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Abstract Two issues in the first-order thermodynamics of
scalar-tensor (including “viable” Horndeski) gravity are elu-
cidated. The application of this new formalism to FLRW
cosmology is shown to be fully legitimate and then extended
to all Bianchi universes. It is shown that the formalism holds
thanks to the almost miraculous fact that the constitutive rela-
tions of Eckart’s thermodynamics are satisfied, while writ-
ing the field equations as effective Einstein equations with
an effective dissipative fluid does not contain new physics.

1 Introduction

There are many motivations to consider seriously theories of
gravity alternative to General Relativity (GR) [1]. Attempts
to quantum-correct GR generally lead to new degrees of
freedom (in addition to the two familiar massless spin two
modes), higher order equations of motion, extra fields, or
non-local features. The low-energy limit of the bosonic
string, the simplest string theory, does not reproduce Einstein
gravity but gives an ω = −1 Brans–Dicke theory instead
(where ω is the Brans–Dicke parameter) [2,3]. More com-
pelling motivation comes from the accelerated expansion of
the universe: explaining the present-day cosmic acceleration
within the context of GR requires the introduction of a com-
pletely ad hoc dark energy, the nature of which remains mys-
terious [4].

The simplest alternative to GR is scalar-tensor gravity,
which adds only a scalar degree of freedom φ to the two
degrees of freedom contained in the metric gab in GR. A sub-
class of scalar-tensor gravity, f (R) theories, seems to be the
most popular alternative to GR to explain the cosmic accel-
eration ([5,6], see [7–9] for reviews). During the past decade
Horndeski gravity [10] was rediscovered while attempting
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to write down the most general scalar-tensor theory with
second-order equations of motion. Although this record ulti-
mately belongs to the newly-discovered Degenerate Higher
Order Scalar-Tensor (DHOST) theories more general than
Horndeski’s, the study of Horndeski gravity has flourished,
generating a large literature (see, e.g., [11–26,28–35] for its
various aspects, including cosmology, and for reviews, and
see [36] for constraints on DHOST from solar physics).

At the same time, the idea that gravity may be different
from the other three fundamental forces and may be emer-
gent instead, has taken a firm foot in the literature in var-
ious forms (see [37–44] for reviews). A particularly deep
approach is Jacobson’s thermodynamics of spacetime, in
which the Einstein equation is derived from thermodynamics
[45]. When applied to (metric) f (R) gravity [46], it embod-
ies the idea that GR constitutes a state of equilibrium for
gravity while f (R) gravity is an out-of equilibrium state (
[46], see also [47]). This idea has been adopted in the com-
pletely different first-order thermodynamics of scalar-tensor
gravity recently proposed [48–51,53]. This new formalism
begins from the realization that the field equations of “first-
generation” scalar-tensor [54–60] and Horndeski gravity can
be rewritten in the form of effective Einstein equations (using
the notations of Ref. [61])

Rab − 1

2
gabR = 8π

(
T (φ)
ab + T (matter)

ab

φ

)
, (1)

where Rab is the Ricci tensor of the metric gab and T (matter)
ab

is the matter stress-energy tensor, while T (φ)
ab is an effective

stress-energy tensor built out of the gravitational scalar φ

and its first and second covariant derivatives (indeed, this
is the usual way to present “first generation” scalar-tensor
gravity). Furthermore, the effective T (φ)

ab assumes the form
of an imperfect fluid energy-momentum tensor

Tab = ρuaub + Phab + πab + qaub + qbua, (2)
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where ua is the fluid 4-velocity (normalized to ucuc = −1),
hab ≡ gab + uaub is the metric of the 3-space seen by
the observers with 4-velocity ua comoving with the fluid,
ρ is the energy density, P the isotropic pressure, πab is
the anisotropic stress tensor, and qa is a heat flux density.
P = P̄ + Pviscous is the sum of a perfect fluid contribution P̄
and of a viscous pressure; hab, πab, and qa are purely spatial,

habu
a = habu

b = qau
a = πabu

a = πabu
b = 0, (3)

and πab is trace-free, πa
a = 0.

