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Abstract The present study analyses the wormhole solu-
tion both in the dRGT- f (R, T ) massive gravity and Einstein
massive gravity. In both the models, the anisotropic pressure
solution in ultrastatic wormhole geometry gives rise to the
shape function that involves massive gravity parameters γ

and �. However, the terms consisting of γ and � acts in such
a way that the spacetime loses asymptotic flatness. Similar
to the black hole solution in massive gravity, this inconsis-
tency arises due to the repulsive effect of gravity which can
be represented by the photon deflection angle that goes neg-
ative after a certain radial distance. It is investigated that the
repulsive effect induced in the massive gravitons push the
spacetime geometry so strongly that the asymptotic flatness
is effected. On the other hand, in this model, one can have
a wormhole with ordinary matter at the throat that satisfies
all the energy conditions while the negative energy density is
sourced by massive gravitons. Finally, using the TOV equa-
tion, it is found that the model is stable under the hydrostatic
equilibrium condition.

1 Introduction

Wormholes are the smooth bridges between two different uni-
verses, or sometimes between two distant parts of the same
universe. The concept was first put forward by Einstein and
Rosen in their famous Einstein-Rosen bridge in 1935 [1],
where Misner and Wheeler first coined the term ‘Wormhole’
later in 1957 [2]. The exact solution of the Einstein Field
Equation for traversable wormhole were first successfully
examined much later by Morris and Thorne in the year 1988
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[3,4]. They investigated that the energy–momentum compo-
nent for such a wormhole always violates the null energy
condition [3,5] which is the weakest classical energy condi-
tion that in turn violates all other energy conditions. So, for
the construction of traversable wormhole one needs a mat-
ter with negative energy density called the exotic matter. For
example, one may consider the well-known Ellis wormhole
solution of General Relativity for instance [6–12]. However,
if traversable wormholes are constructed in modified theories
of gravity, the requirement of exotic matter is highly reduced.
There are numerous studies that deals with the wormhole
geometries and their corresponding energy conditions in var-
ious modified gravities. For example, one may go through
the wormhole solutions in f (R) gravity [13,14], in f (R, T )

gravity [15–18], and in other theories [19–33].
Ever since the traversable wormhole model was presented,

it was a point of interest if wormholes can be constructed with
ordinary matter. Recently, a study has been introduced to dis-
cuss the wormhole solutions both in Einstein gravity and in
modified gravity theories, and it is established that we may
have a wormhole with ordinary matter in modified gravity,
which may satisfy all the energy conditions [34]. Although,
the usual matter can be ordinary, but the effective geometric
matter which is the matter source of modified gravity vio-
lates the usual null energy condition. There are various stud-
ies conducted on the ground that obtained non-exotic matter
wormholes [35–45].

There are models of modified gravity theory as an exten-
sion of Einstein’s GR to address cosmological phenomenon.
The massive gravity theory is an important candidate in
this context. The discovery of gravitational waves due to
merger of two Black holes and massive stars as detected
by LIGO and VIRGO [46,47], there is a severe constraint
in the mass of the graviton, and thus, massive gravity theory
has gained significant interest in theoretical regime. The de
Rham–Gabadadze–Tolley (dRGT) massive gravity [48,49] is
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an interesting nonlinear generalization to overcome the so-
called van Dam–Veltman–Zakharov discontinuity [50,51] of
Fierz–Pauli linear massive gravity [52]. The dRGT theory
is utterly promising as it avoids the long standing issue of
Boulware–Deser ghost instability [53] that usually arises on
the introduction of nonlinear generalization of massive grav-
ity theory. In the simplest dRGT model of static spherically
symmetric solution, there arises two additional characteris-
tics scales (i.e., γ and �) as compared to the Schwarzschild
solution of General Relativity [54]. In the theory, the mas-
sive graviton generates these parameters (one of which is the
effective cosmological constant) [55,56] which can be used
to address the dark matter and dark energy problems of the
galactic and extragalactic scenario in a single theory. The
nonlinear graviton interaction generating density and pres-
sure which can behave as dark energy, and as a result, the
galaxy rotation curve is influenced due to generation of dark
matter halo. Thus, the massive gravitons may act as the dark
matter halo resulting in asymptotically flat rotation curves.
In [57], the dRGT model is quite successfully fitted with
observational data for Milky Way rotation curves, and LSB
galaxies without considering any additional dark matter. The
consistency of dRGT model with the NFW profile has also
been noted in this context.

Further, the massive gravitons play the role of an
anisotropic fluid, which in turn is a kind of dark energy. As
a consequence, one may able to explain the late time cosmic
acceleration, although, it can not justify the past inflation.
Subsequently, in a rectified framework, it is found that the
massive gravity theory is consistent [58] with the Plank 2018
data [59] and its combination with BK18 and BAO [60].

The phenomenology in dRGT massive gravity for com-
pact objects is interestingly promising. Various studies have
already been conducted on Black hole, Black string, rotat-
ing Black string solutions, stability and greybody factor on
charged Black hole and Black strings in dRGT model which
are modified significantly from the conventional studies due
to the presence of massive gravitons [61–68].

