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Abstract The angular momentum of any quantum sys-
tem should be unambiguously quantized. We show that such
a quantization fails for a pure Dirac monopole due to a
previously overlooked field angular momentum from the
monopole-electric charge system coming from the mag-
netic field of the Dirac string and the electric field of the
charge. Applying the point-splitting method to the monopole-
charge system yields a total angular momentum which
obeys the standard angular momentum algebra, but which
is gauge variant. In contrast it is possible to properly quan-
tize the angular momentum of a topological ’t Hooft–
Polyakov monopole plus charge. This implies that pure
Dirac monopoles are not viable – only ’t Hooft–Polyakov
monopoles are theoretically consistent with angular momen-
tum quantization and gauge invariance.

1 Dirac string

Despite the lack of experimental support, the study of mag-
netic charge continues to be an area of active research. This
is partly because magnetic charge gives an additional, dual
symmetry to classical electrodynamics. Also having even one
magnetic charge in the Universe would give an explanation
of the quantization of electric charge via the Dirac condi-
tion qg = nh̄

2 [1,2] where q, g are the electric and magnetic
charge respectively and n is an integer. This continued inter-
est can be seen in the founding of the MoEDAL collabora-
tion, which has as one of its goals observing monopoles at
the LHC [3]. There is a review article from 2020 on magnetic
charge [4] which is a summary and update of all that is known
about monopoles. Finally there is recent work [5,6] which
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shows that electroweak, ’t Hooft–Polyakov-like monopoles
[7,8] could be embedded in the Standard Model, with masses
that make observing these electroweak monopoles feasible
at LHC energies.

A magnetic charge g would naively have a Coulomb mag-
netic field B = gr

r3 which implies ∇ ·B = 4πgδ(r). This last
equation runs afoul of the relationship between the magnetic
field and the vector potential namely B = ∇ ×A. For a well
behaved A one has ∇ · B = ∇ · (∇ × A) = 0.

The Dirac string potential [1,2] in spherical polar and
cylindrical coordinates is

Ag
±(r) = g

r

(±1 − cos θ

sin θ

)
ϕ̂ = g

ρ

(
±1 − z√

ρ2 + z2

)
ϕ̂ .

(1)

Naively taking the curl of (1) gives a Coulomb magnetic field,
∇ ×Ag

±(r) = gr
r3 . The vector potentials in (1) are related by

the gauge transformation Ag
+(r) = Ag

−(r) + ∇α with a non-
single valued gauge function α = 2 gϕ.

Ag
±(r) is everywhere singular along the ∓z axis. This

string singularity in Ag
± can be regularized by defining the

vector potential as [9]

Aregular
± = g�(ρ − ε)

ρ

(
±1 − z√

ρ2 + z2 + ε2

)
ϕ̂ , (2)

where ε is a small quantity taken to zero at the end and �(x) is
the standard step function:�(x) = 1 for x ≥ 1 and�(x) = 0
for x < 0. Taking the curl of Aregular

± and taking the limit
ε → 0 gives (see details in appendix D of [9])

B = lim
ε→0

∇ × (Aregular
± ) = g

r̂
r2 ±2g

δ(ρ)

ρ
�(∓z)ẑ

= g
r̂
r2 ±4πgδ(x)δ(y)�(∓z)ẑ ,

(3)
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where we have used δ(ρ)
2πρ

= δ(x)δ(y). The first term on the
right hand side of (3) is the point, Coulomb part and the
second term is the string contribution. Further discussion of
this standard Dirac-string form of the monopole magnetic
field given in (3) can be found in various review articles
[9–11], monographs [12,13] and research articles [14]. It is
straightforward to check that using the magnetic field in (3)
yields ∇ ·B = 0 i.e. the outward flux from the first, Coulomb
term is balanced by the inward second, solenoid term. The
string contribution toB in (3) (i.e. the ±4πgδ(x)δ(y)�(∓z)ẑ
term) can be obtained from a string vector potential of the
form Astring