The dissipative fluid nature of the effective scalar field
stress-energy tensor was recognized in [48,62] for “old”
scalar-tensor gravity and in [51,63] for Horndeski gravity.
In fact, any symmetric two-index tensor can be decomposed
in the form (2) (more on this in Sect. 4). What makes the
analogy between scalar field and dissipative fluid meaning-
ful is the fact that the effective fluid quantities satisfy the
constitutive relations of Eckart’s first-order thermodynamics
[64]

qa = −Khab
(
∇bT + T u̇b

)
, (4)

πab = −2η σab, (5)

Pviscous = −ζ 	, (6)

where T is the temperature, K is the thermal conductivity,
and 	, σab are the expansion and trace-free shear of the 4-
velocity ua , while u̇ ≡ uc∇cua is the fluid 4-acceleration.
The fact that the effective T (φ)

ab satisfies Eqs. (4)–(6) was
realized for general “old” scalar-tensor gravity in [48] (and,
for particular geometries or theories, in previous references
[65]) and in “viable” Horndeski gravity in [51,63] and iden-
tifies a “temperature of gravity” with respect to GR. Ein-
stein gravity, recovered for φ = const., corresponds to zero
temperature while scalar-tensor gravity is an excited state.
This idea is plausible: if the field content of gravity con-
sists of the two massless spin two modes of GR plus a prop-
agating scalar mode, exciting the latter corresponds to an
excited state with respect to GR. The whole idea of the first-
order thermodynamics of scalar-tensor gravity consists of
taking seriously the dissipative form of the effective T (φ)

ab and
applying Eckart’s thermodynamics to it. It is something akin
to a miracle that Eckart’s constitutive relations are satisfied
[48,49,51]. With all the limitations intrinsic to Eckart’s ther-
modynamics (lack of causality and instabilities [66,67]), an
intriguing thermal picture of modified gravity emerges [48–
51,53], which is under development. Ideas and tools partially
or fully developed include: an explicit equation describing
the approach to the GR equilibrium or the departures from
it; the expansion of space causes the “cooling” of gravity;
near spacetime singularities and singularities of the effec-
tive gravitational coupling, where the scalar degree of free-
dom is fully excited, gravity is “hot” and deviates radically
from GR; in cosmology only bulk viscosity survives due to

the spacetime symmetries; states of equilibrium correspond-
ing to KT = 0 (or even KT = const.) distinct from GR
can exist, corresponding to non-dynamical scalar fields or to
metastable states [68–70].1

We summarize Horndeski theory for use in the follow-
ing sections. Denoting X ≡ − 1

2 ∇cφ∇cφ, the Lagrangian of
Horndeski gravity reads

L = L2 + L3 + L4 + L5, (7)

where

L2 = G2 (φ, X) , (8)

L3 = −G3 (φ, X) �φ , (9)

L4 = G4 (φ, X) R + G4X (φ, X)
[
(�φ)2 − (∇a∇bφ)2

]
,

(10)

L5 = G5 (φ, X) Gab ∇a∇bφ − G5X (φ, X)

6

×
[
(�φ)3 − 3 �φ (∇a∇bφ)2 + 2 (∇a∇bφ)3

]
, (11)

and where ∇a is the covariant derivative of gab, � ≡
gab∇a∇b, Gab is the Einstein tensor, while Gi (φ, X) (i =
2, 3, 4, 5) are arbitrary functions of φ and X , while Giφ ≡
∂Gi/∂φ, GiX ≡ ∂Gi/∂X .

Horndeski gravity is constrained theoretically by the need
to avoid graviton decay into scalar field perturbations [25]
and, above all, by the 2017 multi-messenger observation of
gravitational waves and γ -rays emitted simultaneously in the
GW170817/GRB170817 event [71,72], which sets a strin-
gent upper limit on the difference between the propagation
speeds of gravitational and electromagnetic waves [73]. The
subclass of Horndeski theories that implies luminal propa-
gation of gravitational waves has G4X = 0, G5 = 0 and its
Lagrangian density is restricted to

L̄ = G2(φ, X) − G3(φ, X)�φ + G4(φ)R. (12)

This is not the only constraint on viable Horndeski gravity.
Further constraints on the viable class as a replacement of the
ad hoc dark energy come from attempts to address the Hubble
tension on the present value H0 of the Hubble parameter.
An Effective Field Theory description of dark energy with
scalar fields seems unable to accommodate H0 and baryon
acoustic oscillations [27]. In the following we proceed with
the Lagrangian density (12).