On the other hand, the existence of wormhole demands
the violation of null energy condition. At the same time, a
natural outcome in the massive graviton density is that it
can be negative in a certain region where the radial pres-
sure is positive. So, in the massive gravity theory, the mas-
sive graviton energy–momentum tensor naturally fulfil the
feature of energy condition violation [69]. Thus, the exis-
tence of wormhole in the massive gravity can be a natu-
ral outcome, and the discussion of this particular object has
an additional importance on its own. There are only cou-
ple of studies present on wormhole solutions in dRGT mas-
sive gravity with its own limitations. Tangphati et al. inves-
tigated the traversable wormhole solution in f (R) massive
gravity [70], where they considered an exponential shape
function in order to discuss the asymptotic geometry. But,

due to their restricted choices of shape function, they were
unable to obtain a geometry which includes the effect of
massive gravitons. Alongside, Kamma et al. presented the
wormhole solution in conventional Einstein gravity on the
background of massive gravitons [71], and obtained both the
redshift function and shape function which includes massive
gravity parameters. Although, they discussed about negative
pressure tension in wormholes, but they didn’t shed any light
on the asymptotic geometry triggered by the redshift and
shape function.

So, in this article, we shall investigate the wormhole solu-
tion in f (R, T ) massive gravity (the field equations are dis-
cussed in Sect. 2), and discuss the corresponding anisotropic
pressure solution in the ultrastatic wormhole geometry in
Sect. 3. It is observed that a repulsive gravity effect is present
and the asymptotic structure is violated in the model which
is not so well-known in wormhole geometries. Hence, to rep-
resent the relationship between asymptotic structure and the
repulsive gravity in a more generalized scenario, we exam-
ined wormhole solution in dRGT extension of Einstein grav-
ity in Sect. 4. On the other hand, the stability of the model
is analyzed in Sect. 6 followed by the discussions of energy
conditions and matter content in Sect. 5. Finally, Sect. 7 is
dedicated for the conclusions and discussions.

We consider the natural units throughout the study, i.e.,
G = c = 1.

2 The field equations

To investigate the f (R, T ) gravity model in the context of de
Rham–Gabadadze–Tolley (dRGT) massive gravity, we con-
sider the action in the following form

S =
∫

d4x
√−g

(
1

16π

[
f (R, T ) + m2

gU(g, φa)
]

+ Lm

)
,

(1)

where f (R, T ) is function of R and T , U is the self-
interacting potential of the graviton with graviton mass mg ,
Lm is the matter Lagrangian, and g is the determinant of the
metric tensor gμν . Here, the potential U is defined as

U = U2 + α3U3 + α4U4. (2)

where U2, U3 and U4 are given by

U2 = [K]2 − [K2],
U3 = [K]3 − 3[K][K2] + 2[K3],
U4 = [K]4 − 6[K]2[K2] + 8[K][K3] + 3[K2]2 − 6[K4],

Kμ
ν = δμ

ν −
√
gμλ∂λφa∂νφbFab, (3)
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Here, [K] represents the trace of Kμ
ν , where (Ki )

μ
ν =

Kμ
ρ1Kρ1

ρ2 ...Kρi
ν , φa is the Stückelberg field, and the reference

fiducial metric Fab has the explicit form given by

Fab =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 c2 0
0 0 0 c2sin2θ

⎞
⎟⎟⎠ , (4)

where the unitary gauge is fixed as, φa = xμδaμ, so that

√
gμλ∂λφa∂νφbFab =

√
gμλFλν. (5)

Now, by varying the action with respect to the metric gμν ,
we arrive to the field equation for modified dRGT- f (R, T )

massive gravity theory given by

fR(R, T )Rμν−1

2
f (R, T )gμν+(gμν�−∇μ∇ν) fR(R, T )

= −m2
g Xμν + 8πTμν − fT (R, T )(Tμν + μν), (6)

where fR(R, T ) and fT (R, T ) are the differentiation of
f (R, T ) with respect to R and T respectively, and � fR =
gμν∇μ∇ν fR . We also have the variation of trace of energy–
momentum tensor of the matter field, T = gμνTμν as

δ(gαβTαβ)

δgμν
= Tμν + μν, (7)

where μν and Tμν are given by

μν ≡ gαβ δTαβ

δgμν
, (8)

Tμν ≡ gμνLm − 2∂(Lm)

∂gμν
. (9)

Here, Tμν can also be written in the principal pressure
terms as

Tμν = (ρ + pt )uμuν + pt gμν + (pr − pt )χμχν, (10)

whereuμ is the timelike unit vector,χμ is a spacelike unit vec-
tor orthogonal to timelike unit vector, such that uμuμ = −1
and χμχμ = 1. Assuming the universal choice of Lagrangian
matter density Lm = ρ, we have μν = −2Tμν + ρgμν .

Alongside, χμν is the massive graviton tensor, given by

Xμ
ν = Kμ

ν − [K]δμ
ν − α

×
[
(K2)μν − [K]Kμ

ν + 1

2
δμ
ν

(
[K]2 − [K2]

)]

+3β

[
(K3)μν − [K](K2)μν + 1

2
Kμ

ν

(
[K]2 − [K2]

)]

−3β

[
1

6
δμ
ν

(
[K]3 − 3[K][K2] + 2[K3]

)]
, (11)

where the parameters α and β are defined by

α = 1 + 3α3, β = α3 + 4α4. (12)

According to the definition,

m2
g

8π
Xμν=−(ρ(g)+p(g)

t )uμuν−p(g)
t gμν−(p(g)

r −p(g)
t )χμχν,

(13)

which is nothing but the energy momentum tensor of the
massive gravity sector. Using Eq. (11), one can readily calcu-
late the density and pressure components ρ(g)(r) and p(g)

r,⊥(r)
which are given by [57,70,72,73]

ρ(g)(r) ≡ m2
g

8π
Xt

t = − 1

8π

(
2γ − �r

r

)
, (14)

p(g)
r (r) ≡ −m2

g

8π
Xr

r = 1

8π

(
2γ − �r

r

)
, (15)

p(g)
θ,φ(r) ≡ −m2

g

8π
X θ,φ

θ,φ = 1

8π

(
γ − �r

r

)
, (16)

where effective cosmological constant � and a new parame-
ter γ are introduced and written in the linear combination of
the parameters α and β, given by

� ≡ −3m2
g(1 + α + β), γ ≡ −m2

gc(1 + 2α + 3β). (17)

Here at this point, after applying some simple mathemat-
ical calculations on Eq. (6), we arrive to the final field equa-
tion.