± = ± 2 g�(ρ)�(∓z)
ρ

ϕ̂ [9–14]
At this point one imposes the Dirac veto – the condition

that a charged particle, in the presence of a monopole, does
not “see” the string part of the magnetic field in (3). There
are many ways to do this as given in [9], all of which lead to
the Dirac quantization condition qg = n h̄

2 . Almost all of the
methods for obtaining the Dirac condition require putting
some condition on wavefunction of the charge q, e.g. that
the wavefunction remain single valued as it circles around
the Dirac string, or that the wavefunction vanish at the loca-
tion of the string. However, there is an approach to obtain-
ing the Dirac quantization condition which does not rely on
the wavefunction of q, but rather uses the fact that the elec-
tric and magnetic fields of a charge-monopole system carry
a field angular momentum. It is this approach to the Dirac
quantization condition that we will focus on in this paper.
We stress that this field angular momneutm apporach to the
Dirac quantization condition may be considered more fun-
damental, since it depends on the quantization of angular
momentum as opposed to placing an (arbitrary) condition on
the wavefunction of q.

2 Total field angular momentum of the Dirac String

In this section we discuss the angular momentum approach
to the Dirac quantization condition. We begin by placing the
magnetic charge at the origin, so that the B-field is given by
(3), and we place the electric charge at the location r0 so that
the electric field is E = q r̂′

r ′2 (where r′ = r − r0). Then the
field angular momentum coming from the point part of the
magnetic field (i.e. g r̂

r2 ) is given by the well-known result
[9–13,15–19]

Lpoint
EM = 1

4π

∫
r × (E × B)d3x

= qg

4π

∫
r r̂ ×

(
r′

r ′3 × r̂
r2

)
d3x = −qgr̂0 . (4)

Taking the magnitude of (4) and imposing the quantum
mechanical requirement that all angular momentum must
come in integer multiples of h̄

2 one quickly obtains the Dirac
condition, qg = n h̄

2 [15–17]. This field angular momentum

approach to the Dirac quantization condition uses the electric
field of q. In contrast, other methods for obtaining the Dirac
condition, such as those cataloged in [9] or the fiber bundle
approach of Wu and Yang [20], rely on imposing conditions
on the wavefunction of q.

However the string part of the magnetic field in (3) (i.e.
the ±4πgδ(x)δ(y)�(∓z)ẑ term) also contributes to the field
angular momentum. It is this contribution to the field angu-
lar momentum which is the focus of this work and which
we claim has been overlooked in all previous work. It leads
to new results for the Dirac string formulation of magnetic
charge. This string contribution to the field angular momen-
tum is

Lstring
EM = 1

4π

∫
r×

(
q
r̂′

r ′2 ×(±4πgδ(x)δ(y)�(∓z)ẑ)
)
d3x

= ∓gq

⎛
⎝ z0∓

√
ρ2

0 + z2
0

ρ0

⎞
⎠ ρ̂0

= ∓gq

(
cos θ0∓1

sin θ0

)
ρ̂0 , (5)

where r0 = ρ0ρ̂0+z0ẑ is the location of the charge q. Unlike,
Lpoint
EM , the string contribution Lstring

EM depends on the direc-
tion (i.e. ±z) of the string, and thus is gauge variant since one
has a different result depending on which of the two gauge
related potential – Ag

+ or Ag
− – one uses.

Also, unlike, Lpoint
EM , the string contribution to the field

angular momentum, Lstring
EM , and therefore the total field

angular momentum will depend on the angular coordinate,
θ0. Converting (4) to cylindrical coordinates (i.e. Lpoint

EM =
−qg(sin θ0ρ̂0 + cos θ0ẑ)) and combining this with (5) yields

Ltotal
EM = Lpoint

EM + Lstring
EM = −qg cos θ0ẑ

+qg(∓1 + cos θ0) cot θ0ρ̂0

= −qg

(
z0

r0

)
ẑ

+qg

(
∓1+ z0

r0

)
z0

ρ2
0

(x0x̂+y0ŷ) ,

(6)

In the second line of (6) we have written the result with Carte-
sian unit vectors and Cartesian coordinates for later use. The
magnitude of this total field angular momentum using the
first line of (6) is |Ltotal

EM | = qg cos(θ0) sec(θ0/2) for the (−)

case and |Ltotal
EM | = qg cos(θ0) csc(θ0/2) for the (+) case.