1 The construction of an effective Tab extends to Nordström gravity,
which is not a scalar-tensor but a purely scalar theory with less degrees
of freedom than GR, and yields a negative temperature with respect to
GR [68].
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2 Correct generalization of Fourier’s law

Eckart’s generalization of Fourier’s law [64] is often reported
as

qa = −K
(
hab∇bT + T u̇a

)
. (13)

The heat flux density qa is purely spatial in Eckart’s the-
ory and, therefore, non-causal, an unphysical feature cor-
rected in the Israel-Stewart second-order thermodynamics
and in later formalisms. While, in the right-hand side of
Eq. (13), −Khab∇bT is trivially a purely spatial vector (it
is a projection onto the 3-space orthogonal to ua), the sec-
ond term −KT u̇a proportional to the fluid 4-acceleration
is not always a spatial vector, contrary to intuition. While
most of the times a particle’s 4-acceleration is orthogo-
nal to the particle 4-velocity, this is not always the case.
Although at first sight this may seem hair-splitting, relevant
situations discussed in the literature span a range of inter-
esting subjects including particles with varying mass, the
Einstein frame of scalar-tensor gravity, cosmic antifriction
due to self-interacting dark matter or to particle production,
and Friedmann–Lemaître–Robertson–Walker (FLRW) cos-
mology sourced by a perfect fluid with pressure in the comov-
ing frame [74]. There is an abundant literature on analytic
solutions of the Einstein equations describing mass-varying
systems such as rockets and solar sails in GR (e.g., [75–77]
and references therein) and mass-changing particles in cos-
mology and in scalar-tensor gravity [78–83]. In the early uni-
verse, quantum processes can create particles, a phenomenon
associated with negative bulk pressures [84,85], and it has
been suggested that such a mechanism could drive infla-
tion [86–91]. Negative bulk stresses can be caused by the
self-interaction of dark matter, which has been investigated
as a possible cause of the present cosmic acceleration [86]
because it causes a cosmic “antifriction” on the dark mat-
ter fluid, a force antiparallel to the worldlines of dark matter
particles [86].

In the Einstein conformal frame of scalar-tensor cosmol-
ogy, a similar 4-force parallel to the trajectory appears. It can
be interpreted as due to the fact that what was the constant
mass of a test particle in the Jordan frame now depends on the
Brans–Dicke-like scalar φ (that is, upon transformation to the
Einstein conformal frame massive test particles cease being
test particles and are subject to a fifth force proportional to
∇aφ) [74,92]. In the low-energy limit of string theories, the
geodesic equation of dilaton gravity contains a similar cor-
rection but, in general, the coupling of the dilaton to particles
of the Standard Model is not universal [93–95].

Consider a FLRW universe with line element

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2
(
dϑ2 + sin2 ϑ dϕ2

)]
(14)

in comoving coordinates (t, r, ϑ, ϕ), that is, in the frame
adapted to the symmetries (spatial homogeneity and isotropy)
and comoving with the perfect fluid usually causing grav-
ity. Unless this fluid is a dust or the effective fluid T (�)

ab =
− �

8π
gab describing a cosmological constant term with con-

stant pressure, there are a pressure P(t) and a pressure gradi-
ent ∇a P �= 0, hence a 4-force pointing in the time direction
ua . The presence of this force makes fluid particles devi-
ate from geodesics, hence they have a 4-acceleration. This
is easy to understand since, due to the symmetries, this 4-
acceleration and 4-force cannot have spatial components in
the comoving frame. As a result, the (massive) fluid particles
satisfy the equation of motion [74]

d2xμ

dt2 + �
μ
αβ

dxα

dt

dxβ

dt
= A

dxμ

dt
, (15)

where A is a function of the position on the timelike trajec-
tory. Equation (15) is recognized as the non-affinely param-
eterized timelike geodesic equation with the comoving time
t coinciding with the the proper time of comoving observers.
It is always possible to change parametrization to an affine
parameter in which the right-hand side of the geodesic equa-
tion vanishes, hence this 4-acceleration is regarded as trivial
and usually described as vanishing, but the reparametrization
entails the use of an affine parameter that is not the comov-
ing time t , which is the proper time of comoving observers.
(If s is an affine parameter, the function A in Eq. (15) is
A(t) = dt

ds
d2s
dt2

[74,96], see Appendix A.) In other words,
the equation describing the spacetime trajectory of the fluid
particles cannot be affinely parametrized by the proper time
of comoving observers and there is a 4-force parallel to the
4-velocity ua in this frame [74] (see Appendix A).2 While
this is immaterial for the mathematics of curves, the differ-
ence between proper time of comoving observers and another
parameter is important for the physics because the descrip-
tion of FLRW cosmology is always done with respect to
comoving observers who see the cosmic microwave back-
ground homogeneous and isotropic around them (apart from
tiny temperature fluctuations).

