.24

−0.23 −0.43+0.06
−0.06 0.79+0.02

−0.02 −0.84+0.06
−0.05
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Fig. 3 The variation of distance modulus μ(z) concerning redshift z can be observed through the graph. The black dashed line displays the �CDM
model, while the red line represents the logarithmic model curve. The blue dots in the graph depict error bars

Fig. 4 The plot shows the relation between the deceleration param-
eter (q) and redshift (z) using the values constrained from the com-
bined CC+BAO+SN data-sets. The figure also includes a comparison
between our model and the �CDM

[78–80]. The present value of the deceleration parameter is
q0 = −0.43+0.06

−0.06. Recently, in a study by Capozziello et
al. [77], an empirical value of the deceleration parameter q0

was determined to be −0.56 with a statistical uncertainty of
±0.04. This finding highlights the significance ofq0 in under-
standing the dynamics of the Universe. In addition, several
other empirical values of q0 in the vicinity of the results
obtained in our analysis can be found in the references pro-
vided [58,59,81].

According to Fig. 5, the densities of matter and scalar field
DE decrease as the Universe expands. In late time, the mat-
ter density approaches zero, while the scalar field DE density
approaches a minimal value. The decrease in the matter and
scalar field DE densities as the Universe expands is due to
energy conservation in GR. The idea that matter density tends
to zero in the late Universe has important consequences for

Fig. 5 The plot shows the relation between the densities of scalar field
DE and matter (ρφ and ρm ) and redshift (z) using the values constrained
from the combined CC+BAO+SN data-sets

the Universe’s future evolution. The Universe will grow pro-
gressively dark and cold when there is no matter left to form
new stars or galaxies, a condition called the “heat death”
of the Universe. This scenario results from the second law
of thermodynamics, which states that entropy, or disorder,
can constantly rise over time. In addition, since scalar field
DE density tends to have a small value means that the Uni-
verse can continue to expand at an accelerating rate in the
future. This is known as the “big rip” scenario, in which the
Universe’s expansion grows so rapidly that it pulls apart all
matter, including galaxies and stars.

In this context, the EoS parameter is a good tool for
describing the Universe’s behavior in terms of its expan-
sion rate. The EoS parameter combines the pressure (p)
and energy density (ρ) of the cosmic fluid and is defined
as ω = p/ρ. Depending on the nature of the cosmic fluid,
the EoS parameter ω can have different values. For non-
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Fig. 6 The plot shows the relation between the EoS parameter (ωφ and
ωe f f ) and redshift (z) using the values constrained from the combined
CC+BAO+SN data-sets

relativistic matter, such as dark matter, ω = 0. In addition,
ω = 1

3 in the case of relativistic matter, such as radiation.
The value of the EoS parameter ω can be used to classify the
Universe’s decelerating and accelerating behavior. There are
three possible eras for a Universe with positive acceleration:

• Quintessence era: −1 < ω < − 1
3 ,

• Phantom era: ω < −1,
• Cosmological constant era: ω = −1.

From Fig. 6, it is seen that both the EoS parameter for
the scalar field and the effective EoS parameter exhibit
accelerating behavior. The effective EoS parameter begins
in the matter-dominated region and progresses through the
quintessence phase before reaching a constant value in the
cosmological constant region. While the EoS parameter
for the scalar field shows the behavior of the quintessence
throughout the cosmic evolution as expected and tends to
the cosmological constant in the future, which leads to
behavior similar to the effective EoS parameter. As men-
tioned in Sect. 1, the literature extensively discusses the
quintessence behavior of DE in the presence of a scalar field
source, employing various parameterizations. In our study,
we have substantiated this quintessence behavior by deter-
mining the current values of the scalar field EoS param-
eter. The constrained values of the model parameters cor-
respond to ω0 = −0.84+0.06

−0.05. This result provides strong
evidence for the quintessence nature of DE and aligns with
previous findings in the field [82,83]. In previous studies,
Singh and Nagpal (2020) explored the behavior of the EoS
for DE using the EDSFD parametrization, finding a range of
−1 < ω0 < −0.2. On the other hand, Debnath and Bamba
[38] investigated different parametrizations including Linear,
CPL, JBP, and Efstathiou, and obtained specific values for
ω0: −0.738, −0.796, −0.755, and −0.765, respectively.