Thus the magnitude of Ltotal
EM varies with the position of q

via the θ0-dependent terms and one cannot use the heuristic
angular momentum quantization approach [15–17] to deriv-
ing the Dirac quantization condition.
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3 Angular momentum commutators

One should be cautious about how seriously to take this
breakdown of the field angular momentum method of refer-
ences [15–17] for deriving the Dirac quantization condition.
One should instead see if the total angular momentum – parti-
cle plus field – satisfies the proper commutation relationship
for angular momentum namely, [J i , J j ] = i h̄εi jk J k , which
represent the rotational symmetry of the system. Such an
analysis was carried out in [18,19,21] as well as reviewed
in [9–11] and it was found that when one combined the
particle angular momentum with Lpoint

EM of (4) that indeed

J = (x×�)+Lpoint
EM did satisfy [J i , J j ] = i h̄εi jk J k . (Here

� = p − qA with p, being the momentum operator and
A the vector potential). We now check if the added string
field angular momentum from (5) leads to a total angular
momentum that is a good quantum angular momentum in
that it satisfies [J i , J j ] = i h̄εi jk J k . The new, total angu-
lar momentum is J = (x × �) + Lpoint

EM + Lstring
EM . To

carry out the computations we write out each term in the
total angular momentum in Cartesian coordinates with index
notation. The first term in J is simply written as εi jk x j
k .
Similarly the usual field angular momentum term for the

charge-monopole system can be written as (L point
EM )i = g xi

r

with r = √
x2 + y2 + z2. Without confusion, here and

in the following we drop the 0 subscript of (4) and (5)
which indicates the location of the charge q. The string field
angular momentum in Cartesian coordinates is Lstring

EM =
∓qg

(
z∓r
ρ2

)
(x x̂ + yŷ) with ρ = √

x2 + y2. In index nota-

tion this becomes (Lstring
EM )i = ∓qg

(
x3∓r
ρ2

)
(x1δi1 +x2δi2).

Putting this all together gives the total angular momentum

operator as J i = εi jk x j
k−qg xi
r ∓qg

(
z∓r
ρ2

)
(xδi1+ yδi2).

In terms of the explicit components, one has for J x , J y and
J z

J x = (x × �)x − qg
x

r
∓gqx

(
z∓r

ρ2

)
(7)

J y = (x × �)y − qg
y

r
∓gqy

(
z∓r

ρ2

)
(8)

J z = (x × �)z − qg
z

r
(9)

Using (7), (8), (9) and some common commutator results
like [xi ,
 j ] = iδi j , [ f (xi ),
 j ] = i∂ j f (xi ), [
i ,
 j ] =
iqεi jk Bk one can obtain the commutators [J i , J j ] for the
J i ’s in (7), (8), (9) with the final result being

[J y, J z] = i J x (10)

[J z, J x ] = i J y , (11)

[J x , J y] = i J z±iqg±iqz(x · Bstring
± ) , (12)

The right hand sides of Eqs. (10) and (11) do match the Jx
and Jy total angular momenta from (7) and (8) i.e. the angu-

lar momentum commutators are satisfied for [J z, J x ] and
[J y, J z] for the total angular momentum defined in (8) and
(7). So far so good. However the last two terms in [J x , J y]
(i.e. ±iqz(x ·Bstring

± ) ± igq) spoils this commutator, which
according to (9) should only be i(x×�)z − iqg z

r . The exis-

tence of the anomalous term ±iqz(x ·Bstring
± ) is well known

and is related to the presence of singular operator products.
In quantum field theory Schwinger showed how to deal with
such singular operator products via the point splitting method
[22]. Zumino applied this point splitting technique [23] to the
quantum system of a charge and monopole to deal with the
anomalies in the angular momentum commutator in (12).
Details of these calculations can be found in [11,13]. The
point-split version of the total angular momentum operators
are (the subscript indicates point split operators)