It is clear then that, in Eckart’s first constitutive rela-
tion (13), the term −KT u̇a contributing to the heat flux
density qa is not always purely spatial and, as a result, qa
is not purely spatial, either. This fact is important because
the effective first-order thermodynamics of scalar-tensor and
Horndeski gravity à la Eckart, including FLRW cosmologies,
is based on Eckart’s generalization of Fourier’s law. It is easy
to fix Eq. (13) to make the heat flux density qa purely spatial

2 Whether this 4-force parallel to the trajectory can legitimately be
called a “force” is a matter of semantics. Similarly, the 4-acceleration
u̇a of a particle is often taken to be synonymous of its spatial projection
habu̇b. For clarity, here we make the distinction explicit.
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in all situations: it is sufficient to write3

qa = −Khab
(
∇bT + T u̇a

)
, (16)

i.e., projecting both temperature gradient ∇bT and the 4-
acceleration of the dissipative fluid onto the 3-space orthog-
onal to ua .

An apparent puzzle remains in the study of the first-order
thermodynamics of scalar-tensor and Horndeski gravity in
FLRW cosmology, which is addressed in the next section.

3 Scalar-tensor thermodynamics in FLRW and in
Bianchi cosmology

The study of Eckart’s thermodynamics in FLRW cosmology
has been carried out for first-generation scalar-tensor gravity
[53] and is being generalized to spatially anisotropic Bianchi
cosmologies and to Horndeski gravity. To put these studies
on a firm footing, we elucidate the validity of its formulas
involving the effective temperature in cosmology, where the
heat flux qa vanishes identically.

Let φ be the gravitational scalar degree of freedom of
the theory and X ≡ − 1

2 ∇cφ∇cφ. In general, scalar-tensor
thermodynamics is studied in the comoving frame, i.e., the
frame moving with the effective fluid 4-velocity, in which
the effective fluid is at rest (this is natural in tensor-single-
scalar gravity; the analogue of the comoving frame becomes
artificial in tensor-multi-scalar gravity [97]). Applying this
formalism to FLRW cosmology, it is clear that the purely spa-
tial heat flux density (16) must vanish in the comoving frame
to respect the FLRW symmetries. However, the fundamental
relation of this thermodynamics

KT =
√

2X

8πφ
(17)

in “first generation” scalar-tensor gravity, or its counterpart

KT =
√

2X
(
G4φ − XG3X

)
G4

(18)

in viable Horndeski gravity, are derived from identifying the
effective heat flux density qa of Eq. (16) in these theories
with −KT habu̇b. The relation (17) or (18) derived in the
general theory still holds in FLRW cosmology. qa vanishes
identically in the comoving frame not because KT = 0 but
because habu̇b = 0 in any FLRW universe.

3 Interestingly, this correct form appears in Eckart’s original discus-
sion [64] in which, however, there is no mention of the possibility of
4-accelerations parallel to 4-velocities. Indeed, Eckart’s work [64] pre-
dates all the literature on such instances [56,74–83,86–92].

Let us be more specific: in Horndeski gravity, the 4-
velocity of the effective fluid is

ua = ∇aφ√
2X

(19)

(the analogy is meaningful if ∇aφ is timelike and future-
oriented [98]) and the fluid’s 4-acceleration turns out to be

u̇a ≡ uc∇cu
a = − 1

2X

(
∇a X + ∇c X∇cφ

2X
∇aφ

)
. (20)

Its projection onto the 3-space orthogonal to ua vanishes if
and only if u̇a = α ua (where α is a function of the spacetime
coordinates), or

∇a X + Ẋ√
2X

∇aφ = −2αXua (21)

(where Ẋ ≡ uc∇cX ), or

∇a X = − (
Ẋ + 2αX

)
ua, (22)

i.e., if ∇a X is parallel to the effective fluid 4-velocity. In a
FLRW universe, or in any space in which g00 depends only
on the comoving time t and φ = φ(t) we have, in comoving
coordinates,

∇a X = ∂a X = − φ̇

2

(
φ̇ ∂t g

00 + 2g00φ̈
)

δa
0. (23)

Using ua = ∇aφ√
2X

= φ̇√
2X

δa
0, one writes

∇a X = −
√

X

2

(
φ̇ ∂t g

00 + 2g00 φ̈
)
ua .