Fig. 7 The plot shows the relation between the density parameters (�φ

and �m ) and redshift (z) using the values constrained from the combined
CC+BAO+SN data-sets

Figure 7 depicts the evolution density parameter for mat-
ter and scalar field. According to Fig. 7, the early Universe
is dominated by non-relativistic matter, such as dark matter
and baryonic matter, while the scalar field density param-
eter is negligible. When the Universe expands, the matter
density parameter decreases as the volume of the Universe
increases, but the scalar field density parameter becomes
dominant at later times, leading to an acceleration of the
expansion of the Universe. For this model, using the com-
bined CC+BAO+SN data-sets, we found the best-fit value
of the matter density parameter as �m0 = 0.25849+0.00026

−0.00025,
which is somewhat lower than the value reported by the
Planck measurement [9].

The scalar field, which is responsible for DE, is a mys-
terious kind of energy that pervades the Universe and is
assumed to be driving the Universe’s accelerating expansion.
Figures 8 and 9 also show the evolution of the kinetic and
potential energy of the scalar field. As time passes, the scalar
field changes from a high-energy state to a lower-energy one.
This can be observed in the behavior of kinetic and poten-
tial energy, which both decrease from high positive to low
positive values [36,39,40,84,85].

5 Statefinder diagnostic

The study of the geometrical parameters of the Universe is a
fundamental part of modern cosmology. The statefinder pair
(r , s), which are geometric quantities directly derived from
the metric, is an essential diagnostic tool used to examine
the nature of DE. The statefinder parameters are defined by
Sahni et al. [86,87] as follows:

r =
...
a

aH3 = 2q2 + q −
.
q

H
, (42)
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Fig. 8 The plot shows the relation between the kinetic energy for the

scalar field (
.
φ

2

2 ) and redshift (z) using the values constrained from the
combined CC+BAO+SN data-sets

Fig. 9 The plot shows the relation between the potential energy for the
scalar field (V (φ)) and redshift (z) using the values constrained from
the combined CC+BAO+SN data-sets

s = (r − 1)

3
(
q − 1

2

) . (43)

The dimensionless statefinder parameters r and s are cou-
pled to the higher derivatives of the scale factor. They are
model-independent and can differentiate between several DE
scenarios based purely on Universe geometry. Especially, for
the spatially flat �CDM model, the statefinder parameters are
r = 1 and s = 0. Different DE models have various values
for the statefinder parameters. For example, the quintessence
model has r < 1 and s > 0. The Chaplygin gas model has
r > 1 and s < 0. Finally, the holographic DE model has
r = 1 and s = 2

3 . According to Fig. 10 (r − s plane), the
model under consideration has starting values of r < 1 and
s > 0, indicating that the scalar field in the Universe behaves
as a quintessence. However, as time progresses, the model
approaches the �CDM model with r = 1 and s = 0. On the
other hand, Fig. 11 (r − q plane) also suggests that while the
Universe in the model is currently filled with a quintessential
fluid, it is expected to gradually de-Sitter (dS) phase (r = 1
and q = −1), in which the Universe is dominated by a cos-

Fig. 10 The plot shows the r − s plane using the values constrained
from the combined CC+BAO+SN data-sets with −1 ≤ z ≤ 4

Fig. 11 The plot shows the r − q plane using the values constrained
from the combined CC+BAO+SN data-sets with −1 ≤ z ≤ 4

mological constant, where the expansion of the Universe is
accelerating at a constant rate. We can conclude the behavior
of the statefinder parameters in the model being studied is
consistent with the behavior of the cosmological parameters
discussed in the previous section.
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6 Accretion process in scalar field DE model

The study of black hole accretion is an important topic of
research in astrophysics. As matter falls into a black hole, it
is heated to extremely high temperatures and emits radiation
that astronomers can observe. To investigate the accretion
process, it is frequently believed that the black hole fluid rep-
resents a tiny fraction of the Universe’s total matter content
and that no matter from the black hole is transformed from
dark matter to DE as the Universe expands. This assumption
is based on the premise that black holes emerge as a result of
the collapse of massive stars, which are predominantly con-
stituted of baryonic matter. On the other hand, dark matter
is assumed to be a non-baryonic kind of matter that inter-
acts with other forms of matter, including black holes, very
weakly. As a result, it is widely considered that the amount
of dark matter falling onto a black hole during the accretion
process is insignificant in comparison to the amount of bary-
onic matter. In this paper, we consider the accretion equation
developed by Babichev et al. [44], which is premised on the
conservation of the energy–momentum tensor of a perfect
non-self-gravitating fluid in the Schwarzschild space-time
[88], and a mass variation term that can be supported by
geometrical properties of the energy–momentum tensor in
diagonal metrics [47].

For an asymptotic observer, the black hole mass rate can
be written as [44,47,89],
.

M = 4π AM2 (
ρe f f + pef f

)
, (44)

where A is a constant [44]. M represents the mass of the
black hole and ρe f f = ρm + ρφ and pef f = pφ are the total
(effective) energy density and pressure of the Universe.