J i(PS) = lim
ε→0

εi jk x j εk

iε2

[
1 − exp

(
−i

p · ε

2

)

× exp

(
iq

∫ x+ε/2

x−ε/2
A · dξ

)
exp

(
−i

p · ε

2

)]
. (13)

Expanding the exponential, taking the limit and using

〈εi jk εkεl

ε2 〉 = εi jkδlk and 
k = pk − q Ak , we find

J i(PS) = lim
ε→0

εi jk x j
(

(pk − q Ak) − (qxm∂m Ak)

)

= εi jk x j
k − qεi jk x j xm∂m Ak (14)

Letting qεi jk x j xm∂m Ak = qεi jk x j xm(∂m Ak − ∂k Am +
∂k Am) = qεi jk x j xm(εmkpB p + ∂k Am), we obtain

J i(PS)=εi jk x j
k−qεi jk x j xmεmkpB p−qεi jk x j xm∂k Am

(15)

The middle term in (15) can be shown to vanish giving finally

J i(PS) = εi jk x j
k − qεi jk x j xm∂k Am . (16)

We now work out explicitly the components of
−qεi jk x j xm∂k Am . The x-component is

− qε1 jk x j xm∂k Am = −qg
zx

ρ2

(
±1 − z

r

)

= −qg
x

r
∓qgx

(
z∓r

ρ2

)
(17)

The y-component is

− qε2 jk x j xm∂k Am = −qg
zy

ρ2

(
±1 − z

r

)

= −qg
y

r
∓qgy

(
z∓r

ρ2

)
. (18)

Finally, the z-component is

− qε3 jk x j xm∂k Am = −qg
z

r
±qg (19)
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Explicitly from (16), (17), (18), (19) we find that

J x(PS) = J x ; J y
(PS) = J y; J z(PS) = J z±qg, (20)

Thus the point split angular momentum satisfies the angular
momentum algebra

[J i(PS), J
j

(PS)] = iεi jk J k(PS) . (21)

Equation (21) is the standard angular momentum commuta-
tion relationship for the point split angular momentum. To
fully check the rotational symmetry of the charge-monopole
system one would need to check that the angular momentum
commutes with the Hamiltonian i.e. [J i , H ] = 0 where the
Hamiltonian is H = 1

2m (−i∇ − eA)2 [10,11,23]. Note this
Hamiltonian is for the particle of charge, e, and mass, m,
only. It does not contain the contribution of the pure E and B
fields. If one takes the standard angular momentum operator
and standard Hamiltonian operator one finds that J i and H
do not commute [23]. However, as shown in [11,23] one can
define a point split version of the Hamiltonian that, along
with the point split version of the angular momentum, do
commute i.e. [J i(PS), H(PS)] = 0. The point split version of
the angular momentum operators in (20) only differ from the
standard angular momentum operators by the added constant
term ±qg, which comes form the string contribution. Thus
the point split Hamiltonian defined in [11,23] should still
commute with the point split angular momenta in (20).

Since the point split versions of the angular momen-
tum and Hamiltonian do commute one can find common
eigenfunctions for these operators. For the monopole-charge
system, but without taking into account the field angular
momentum of the string, these monopole spherical harmon-
ics were given in [24] (see also [21] for a simple discus-
sion of the monopole spherical harmonics). It is not clear if
the monopole spherical harmonics of [24] will also serve as
eigenfunctions for the angular momenta which include the
string angular momentum. We leave the study of the eigen-
functions of J i(PS) and H(PS) for future work.

For J z(PS) in (19) we find that the anomalous ±iqz(x ·
Bstring

± ) is gone as was the case from previous works
[11,13,23]. Next the point split z-component of the angu-
lar momentum contains the term −qg z

r , which is the usual
field angular momentum coming from the magnetic Coulomb
field of the monopole.