Gμν = 8πGef f Tμν + T ef f
μν − 1

fR(R, T )
m2

g Xμν, (18)

where

Gef f = 1

fR(R, T )

(
1 + fT (R, T )

8π

)
, (19)

T ef f
μν = 1

fR(R, T )

[
1

2
( f (R, T ) − R fR(R, T )

+2ρ fT (R, T ))gμν − (gμν� − ∇μ∇ν) fR(R, T )

]
.

(20)

Note that, when f (R, T ) ≡ f (R), such that fT (R, T ) =
0, we get back the usual f (R) massive gravity solution [70].
In this field equation, the energy–momentum tensor com-
ponent (Tμν) of f (R, T ) gravity represents the interaction
between matter and curvature, and one may interpret this as
the curvature-matter coupling occurs due to the exchange of
energy and momentum between the both. Otherwise, the total
energy–momentum tensor which is the sum of f (R, T ) and
massive gravity sectors, adds the interaction of massive gravi-
tons with the curvature-matter coupling. It can be expressed
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as

T tot
μν =diag

(
−ρ−ρ(g), pr+p(g)

r , pt+p(g)
t , pt+p(g)

t

)
.

(21)

However, f (R, T ) gravity proposed by Harko et al. [74]
has a critical issue that violates the energy conservation
law, and it leads to non-geodesic motion of test particles.
But, an alternative approach of f (R, T ) gravity proposed by
Chakraborty [75] showed that the form of the field equation
remains similar if one takes into account of the conservation
of EM tensor. As a result, test particles move in geodesic
orbits, and the choice of Lagrangian is not completely arbi-
trary. For homogeneous and isotropic model of the universe,
the approach refers to the field equation which is equivalent
to the Einstein gravity with non-interacting 2-fluid system,
one of which is the usual perfect fluid in modified gravity
and the other one shows exotic nature.

Recently, in [76], it is showed that in f (R, T ) gravity,
one may have a wormhole with non-exotic matter where the
ordinary EM tensor satisfies the NEC, and the extra curvature
caused by the modified gravity manipulate violation of NEC,
so that the total EM tensor violates NEC. In a general per-
spective of modified gravity, the existence of ordinary matter
wormhole is briefly discussed in [34]. For another example
of non-exotic matter wormhole in f (R, T ) gravity, readers
are referred to [77].

Now, it is mathematically evident that the massive grav-
ity EM tensor holds the property of anisotropic dark energy,
as p(g)

r = −ρ(g), which may successfully manipulate the
phenomenological aspects of various compact objects and
astrophysical phenomenons [57,61–68]. Thus, in f (R, T )-
massive gravity, the massive gravity and curvature-matter
coupled system has the massive gravitons and effective geo-
metric matter (due to the curvature) that can exhibit exotic
nature. Hence, if the EM sector of usual matter satisfies the
energy conditions and is dominated by the sum of gravitons
and geometric matter, we can have a usual matter wormhole.

Now, to construct traversable wormhole solution, we con-
sider the Morris–Thorne line element given by [3]

ds2 = −e2�(r)dt2 +
(

1 − b(r)

r

)−1

dr2 + r2d�2, (22)

where d�2 = dθ2 + sin2θdφ2, �(r) and b(r) are the red-
shift function and shape function respectively. The mini-
mal requirement of traversability of this particular wormhole
geometry demands the following conditions:

1. The wormhole is constructed by connecting two asymp-
totic flat regions at the throat. The throat radius is defined

by a global minimum r = r0, so the radial coordinate runs
in the interval r ∈ [ r0,∞) .

2. The redshift function �(r) must be finite everywhere in
order to avoid the presence of horizons and singularities.
So, e�(r) > 0 everywhere for r > r0.
In this context, the ultrastatic wormhole is a particular
point of interest which defines the zero-tidal-force worm-
hole. Here, �(r) = 0, so that e�(r) = 1 i.e., in a frame
free from gravitational acceleration, a particle dropped
from rest remains at rest [3,78].

3. The flaring-out condition

−rb′(r) + b(r)

b2(r)
> 0,

must hold at or near the throat r = r0.
4. The above mentioned conditions imply that b(r0) = r0

and b′(r0) ≤ 1 for all r ≥ r0, where the equality of b′(r0)

only holds at the throat. Further, for r > r0 ⇒ b(r) < r .
5. The asymptotic flatness implies that �(r) → 0 and

b(r)/r → 0 as r → ∞.

The redshift and shape function must obey these conditions
(readers are referred to [3,70,79–81], for details).