Using Eqs. (13), (14) and (24) in Eq. (44), we obtain the
black hole mass as a function of redshift,

M(z) = 1

8π AH0
√

�m0(z + 1)3 + log(α + βz) − c1
, (45)

where c1 is a constant of integration.
As seen in Fig. 5, the matter gets diluted quicker than DE

because a huge quantity of energy transfers from matter to
DE as the Universe expands. Figure 12 shows that the mass
of black holes in this scenario increases over time for some
values of A. Figure 12 shows that the mass of black holes in
this scenario increases over time for some values of A. The
rate of growth decreases and finally ceases when DE becomes
the dominant component of the Universe. Furthermore, the
figure implies that in this scenario, black holes can reach a
maximum mass. This is due to the fact that as the Universe
expands, the available mass for black holes to accrete dimin-
ishes, eventually leading to a point when black holes can no
longer accumulate mass. These findings are consistent with
the predictions by Lima et al. [47] for the �CDM model.

Fig. 12 The plot shows the relationship between the black hole mass
(M(z)) and redshift (z) using the values constrained from the combined
CC+BAO+SN data-sets and c1 = 0

7 Conclusion

The concept of DE in the Universe is one of the most excit-
ing and difficult questions in modern cosmology. DE is a
mysterious type of energy that appears to pervade the Uni-
verse and is assumed to be responsible for the Universe’s
accelerating expansion. Despite years of research and obser-
vation, the nature of DE is still completely unknown, posing
a tremendous challenge to our understanding of the Universe.
In this paper, we developed an FLRW cosmology model with
an acceptable parametrization for scalar field energy den-
sity as a logarithmic function of redshift in the framework
of the standard theory of gravity, which supports the neces-
sary transition from the decelerated to the accelerated peri-
ods of the Universe. We have obtained an exact solution of
Einstein’s field equations with a scalar field source of DE,
which consists of three model parameters. Moreover, utiliz-
ing a combination of CC data-sets, BAO, and recently pub-
lished Pantheon data-sets, we determined the best-fit values
for the model parameters. The resulting best-fit values are
H0 = 67.79+0.59

−0.59 km/s/Mpc, �m0 = 0.25849+0.00026
−0.00025, and

β = 0.77+0.24
−0.23 for the combined CC+BAO+SN data-sets

(Table 1). Our findings for H0 (Fig. 2) and �m0 (Fig. 7) are
highly consistent with contemporary measurements, which
were derived from the Planck satellite’s observations and
estimated as H0 = 67.4 ± 0.5 km/s/Mpc and �0

m =
0.315 ± 0.007 [9]. Furthermore, our results are in agreement
with other research studies that have employed similar tech-
niques to estimate the values of both H0 and �m0 [74–77].

Furthermore, we examined the dynamics of the decelera-
tion parameter and the densities of both matter and scalar field
DE for the constrained values of the model parameters. Fig-
ure 4 illustrates the evolution of the deceleration parameter,
indicating a recent transition of the Universe from a deceler-
ated to an accelerated phase. The transition redshift is ztr =
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0.79+0.02
−0.02 corresponding to the combined CC+BAO+SN

data-sets. The present value of the deceleration parameter is
q0 = −0.43+0.06

−0.06. The energy densities presented in Fig. 5
display a positive behavior as anticipated. Figure 6 demon-
strates the evolution of the EoS parameter, indicating that
our cosmological model adheres to the quintessence scenario
with the present value ω0 = −0.84+0.06

−0.05. We have also dis-
cussed the behavior of kinetic energy and potential energy
of the scalar field in Figs. 8 and 9. Figures 10 and 11 illus-
trate the evolution of the statefinder diagnostic, suggesting
a quintessence behavior, which is in concurrence with the
other cosmological parameters.

Lastly, our investigation also involved examining the evo-
lution of black holes in the presence of both matter and DE,
with consideration given to the Schwarzschild-type metric in
the vicinity of the black hole. Figure 12 displays the represen-
tation of the black hole mass as a function of redshift, which
was derived by determining the energy densities of both the
matter and scalar field DE components. It is worth noting
that the black hole fluid constitutes an insignificant fraction
of the overall matter content. Our findings suggest that black
holes within this scenario exhibit an initial increase in mass.
However, at later epochs, the growth in mass ceases as a
result of DE accretion. Moreover, as cosmic time increases
substantially, the mass of the black holes reaches a maximum
value [47]. Therefore, we can confidently say that our model
provides a viable explanation for the observed phenomena in
the Universe. By accurately representing the observed data,
our model supports the current understanding of the Universe
and provides a foundation for further inquiry. The success of
our model in closely matching it with the observed data is
an important step forward in our efforts to understand the
evolution of the Universe.
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