(24)

In the FLRW geometry written in comoving coordinates it
is g00 = −1 and ∇a X reduces to −|φ̇|φ̈ ua , which is indeed
parallel to ua and then hab u̇b = 0. The heat flux density of
viable Horndeski gravity [51]

qa = √
2X

(
G4φ − XG3X

)
G4

habu̇
b = −KT habu̇

b (25)

vanishes not because KT = 0 but because habu̇b = 0 (even
though u̇b is non-vanishing in FLRW cosmology).

The same situation occurs in Bianchi universes in which,
again, g00 = −1 in comoving coordinates. Consider first
vacuum Horndeski gravity, in which the φ-fluid is the only
source in the effective Einstein equations. The 4-velocity of
this effective fluid comes from a gradient, therefore it has
zero vorticity, ωab = 0. Then the Frobenius theorem guar-
antees that ua is hypersurface-orthogonal and excludes the
possibility that the φ-fluid is tilted with respect to the Bianchi
observers (the observers that see the 3-space of a Bianchi uni-
verse as homogeneous) [61,96]. There is a time t (“comov-
ing time”) such that the 3-surfaces t = const. are space-
like surfaces of homogeneity, φ = φ(t), and ua coincides
with the unit normal to these hypersurfaces. Denoting with
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xi (i = 1, 2, 3) the spatial coordinates on these t = const.
hypersurfaces, the Bianchi line element in comoving coordi-
nates is [96,99,100]

ds2 = −dt2 + γi j (t) eβi (t) dxidx j (i, j = 1, 2, 3) (26)

with g00 = −1, g0i = 0 (that is, comoving and syn-
chronous coordinates coincide), and where σi j = σi j (t).
Equation (23) then gives again that ∇a X is parallel to ua ,
habu̇b = 0, and qa = 0 (moreover, in covariant notation,
hab∇b P = hab∇bσcd = 0).

Let us consider explicitly Bianchi I universes for illustra-
tion. Bianchi I models sourced by a single anisotropic fluid
have line element [96,99–101]

ds2 = −dt2 + a2(t) e2β(i)(t)δi j dx
i dx j (i, j = 1, 2, 3)

(27)

in comoving coordinates. If the single fluid sourcing the
Bianchi I universe is the effective Horndeski φ-fluid (i.e.,
in vacuum Horndeski cosmology), using Eq. (23) we find
again u̇b parallel to ub and qa = 0. A direct computation
gives qa = 0 (e.g., [96,100,101]). This result still holds in
the presence of a real fluid if its 4-velocity is aligned with
ua .

Let us consider now Horndeski gravity in the presence of
matter, which is usually taken to be a fluid. If this fluid is not
tilted with respect to the Horndeski effective fluid, then its 4-
velocity coincides with ua given by Eq. (22) and the previous
arguments apply again. This is not the case, in general, if the
real fluid is tilted with respect to the effective one.

The discussion of this section legitimates the study of
FLRW and Bianchi cosmology in the first-order thermody-
namics of scalar-tensor gravity. These discussions draw con-
clusions based on KT [53] even though the heat flux vec-
tor (13) (from which KT is derived) vanishes identically in
the comoving frame of the Horndeski effective fluid.4 The
reason why qa vanishes is not because KT is zero (which
would invalidate the discussions of Eckart’s thermodynam-
ics in cosmology), but because u̇a is parallel to the trajecto-
ries of fluid particles (i.e., to ua). (It is possible that KT is
always zero in a certain specific Horndeski theory because
G4φ − XG3X in Eq. (18) vanishes identically there, which
makes this theory with non-dynamical φ a state of equilib-
rium alternative to GR [102]).

4 An observer in a frame moving with respect to ua would see this
effective fluid tilted and would experience a non-vanishing energy flux
q ′
a which is, however, purely convective [96,97].

4 Decomposition of any symmetric tensor in the
“imperfect fluid” form

In order to appreciate the first-order thermodynamics of
scalar-tensor or viable Horndeski gravity [48–53,68–70,97,
98], one should understand what is peculiar to the effective
stress-energy tensor of these theories, once their field equa-
tions are written as effective Einstein equations. It is not the
fact that their effective stress-energy tensor assumes the form
of a dissipative fluid—this is true for any symmetric 2-index
tensor. What is peculiar is the fact that this effective stress-
energy tensor satisfies the constitutive relations of Eckart’s
first-order thermodynamics. This property is truly remark-
able and is certainly not warranted.5 Let us discuss explicitly
the dissipative fluid decomposition of a symmetric tensor.