Now, the Einstein tensor components for the spacetime
metric are given by [3]

Gtt = b′

r2 , (23)

Grr = − b

r3 + 2

(
1 − b

r

)
�′

r
, (24)

Gθθ = Gφφ =
(

1 − b

r

)[
�′′ + �′2

+
(−rb′ + 2r − b

2r(r − b)

)
�′ − rb′ − b

2r2(r − b)

]
. (25)

Therefore, using these components, the calculation of field
equation (from Eq. (18)) of f (R, T ) massive gravity is rather
straightforward to obtain,

ρ = f

16π
+ fR

8π

[(
1 − b

r

) (
�′′ + �′2)

−rb′ + 3b − 4r

2r2 �′
]

−
(

1 − b

r

)
f ′′
R

8π

+
(
rb′ + 3b − 4r

2r2

)
f ′
R

8π
+

(
2γ − �r

8πr

)
, (26)

pr = − f

16π
+

(
1 − b

r

)
f ′′
R fT

8π(8π + fT )
− f ′

R

(8π + fT )

×
[(

rb′ + 3b − 4r

2r2

)
fT
8π

−
(

1 − b

r

) (
�′ + 2

r

)]

− fR
(8π + fT )

[(−rb′ − 3b + 4r

2r2

)
�′ fT

8π
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+
(−rb′ + b

2r2

) (
�′ + 2

r

)]

−
(

1 − b

r

) (
�′′ + �′2) fR

8π
−

(
2γ − �r

8πr

)
, (27)

pt = − f

16π
+

(
1 − b

r

)
f ′′
R

8π
− f ′

R

(8π + fT )

×
[(

rb′ + 3b − 4r

2r2

)
fT
8π

+
(
rb′ + b − 2r

2r2

)

−
(

1 − b

r

)
�′

]
− fR

(8π + fT )

[(
r − b

r2

−
(
rb′ + 3b − 4r

2r2

)
fT
8π

)
�′ − rb′ + b

2r3

]

− fR fT
8π(8π + fT )

(
1 − b

r

) (
�′′ + �′2) −

(
2γ − �r

8πr

)
.

(28)

Now, to construct wormhole solution, one can consider
restricted choices of �(r), b(r) and f (R, T ) among oth-
ers. The other way considers specific pressures (isotropic/
anisotropic) or equations of state for pr , pt . Although, fix-
ing the shape function prior to the solution may loose the
effect of massive gravity on the shape. For an example, we
can consider the wormhole solution in f (R) massive gravity
by Tangphati et al. [70]. In this present study, we will consider
the anisotropic pressure solution in f (R, T ) massive gravity
and exhibit the effect of massive gravitons on the wormhole
shape function.

3 Anisotropic wormhole solution

For the anisotropic pressure fluid wormhole solution in
dRGT- f (R, T ) massive gravity, we consider a simple choice
of f (R, T ), e.g., f (R, T ) ≡ (αR + βT ),1 where α = 1
and β = 2λ brings forth the well known linear choice of
f (R, T ) cosmology, i.e., f (R, T ) ≡ (R + 2λT ) [74]. We
have fR = α, fT = β, and f ′

R = f ′′
R = 0 for the specific

choice. On the other hand, ultrastatic wormhole is chosen
for the particular solution which results �′(r) = �′′(r) = 0,
and we can directly compute the reduced EM components to
get,

ρ = αb′

r2(8π + β)
+ 2γ − �r

2r(4π + β)
, (29)

pr = − αb

r3(8π + β)
− 2γ − �r

2r(4π + β)
, (30)

pt = α(−rb′ + b)

2r3(8π + β)
− 2γ − �r

2r(4π + β)
. (31)

1 Note that, this α and β is different from the massive gravity α and β

parameters, and from here on, we will use α and β only for the f (R, T )

coefficients except for the deflection angle.

The anisotropic pressure fluid equation is given by pt =
σ pr , where σ = 1 defines the isotropic pressure condition
(i.e., pt = pr = p). At the same time, σ must be less than
zero for anisotropic pressure fluid to ensure the asymptotic
flatness of the spacetime. Hence, for our particular choices,
we can directly obtain the shape function by using Eqs. (30)
and (31).

b(r) = r2(8π + β)

2α(4π + β)

[−4γ (1 − σ) + �r(1 − 2σ)

(1 − 2σ)

]

+Cr1+2σ , (32)

where C is the constant of integration. It is expected to note
that the shape function effectively depends on the massive
gravity parameters (γ and �), and hence on the mass of the
graviton.

It is worth noting here that for σ = −1 and γ = � = 0,
the equation reduces to the so called Ellis wormhole [6] shape
function.

However, one can obtain the position of wormhole throat

from the root of
(

1 − b(r)
r

)
= 0, which (for our area of

interest) eventually gives us

1 + Aγ r − B�r2 + Cr2σ = 0, (33)

where

A = 2(8π + β)

α(4π + β)

(
1 − σ

1 − 2σ

)
, B = (8π + β)

2α(4π + β)
. (34)

For Ellis wormhole, Eq. (33) becomes

1 + Āγ r − B�r2 + C

r2 = 0. (35)

It is clear that the equation has four roots, and one of the
real root determines the throat radius. One can easily impose
condition 4 (from the 5 minimum requirements for wormhole
geometry, Sect. 2) i.e., b(r = r0) = r0 to determine C , so
that the throat radius r0 can be specified. Hence, the final
shape function is given by

b(r) = r

(
r

r0

)2σ

− r(8π + β)

2α(4π + β)(1 − 2σ)

×
[

4γ (1 − σ)

(
r − r0

(
r

r0

)2σ
)

−�(1 − 2σ)

(
r2 − r2

0

(
r

r0

)2σ
)]

. (36)

The result is much expected where massive gravity free
(i.e., γ = � = 0) expression turns out the usual solution of
anisotropic pressure fluid in f (R, T ) gravity. However, due
to the presence of r and r2 respectively with γ and � in the
second term of the shape function changes the asymptotic
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Fig. 1 Behaviour of the f (R, T )-massive shape function against the
Morris–Thorne wormhole properties for α = 1, β = 2, σ = −1, γ =
0.06, and � = 0.07. The throat radius r0 = 1 is exhibited by the vertical
dashed line at r = 1

structure of the spacetime. The effect is very much similar
to the black hole solution in dRGT massive gravity. We refer
[82] for the discussion in black hole asymptotic structure.