However although J(PS) now satisfies the angular momen-
tum algebra, it still contains gauge variant terms e.g. the ±qg
term in J z(PS) or the∓qg xz

ρ2 term in J x(PS). This gauge variance
of J(PS) calls into question the ability to properly quantize
J(PS) as one would expect from quantum mechanics.

The above application of the point splitting method is rem-
iniscent of the chiral anomaly of massless spinor electrody-
namics as discussed in [25]. For spinor electrodynamics one
can define an axial currentJ 5

μ = ψ̄γμγ5ψ which has a diver-

gence of ∂μJ 5
μ = 2imψ̄γ5ψ , where m is the mass of the

fermion field ψ . In the limit when the fermion mass goes to
zero this axial current should be conserved, limm→0 ∂μJ 5

μ =
0. However certain one-loop triangle graphs spoil this con-
servation. In [25] the point splitting method is used to con-

struct a new axial current J̃ 5
μ = J 5

μ − q2

2π
Fμν Aν , where

Fμν = 1
2εμνρσ Fρσ is the dual field strength tensor of the

Maxwell field strength tensor Fρσ . This new axial current,
J̃ 5

μ , is conserved (∂μJ̃ 5
μ = 0), but is not gauge invariant due

to the presence of the vector potential in the term q2

2π
Fμν Aν .

Thus one had J 5
μ which was gauge invariant but not con-

served, while J̃ 5
μ was conserved, but not gauge invariant.

This is similar to the present case where the ±qg term in
J z(PS) restores the angular momentum algebra, but calls into
question the gauge invariance of the string, since one arrives
at different field angular momentum depending on which
gauge equivalent vector potential, A+ or A−, one uses to
calculate the string field angular momentum in (5).

4 Dirac versus ’t Hooft–Polyakov monopoles

The above analysis of the Dirac monopole-electric charge
system emphasizes the importance of the total angular
momentum of the system over making the string singular-
ity “invisible” to the wavefunction of the charge, q. In some
sense the angular momentum approach is more fundamen-
tal since it is connected with rotational symmetry rather
than coming from some condition one imposes on the wave-
function of the charge. If one takes the angular momentum
approach as the more fundamental way of arriving at the
Dirac quantization condition from the monopole-charge sys-
tem, then one finds the dueling problems of the non-closure of
the angular momentum algebra versus the gauge invariance
of the total angular momentum. This problem can be resolved
by considering only ’t Hooft–Polyakov-type configurations
as the correct model of monopoles, since they have no string
singularity and thus avoid the need to impose a condition on
the wavefunction of q. Monopoles of the ’t Hooft–Polyakov-
type still have a field angular momentum that takes the form
Jt H P = r×�+qgr̂ i.e. particle plus point field contributions
but no string field contribution since the ’t Hooft–Polyakov
monopole does not have a string singularity. Jt H P satisfies
the angular momentum algebra and further one can properly
quantize Jt H P · r̂ = qg = n h̄

2 leading to the Dirac condition
without reference to the wavefunction.

For the ’t Hooft–Polyakov topological monopoles one can
see that the angular momentum approach to obtaining the
Dirac quantization condition takes precedence over the other
approaches. For the canonical set up of the fields for the ’t
Hooft–Polyakov monopole the non-Abelian gauge fields are

taken to have the Wu-Yang form, Aa
i ∝ εiab

xb

r2 , and the scalar
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field takes the “hedgehog” form, φa ∝ xa
r (note the mixing