Given a timelike vector field ua normalized so that ucuc =
−1, any symmetric 2-index tensor Sab = Sba can be decom-
posed in the imperfect fluid form

Sab = ρuaub + Phab + qaub + qbua + πab, (28)

where hab ≡ gab + uaub and qa and πab are purely spatial
with respect to ua , with πab symmetric and trace-free. This
“imperfect fluid decomposition” is purely formal since, in
general, the symmetric tensor Sab is not a real or effective
stress-energy tensor, and does not even have the dimensions
of stress-energy.

In general, the constitutive relations of Eckart’s first-order
thermodynamics (4)–(6) are not satisfied by the components
of Sab, and neither is any other prescribed constitutive rela-
tion. By contrast, the effective stress-energy tensor of scalar-
tensor gravity T (φ)

ab satisfies Eckart’s constitutive relations, as
does that of a restricted class of Horndeski theories of gravity
[51,102]. In general, given an alternative theory of gravity in
vacuo, one can rewrite its field equations as effective Einstein
equations with a suitable, symmetric, effective stress-energy
tensor T (eff)

ab . However:

1. In general, a preferred 4-velocity vector field ua is not
defined. If it is defined, as in scalar-tensor or Horndeski
gravity where there is a scalar field φ and ∇aφ singles
out a preferred vector field, the fluid-dynamical analogy
requires that

– ∇cφ is timelike, ∇cφ∇cφ < 0;
– ∇cφ is future-oriented, gab∇a (∂t )

b < 0.

2. If a preferred (timelike, normalized, and future-oriented)
vector field is not present in the alternative theory of grav-
ity, one could choose one arbitrarily, which corresponds
to choosing a family of physical observers in spacetime.

5 See [102] for an attempt to generalize the analogy to a non-Newtonian
fluid with alternative constitutive relations non-linear in the gradient of
the fluid 4-velocity.
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Then, provided that the field equations of this theory can
be written as effective Einstein equations, one has an
effective symmetric T (eff)

ab which can be decomposed in
the form of an imperfect fluid. However, uc has no rela-
tion with the gravitational degrees of freedom of the the-
ory and, in general, no constitutive relation is satisfied.
This is intuitive: constitutive relations express the phys-
ical properties of a material (specifically, its response to
mechanical and thermal stresses) and there is no physics
in the purely geometric decomposition of a tensor into
its temporal, spatial, and mixed components. It is remark-
able that scalar-tensor gravity does indeed satisfy Eckart’s
constitutive relations.

4.1 Decomposition

Let Sab be any symmetric 2-index tensor in a spacetime
endowed with a metric gab and let ua be a timelike vector
field. Without loss of generality, we can assume that ua is nor-
malized to ucuc = −1 (otherwise one can always normalize
it). Define the 3-metric hab ≡ uaub +gab (hab is the projec-
tor onto the 3-space seen by ua , i.e., habua = habub = 0).
Then is is always possible to decompose Sab according to

Sab = ρuaub + Phab + qaub + qbua + πab, (29)

where

qau
a = 0, πabu

a = πabu
b = 0, πa

a = 0. (30)

The quantities appearing in this decomposition are

ρ = Sabu
aub, (31)

P = 1

3
habSab, (32)

qa = −hacScdu
d , (33)

πab =
(
ha

c hb
d − 1

3
hab h

cd
)
Scd . (34)

They are just the projections of Sab onto the time direction
(projected twice for ρ), onto the 3-space (projected twice
for the isotropic and anisotropic stresses Phab and πab), and
projected once onto the 3-space/once onto the time direction
(for qa). In this sense, the decomposition is rather obvious (it
is mentioned, e.g., in [96,103], but seems to have been missed
by many authors discussing various scalar-tensor theories
over the years).
Proof. By definition, qa and πab are purely spatial since they
are a projection and a double projection onto the 3-space seen
by ua :

qau
a ≡ −ha

c
(
Scdu

d
)
ua = 0

and

πabu
a ≡

(
ha

c hb
d − 1

3
hab h

cd
)
Scdu

a

= −1

3

(
hcd Scd

)
habu

a = 0,

πabu
b ≡

(
ha

c hb
d − 1

3
hab h

cd
)
Scdu

b

= −1

3

(
hcd Scd

)
habu

b = 0,

and

πa
a =

(
ha

c had − h

3
hcd

)
Scd =

(
hcd − 3

3
hcd

)
Scd = 0.