To explore the shape function characteristics discussed
in Sect. 2, we plot b(r), b′(r), b(r)/r , and the flaring-out
condition (i.e., −rb′(r) + b(r)) in Fig. 1. It is observed that,
though all the properties are satisfied near the throat, the
conditions given by b′(r) < 1, b(r)/r < 1 for all r > r0,
and b(r)/r → 0 for r → ∞ are significantly violated after
certain radial distance. So, it is straightforward to conclude
that the asymptotic flatness of the spacetime vanishes after
certain distance due to the presence of massive gravitons. We
can interpret this as the result of repulsive effect of gravity,
which is another unique feature of the dRGT massive gravity
theory. A similar effect arises in the black hole solution in
massive gravity where the asymptotic structure changes due
to the said effect [82]. It should be noted here that repulsive
behaviour of gravity is also found in the BHT massive gravity
[83], and in other modified gravities with exotic matters and
energy [84–88].

Coming back to the discussion of non-asymptotic geom-
etry, for r → ∞, b(r)/r did not approach ′0′, rather it goes
to ′∞′ due to the presence of linear r and r2 terms with γ

and � respectively in Eq. (36), resulting the loss of asymp-
totic flatness. It is evident and can be exhibited mathemati-
cally that other choices of f (R, T ) in ultrastatic wormhole
geometry also involve such r and r2 terms with γ and � in
the shape function. Similar circumstances can be observed in
other gravities such as Einstein’s gravity in the background of
massive gravitons (which will be discussed later in this liter-
ature), and in f (R) massive gravity wormholes [70]. Hence,
we can conclude that it is a generic feature of wormholes in
dRGT massive gravity.

Now, we need to check the presence of repulsive grav-
ity effect in the wormhole solution to verify if it has any

role on the asymptotic structure. To easily verify the phe-
nomenon, one can introduce the photon deflection angle on
the wormhole, which eventually goes negative in a spacetime
if repulsive gravity acts on the photons [82].

3.1 Repulsive behaviour of gravity

To check the deflection angle of photons from null geodesics,
we first introduce a general spherically symmetric and static
line element given by [89,90]

ds2 = −A(r)dt2 + B(r)dr2 + C(r)d�2. (37)

The geodesic equation, which relates the momenta one-
forms of a freely falling body and background geometry is
given by [90]

dpβ

dλ
= 1

2
gνα,β p

ν pα, (38)

where λ is the affine parameter. One can immediately tell
that if the components of gαν are independent of xβ for a
fixed index β, then pβ is a constant of motion. Hence, if we
consider only the equatorial slice by setting θ = π/2, then
all the gαβ are independent of t, θ, φ in Eq. (38), i.e., one can
obtain the respective killing vector fields δ

μ
α ∂ν with α as a

cyclic coordinate. Now, we can set the constants of motion
pt and pφ as

pt = −E, pφ = L , (39)

where E and L are the energy and angular momentum of the
photon respectively. Thus, we have

pt = ṫ = gtν pν = E

A(r)
,

pφ = φ̇ = gφν pν = L

C(r)
, (40)

where the overdot represents the differentiation w.r.t.
affine parameter λ. Again, the radial null geodesic can be
obtained easily as

ṙ2 = 1

B(r)

(
E2

A(r)
− L2

C(r)

)
. (41)

However, one can write the equation for the photon tra-
jectory in terms of impact parameter μ = L/E , as

(
dr

dφ

)2

= C(r)2

μ2B(r)

[
1

A(r)
− μ2

C(r)

]
. (42)

Now, one can obtain the deflection angle of photon by con-
sidering a source of photon radius rs causing the geometry,
then the photons can hit the surface only when an existing
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Fig. 2 Numerical result of the deflection angle of photons in f (R, T )-
massive gravity for r0 = 1, ω = −1, γ = 0.06,� = 0.07, α = 1, and
β = 2. The plot exhibit the negative deflection angle representing the
repulsive nature of gravity. It also verifies the reason of non-asymptotic
behaviour

solution r0 obeys the condition r0 > rs , and ṙ2 = 0. Here,
r0 is the distance of closest approach or turning point. In that
case, the impact parameter becomes

μ = L

E
= ±

√
C(r0)

A(r0)
, (43)

and it is obvious that for weak gravity limit, μ ≈ √
C(r0).

Thus, if a photon is coming from polar coordinate limit given
by limr→∞

(
r,−π

2 − α
2

)
, passes through the turning point at

(r0, 0) and approaches limr→∞
(
r, π

2 + α
2

)
, then the deflec-

tion angle of photon is defined as this α, which is a function
of r0 [91]. We can compute it from Eq. (42) as

α(r0) = −π + 2
∫ ∞

r0

√
B(r)dr

√
C(r)

[(
A(r0)
A(r)

) (
C(r)
C(r0)

)
− 1

]1/2 .

(44)

For the choices of metric coefficients in wormhole geom-
etry, the deflection angle becomes

α(r0) = −π + 2
∫ ∞

r0

dr

r

[(
1 − b(r)

r

) (
r2

r2
0

− 1

)]1/2 . (45)

One can now readily exhibit the deflection angle of pho-
tons in massive gravity by numerically integrating the above
equation after imposing the shape function given by Eq. (36),
which is shown in Fig. 2.