of Lorentz, indices i,j and group indices a, b). In this format
there is no singularity in either the gauge or scalar fields so the
quantization condition can only come from the quantization
of angular momentum which in turn in tightly connected with
the non-Abelian group structure. Now one can transform the
’t Hooft–Polyakov monopole into a Dirac form via a singular
gauge transformation. The details of this can be found in Sect.
5.1.6 of reference [13]. This singular gauge transformation
is singular exactly along the ±z-axis, and it transforms the
Wu-Yang form of the non-Abelian gauge field into a Dirac-
like form as in (1), and the scalar field is transformed from
the hedgehog form to a φa ∝ δa3 i.e. a constant field pointing
in some particular direction in group space (taken to be the
3-direction here). This new Dirac-like form for the ’t Hooft–
Polyakov monopole is said to be in the Abelian gauge, but
here one can see that the string singularity in the gauge field
really is a gauge artifact since one can always do the reverse
gauge transform back to the hedgehog plus Wu-Yang form
for the scalar and gauge fields. Further, since in the original
configuration of hedgehog plus Wu-Yang form the quantiza-
tion condition came from angular momentum quantization,
when one transformed to the Abelian gauge for the scalar
and gauge fields the wavefunction of the charge already does
not interact with the string singularity. For the pure Dirac
monopole one can move the string singularity around via a
gauge transformation, but one cannot completely transform
away the singularity as is the case for the ’t Hooft–Polyakov
monopole where one can go between the hedgehog form,
where there is no singularity, and Abelian form, which has
a singularity. Then for the pure Dirac monopole the string
field angular momentum proves problematic since one either
cannot close the angular momentum algebra, or one is left
with a gauge variant result.

From the above analysis the takeaway point is that ’t
Hooft–Polyakov monopoles are the only theoretically consis-
tent monopoles. This should guide future searches to focus on
looking for ’t Hooft–Polyakov monopoles instead of point-
like Dirac monopoles via processes such as those proposed
in [26].

5 Summary and conclusions

In this paper we studied an overlooked contribution to the
field angular momentum of the charge-monopole system that
comes from the interaction of the electric field of q with the
magnetic field of the string given in (5). This gives a total
field angular momentum that is the sum ofLpoint

EM andLstring
EM .

This new string field angular momentum contribution spoils
the simple argument for arriving at the Dirac quantization
condition by requiring that the field angular momentum of
the charge-monopole system take values of n h̄

2 [15–17]. With

the exception of the field angular momentum quantization
method of [15–17] all other arguments leading to the Dirac
quantization condition rely on the wavefunction of q.

We then turned to a more rigorous investigation of this
new field angular momentum by calculating the total angular
momentum commutators consisting of the canonical x × �

term plus the field angular momentum coming from the point
and string contributions. These commutators had anomalous
terms which spoiled the closure of the angular momentum
commutators. However, these anomalies, and their remedy
via defining a point split version of the angular momentum,
were already well known via the works [11,13,23]. We found
that the point split version of the total angular momentum
in (13) and (16) did satisfy the standard angular momen-
tum algebra. However, the point-split angular momentum
was found to be gauge variant. The demonstration that the
point split angular momenta J i(PS) obeyed the correct angular
momentum algebra (i.e. (21)) and that the point split Hamil-
tonian commutated with the point split angular momentum
(i.e. [J i(PS), H(PS)] = 0) did not take into account the quan-
tum nature of the electromagnetic field. However, reference
[11] shows that these results also carry over to quantum fields.

The above calculations, which take into account the previ-
ously overlooked field angular momentum of the Dirac string,
cast doubt on the consistency of the pure Dirac monopole
along the lines of the end note 11 in reference [23]. The
present analysis shows that pure Dirac monopoles either vio-
late the angular momentum algebra or lead to a gauge variant
total angular momentum. This implies that the proper context
for magnetic charges is as ’t Hooft–Polyakov-type configu-
rations [8], where the string singularity of the pure Dirac
monopole is replaced by a non-singular configuration of
gauge plus scalar fields with a non-trivial topology. The Dirac
quantization condition outside this topological monopole
comes directly from the unambiguous quantization of the
total angular momentum of the monopole-charge system. As
a final word of caution in the original ’t Hooft–Polyakov
monopole solution one has an unrealistic, toy model for the
electroweak interaction (i.e. the gauge group is SO(3)). In
this case the topological quantization happens to coincide
with the Dirac quantizaiton condition. This is not always the
case – see the work in references [5,6] where the topological
quantization is not the same as the standard Dirac quanti-
zation, which allows for the prediction of the weak mixing
angle [6].
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