It is easy to show that, using the quantities (31)–(34), the
right-hand side of Eq. (29) reproduces the given tensor Sab.
In fact,

ρuaub + Phab + qaub + qbua + πab ≡
(
Scdu

cud
)
uaub

+
(
Scdhcd

3

)
hab −

(
ha

cScdu
d
)
ub

−
(
hb

cScdu
d
)
ua +

(
ha

c hb
d − hcd Scd

3

)
Scd

=
(
Scdu

cud
)
uaub+

(
Scdhcd

3

)
hab−

(
δa

c+uau
c) (

Scdu
d
)
ub

− (
δb

c+ubu
c) (

Scdu
d
)
ua+

(
δa

c+uau
c) (

δb
d+ubu

d
)
Scd

−hab
3

(
gcd + ucud

)
Scd

=
(
Scdu

cud
)
uaub +

(
Scdhcd

3

)
hab −

(
Sadu

d
)
ub

−
(
Scdu

cud
)
uaub −

(
Sbdu

d
)
ua

−
(
Scdu

cud
)
uaub + Sab +

(
Sadu

d
)
ub + (

Scbu
c) ua

+
(
Scdu

cud
)
uaub − S

3
hab − Scducud

3
hab

= Sab + hab
3

[
Scd

(
gcd + ucud

)
− S − Scdu

cud
]

= Sab.

4.2 Effective constitutive relations

Apart from the fact that they do not have the dimensions
of fluid quantities, in general the quantities appearing in the
effective dissipative fluid decomposition do not satisfy effec-
tive constitutive relations. For example, the first of Eckart’s
constitutive relations (4) corresponds to

S0i = −Khi j
(
∂ jT + T u̇ j

)
(35)

and one cannot see how functions K and T could exist to
satisfy this relation between Sab and the acceleration u̇a . Sim-

123
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ilarly, Eq. (5) corresponds to(
hi

c h j
d − hi j

3
hcd

)
Scd = −2η

(
∇(i u j) − ∇cuc

3
hi j

)
,

(36)

which is impossible to satisfy in general if Sab does not have a
special relation with ua and u̇a as it happens instead in scalar-
tensor gravity, where uc is the (normalized) gradient of the
gravitational scalar degree of freedom φ and Sab = T (φ)

ab is
built out of φ and its derivatives.

4.3 Examples

As the first example of the imperfect fluid decomposition of
a symmetric tensor, consider the metric itself, Sab = gab
(“imperfect fluid” decomposition is just a name here since
the dimensions of gab are not those of a stress-energy tensor).
The formal imperfect fluid quantities are

ρ(g) = gabu
aub = −1, (37)

P(g) = 1

3
habgab = 1, (38)

q(g)
a = −ha

c gcdu
d = −ha

c uc = 0, (39)

π
(g)

ab =
(
ha

c hb
d−1

3
hab h

cd
)
hcd = had hb

d−3

3
hab=0.

(40)

The corresponding imperfect “fluid” reduces to a perfect one
with equation of state P(g) = −ρ(g). Indeed, the cosmologi-
cal constant term �gab in the Einstein equations

Rab − 1

2
gabR + �gab = 8πG T (matter)

ab (41)

can be seen as an effective fluid with stress-energy tensor
T (�)
ab = − �

8πG gab and with the properties above. In addition,
the constants � and G in Sab = − �

8πG gab give this tensor
the correct dimensions for a stress-energy tensor.

As a second example consider the Ricci tensor, Sab = Rab.
The effective dissipative fluid quantities are related to the
components of Rab in the frame of the observers with 4-
velocity ua :

ρ(Ricci) = Rabu
aub = R00, (42)

P(Ricci) = 1

3
habRab, (43)

q(Ricci)
i = −hi

c Rcdu
d = −Ri0, (44)

π
(Ricci)
i j =

(
hi

c h j
d − hi j

3
hcd

)
Rcd = Ri j − hcd Rcd

3
hi j ,

(45)

where i, j = 1, 2, 3.
Finally, any purely spatial tensor (such as the extrinsic

curvature Ki j , the shear tensor σi j , or the 3-metric hi j itself)

will have vanishing effective ρ and qa and non-vanishing
effective “stresses” (including P and σab).

5 Conclusions

The correct Eckart generalization of the Fourier law is impor-
tant for the study of the first-order thermodynamics of scalar-
tensor gravity in cosmology, which is now made completely
legitimate by our considerations of Sects. 2 and 3. The dis-
cussion has been extended to include spatially homogeneous
and anisotropic Bianchi universes, not discussed before. The
analysis of specific Bianchi models with regard to the gen-
eral thermodynamical ideas advanced in previous publica-
tions involves phase space analyses and much detail and will
be pursued elsewhere.