It is interesting to observe that the deflection angle
becomes negative after a certain value of r0. We can inter-
pret this as the effect of repulsive gravity, where neglecting
massive gravity parameters γ and � (i.e. neglecting mas-
sive gravity), one can comfortably verify the non-existence

of negative deflection angle [92]. At the same time, refer-
ring Fig. 1, it is verified that the inconsistencies in the space-
time structure like non-asymptotic flatness occurs beyond
the radial distance where the repulsive effect of gravity dom-
inates. So, we can conclude that the loosening of asymptotic
structure results from the repulsive behaviour of gravity.

However, the repulsive anisotropic dark energy nature is
inherent in massive gravitons. So, their presence may phys-
ically cause the repulsive gravity effect in dRGT massive
gravity.

4 Wormhole in Einstein-massive gravity

To start the discussion of Einstein gravity with the back-
ground of dRGT massive gravity, the action is considered as

S =
∫

d4x
√−g

(
1

16π

[
R + m2

gU(g, φa)
]

+ Lm

)
. (46)

We can now vary the action with respect to gμν after
considering the massive gravity and other parameters from
Sect. 2 and get

Gμν = 8πTμν − m2
g Xμν. (47)

However, one can easily derive the above results just by
considering f (R, T ) = R, i.e., fR(R, T ) = 1, in f (R, T )

massive gravity.
In Eq. (47), the EM tensor of the Einstein gravity follows

the energy conservation law, and the total EM tensor defined
by the coupled perfect fluid-massive graviton system is given
by

T tot
μν =diag

(
−ρE−ρ(g), pEr +p(g)

r , pEt +p(g)
t , pEt +p(g)

t

)
,

(48)

where ‘E ′ in the superscript represents the EM components
for Einstein gravity. So, one can directly write ∇μT tot

μν = 0,

∇μTμν = 0 and ∇μT (g)
μν = 0. In Einstein-massive gravity,

the construction of wormhole can be possible with non-exotic
matter source, where the violation of energy conditions may
manipulated by the exotic nature of massive gravitons.

Now, to derive the calculations of field equation for
Morris–Thorne wormhole, we may use Eqs. (23), (24), and
(25) in Eq. (47) and obtain,

ρ = b′

8πr2 +
(

2γ − �r

8πr

)
, (49)

pr = − b

8πr3 +
(

1 − b

r

)
�′

4πr
−

(
2γ − �r

8πr

)
, (50)
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Fig. 3 Behaviour of the Einstein-massive shape function against the
Morris–Thorne wormhole properties for σ = −1, γ = 0.06, and � =
0.07. The throat radius r0 = 1 is exhibited by the vertical dashed line
at r = 1

pt =
(−rb′ + b

16πr3

)
+

(−rb′ + 2r − b

16πr2

)
�′

+ 1

8π

(
1 − b

r

) (
�′′ + �′2) −

(
2γ − �r

8πr

)
. (51)

Here, we are about to construct an anisotropic wormhole
solution with restricted choice of redshift function, e.g. � =
constant (i.e. �′ = �′′ = 0), which represents the ultra-
static wormhole geometry. Hence, the equation of state for
the anisotropic pressure solution, pt = σ pr provides the
shape function of the wormhole. By using the boundary con-
dition at the throat junction, i.e. b(r0) = r0, the final shape
function is given by

b(r) = r

[(
r

r0

)2σ

− 4γ (1 − σ)

(1 − 2σ)

(
r − r0

(
r

r0

)2σ
)

+�

(
r2 − r2

0

(
r

r0

)2σ
)]

. (52)

The shape function is very much similar to that obtained in
f (R, T ) gravity, and the visualization of the Morris–Thorne
type shape function properties, i.e. b(r), b′(r), b(r)/r, and
(−rb′(r) + b(r)) are plotted in Fig. 3. The plots violate the
asymptotic flatness after a certain radial distance, as it also
contains linear r and r2 terms with γ and � respectively.
However, if the expression is freed from the massive gravity
parameters, i.e. γ = � = 0, asymptotically well-behaved
shape function is recovered.

The discussion of repulsive effect of gravity in this ground
is indeed necessary, and we directly use Eq. (45) to plot
the numerical solution of deflection angle of photons in
dRGT extension of Einstein gravity. The existence of nega-
tive deflection angle indicate the presence of repulsive grav-
ity, where all the other comprehensive discussions are simi-
lar to the f (R, T )-massive gravity. The plot is exhibited in

Fig. 4 Numerical result of the deflection angle of photons in Einstein-
massive gravity for r0 = 1, ω = −1, γ = 0.06,� = 0.07. The plot
exhibit the negative deflection angle representing the repulsive nature
of gravity. It also verifies the reason of non-asymptotic behaviour

Fig. 4, and comparing it with Fig. 3, it is satisfied that the
Morris–Thorne wormhole shape function properties are vio-
lated after the radial distance where the deflection angle goes
negative. So, also in Einstein-massive gravity, the asymptotic
flatness of the traversable wormhole is lost due to the repul-
sive effect of gravity, and it is evident that it arises from the
anisotropic dark energy nature (repulsive nature) of massive
gravitons.

5 Energy conditions

Discussing energy conditions in traversable wormhole con-
figuration is highly important to have an idea of the matter
content on the wormhole. As discussed, the throat of usual
wormholes must be threaded by a matter of negative energy
density that violates the Null energy condition (NEC) and
is termed as ‘exotic matter’. The matter is used to keep the
wormhole throat open, thus making it traversable.