A key point of the first-order thermodynamics of scalar-
tensor gravity is often misunderstood and has not been
spelled out thus far. Writing the field equations of scalar-
tensor gravity as effective Einstein equations produces an
effective stress-energy tensor T (φ)

ab as a source. The latter has
the form (2) of an imperfect fluid energy-momentum tensor,
but this fact contains no physics: any symmetric two-index
tensor admits this decomposition, which is purely mathemat-
ical. It is the almost miracolous fact that the effective φ-fluid
quantities thus derived satisfy Eckart’s constitutive relations
(which, in non-relativistic physics, characterize a Newtonian
fluid) that make the first-order thermodynamics work.
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Appendix A: Force parallel to a worldline

When a 4-force parallel to the wordline of a particle (i.e., to
its 4-tangent) is present, the equation of motion of this par-
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ticle coincides with the non-affinely parametrized geodesic
equation. Let τ be the proper time along this worldline (not
an affine parameter) and let

uc ≡ dxc

dτ
, ac ≡ d2xc

dτ 2 = duc

dτ
(A.1)

according to the standard definitions of 4-velocity and 4-
acceleration. In cosmology, the comoving time t is the proper
time of comoving observers but is not an affine parameter
along their worldlines unless the cosmic fluid is a dust or
a cosmological constant term because these observers are
accelerated by a pressure gradient pointing in the direction
of comoving time. Of course, one can always introduce an
affine parameter along these fluid worldlines, but this is not
convenient since one wants instead to use formulas writ-
ten in comoving coordinates, associated with the physical
observers seeing the cosmic microwave background homo-
geneous and isotropic around them (on average).

Let s be an affine parameter along the cosmic fluid world-
lines. We have

uc ≡ dxc

dτ
= dxc

ds

ds

dτ
, (A.2)

ac ≡ d2xc

dτ 2 = duc

dτ
= d

dτ

(
dxc

ds

ds

dτ

)
(A.3)

= d2xc

dτ ds

ds

dτ
+ dxc

ds

d2s

dτ 2

=
[
d

dτ

(
dxc

ds

)]
ds

dτ
+ dxc

dτ

dτ

ds

d2s

dτ 2

= ds

dτ

[
d

ds

(
dxc

ds

)]
ds

dτ
+ uc

dτ

ds

d2s

dτ 2 (A.4)

and

ac = d2xc

ds2

(
ds

dτ

)2

+ uc
dτ

ds

d2s

dτ 2 , (A.5)

or

d2xc

ds2 = ac
(
dτ

ds

)2

− uc
(
dτ

ds

)3 d2s

dτ 2 . (A.6)

Now, since s is an affine parameter along the wordline,

d2xc

ds2 + �c
ab

dxa

ds

dxb

ds
= 0, (A.7)

or

ac
(
dτ

ds

)2

− uc
(
dτ

ds

)3 d2s

dτ 2 + �c
ab

dxa

dτ

dxb

dτ

(
dτ

ds

)2

= 0

(A.8)

and

ac + �c
ab

dxa

dτ

dxb

dτ
= uc

dτ

ds

d2s

dτ 2 . (A.9)

We also have

d2τ

ds2 = d

ds

(
1

ds/dτ

)
= dτ

ds

d

dτ

(
1

ds/dτ

)

= −dτ

ds

d2s/dτ 2

(ds/dτ)2 = −
(
dτ

ds

)3 d2s

dτ 2 , (A.10)

then Eq. (A.9) can be written also as

ac + �c
ab

dxa

dτ

dxb

dτ
= −uc

(
dτ

ds

)−2 d2τ

ds2 . (A.11)

The orthogonality of the 4-acceleration ac to the 4-
velocity engraved in the mind of relativists, acuc = 0, fol-
lows from differentiating the normalization ucuc = −1, but

dxc/ds is not normalized and gab
d2xa

ds2
dxb
ds �= 0. In fact,

gab
d2xa

ds2

dxb

ds
= gab

(
aa−ua

dτ

ds

d2s

dτ 2

)
1

(ds/dτ)2

dxb

dτ

dτ

ds

= −gabu
aub

d2s

dτ 2

(
dτ

ds

)3 dτ

ds

=
(
dτ

ds

)4 d2s

dτ 2 , (A.12)

which is different from zero unless τ is already an affine
parameter. Likewise, we have

gab
dxa

ds

dxb

ds
= gab

dxa

dτ

dxb

dτ

(
dτ

ds

)2

=−
(
dτ

ds

)2

�= −1.

(A.13)
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