Here, in this section, we will discuss the energy condi-
tions for wormhole configuration consecutively in f (R, T )-
massive gravity and Einstein-massive gravity.

From the definitions and mathematical fundamentals, one
can summarize the energy conditions in principal pressure
forms which is given by

(i) NEC: ρ + pr ≥ 0, ρ + pt ≥ 0;
(ii) WEC: ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0;

(iii) SEC: ρ + pr ≥ 0, ρ + pt ≥ 0, ρ + pr + 2pt ≥ 0;
(iv) DEC: ρ ≥ 0, ρ − |pr | ≥ 0, ρ − |pt | ≥ 0.

Now, one can use standard mathematical tools to calculate
ρ, ρ + pr , ρ + pt , ρ − |pr |, ρ − |pt |, and ρ + pr +
2pt from Eqs. (29), (30), and (31) by imposing the shape
function of Eq. (36). Using these six terms, all the four energy
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conditions for f (R, T )-massive gravity can be investigated.
The mathematical results of the terms are plotted in Fig. 5
for α = 1, β = 2, ω = −1, and r0 = 1. Alongside, the
summaries of the results from the plots are listed in Table 1.

From Fig. 5 and Table 1, we can conclude that all the
energy conditions including the energy density are satisfied
throughout the wormhole from r = 0.87 and r = 0.83,
respectively for γ = 0.01, � = 0.7 and γ = −0.01, � =
0.7. On the other hand, one can also conclude that the energy
condition components does not differ much for the signs of
γ . However, they are highly dependent on the effective cos-
mological constant (�). For γ = 0.01, � = −0.7, all the
components are completely negative, resulting violation of
energy conditions. Alongside, for smaller γ and � terms,
i.e., for less effects of massive gravity, the energy conditions
are violated at the wormhole throat, but gets satisfied after a
certain radial distance.

Therefore, it is interesting to note that, for the first two
choices of γ and �, i.e., γ = 0.01, � = 0.7 and γ =
−0.01, � = 0.7, the wormhole can be constructed with
ordinary matter, which satisfies all the energy conditions.
The situation is investigated in [34] with great details, where
it is established that we can have wormholes with ordinary
matter in modified theories of gravity. However, the viola-
tion of NEC is customary at the wormhole throat to keep it
open for traversability. They investigated that the presence
of effective geometric matter (e.g. the curvature EM com-
ponent in f (R, T ) gravity) can play the role of energy con-
dition violation. Few of the recent studies in f (R, T ) grav-
ity [76,77] deal with the wormhole models with non-exotic
matters, where the curvature matter source acts as the exotic
matter and performs in the violation of energy conditions.
Here, in this current scenario, the matter source of massive
gravitons (which acts as the anisotropic dark energy) added
with the curvature matter source, violate the energy condi-
tion components. So, the usual matter source can be ordinary
matter. However, the repulsive dark energy nature in massive
gravitons is so strong that it brings forth the repulsive gravity
effect in the spacetime and pushes the geometry so strongly
that the asymptotic flatness is effected.

On the other hand, the Einstein-massive gravity does not
differ much from our linear f (R, T )-massive gravity model.
By imposing α = 1, and β = 0 in Eqs. (29), (30), (31),
and (36), we can readily recover EM components and the
shape function for Einstein gravity. Mathematically, the EM
components are very loosely dependent on the β values, and
graphically, the energy conditions possess adequately similar
behaviour for α = 1, and β = 0. For γ = 0.01, � =
0.7 and γ = −0.01, � = 0.7, it also contains ordinary
matter wormhole. But here, only the massive gravity sector
adds the energy condition violations. So, it is evident that the
discussions for Einstein-massive gravity model are similar to
that of the f (R, T ) gravity.

6 Equilibrium analysis

The equilibrium condition for our present work is provided by
the generalized Tolman–Oppenheimer–Volkov (TOV) equa-
tion which is given by

dpr
dr

+ �′

2
(ρ + pr ) + 2

r
(pr − pt ) = 0. (53)

The above equation is an important and elegant method
and can be used to examine the stability condition of the astro-
physical solutions including wormhole/compact objects.
Readers may refer to [77,93–97] for detailed study.

The Eq. (53) can also be written as

Fa + Fg + Fh = 0, (54)

which provides the equilibrium condition for the wormhole.
Here,

Fa = 2

r
(pt − pr ),

Fg = −�′

2
(ρ + pr ),

Fh = −dpr
dr

.

where, Fa denotes the force due to the anisotropic matter
of the wormhole, Fg is the gravitational force, and Fh is
the hydrostatic force. Fa arises due to the modification of
the gravitational Lagrangian of the Einstein–Hilbert action.
However, it is clear from Eq. (54) that for the system to be
in equilibrium, the sum of the three different forces must be
equal to zero.

In Fig. 6, the behaviour of Fa, Fg, and Fh are shown
for a particular choice of the parameter values where the
energy conditions are satisfied. However, the value of Fg
is zero due to the assumption of � to be constant (i.e. the
gravitational force has no effect on our model). From the
figure, one can visualize that the other two forces are exactly
same and opposite to each other. Thus, it is evident that the
equilibrium of forces is achieved due to the combined effect
of the three force terms, and hence this supports the stability
of the system.

7 Discussions

In this work, we have presented the wormhole solution in
the dRGT massive gravity extension of f (R, T ) gravity
and Einstein gravity. For the anisotropic pressure worm-
hole solution, we considered a linear choice of f (R, T ), i.e.,
f (R, T ) ≡ αR+βT , which is a straightforward choice of the
linear f (R, T ) cosmology model, i.e., f (R, T ) ≡ R+2λT .
One of the advantages in this particular choice is that, one can
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Fig. 5 Plots demonstrating the variation of ρ, ρ + pr , ρ + pt , ρ −
|pr |, ρ − |pt |, and ρ + pr + 2pt with radial distance r . The nature
of the plots are obtained for four different combinations of γ and �,

considering α = 1, β = 2, ω = −1, and r0 = 1. The vertical dashed
line shows the position of the wormhole throat
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Table 1 Numerical results for the possible regions where respective
energy conditions are satisfied

Terms γ and � Result

ρ γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.73,∞)

γ = −0.01, � = 0.7 ≥ 0 for r ∈ [ 0.69,∞)

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 5.29,∞)

ρ + pr γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.87,∞)

γ = −0.01, � = 0.7 ≥ 0 for r ∈ [ 0.83,∞)

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 6.09,∞)

ρ + pt γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.02,∞)

γ = −0.01, � = 0.7 Always > 0

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 2,∞)

ρ − |pr | γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.87,∞)

γ = −0.01, � = 0.7 ≥ 0 for r ∈ [ 0.83,∞)

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 6.09,∞)

ρ − |pt | γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.87,∞)

γ = −0.01, � = 0.7 ≥ 0 for r ∈ [ 0.83,∞)

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 6.09,∞)

ρ + pr + 2pt γ = 0.01, � = 0.7 ≥ 0 for r ∈ [ 0.02,∞)

γ = −0.01, � = 0.7 Always > 0

γ = 0.01, � = −0.7 Always < 0

γ = 0.001, � = 0.001 ≥ 0 for r ∈ [ 2,∞)

easily reduce this to Einstein gravity by considering α = 1
and β = 0. On the other hand, from this model, f (R)-
massive gravity can also be recovered by suitable choices of
parameters. Although, in f (R, T ) gravity, the energy con-
servation law is violated [74], but still wormhole solutions
(also with non-exotic matter) can be constructed in this the-
ory. For example, readers can go through the following lit-
erature [76,77]. However, one may also consider conserva-
tion of energy density, where interestingly the field equations
remains similar [75], and the possibility of non-exotic matter
wormhole can be investigated.

The shape function obtained from the anisotropic pres-
sure solution in the model involves product terms of r and
r2 respectively with the massive gravity parameters γ and
�, which causes non-asymptotic flat geometry in the space-
time after a certain radial distance. Although, we can extend
the region of asymptotically well-behaved spacetime by con-
sidering smaller values of γ and �. However, a globally
complete asymptotic flat wormhole solution can be achieved
by imposing restricted choices of shape function. The non-
asymptotic flatness and the reason is similar to the black hole

Fig. 6 The three forces for the equilibrium condition are plotted
against r , for r0 = 1, ω = −1, γ = 0.06,� = 0.07 and α = 1, β = 2.
Here Fg = 0 for the ultrastatic wormhole choice

solution in massive gravity where γ r and �r2 terms arise in
the metric coefficients [82].

The repulsive effect of gravity in a spacetime can be exam-
ined by the negative deflection angle of photons. It is investi-
gated that, in an extended spacetime description with massive
gravity, the deflection angle goes negative due to the terms
consisting of γ and �. Hence, the non-asymptotic flatness
and the presence of repulsive gravity is the generic feature
of dRGT massive gravity, and the massive gravitons source
the effects both in the black holes and wormholes.

On the other hand, if we investigate the equation of state
(pr = ωρ) to obtain the shape function, we get

b(r) = r
(r0

r

)1+1/ω + r(8π + β)(1 + ω)

2α(4π + β)

×
[
− 2γ

1 + 2ω

(
r − r0

(r0

r

)1+1/ω
)

+ �

1 + 3ω

(
r2 − r2

0

(r0

r

)1+1/ω
)]

.

One can readily verify that the expression is very similar
to the anisotropic pressure solution, so it also replicates all
the properties of the anisotropic solution.

The dRGT-Einstein gravity is the generalization of f (R, T )

model with α = 1, and β = 0, so it reproduces all the effects
and analysis present in the f (R, T ) model. The shape func-
tion violates the Morris–Thorne properties, and the asymp-
totic flatness is lost just beyond the radial distance where the
repulsive gravity effect arises due to the massive gravitons.

The discussion of wormhole solution in massive gravity
has a particular point of interest as the energy–momentum
tensor arising from the massive gravitons naturally fulfil the
violation of null energy conditions. Further, the introduction
of f (R, T ) modification in massive gravity is more viable
to construct wormholes with well-behaved matter source. In
wormholes of modified gravity, there are two kinds of matter
sources, one of which is the usual matter and another is the
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effective geometric matter which arises from the geometry
of modified gravity [34]. In the current study, it is established
that for different values of γ and �, there are large number of
possibilities of ordinary matter wormhole that satisfies all the
energy conditions. Here, the usual matter source of worm-
hole is ordinary matter, where the matter source of massive
gravitons coupled with the curvature term of f (R, T ) gravity
act as the geometric matter that sources the negative energy
density necessary to keep the wormhole throat open. It is
due to the exotic anisotropic dark energy nature of coupled
curvature and massive gravitons. But for Einstein-massive
gravity, it is only the massive gravitons that sources the exotic
component in non-exotic matter wormhole. In this context,
it is customary to note that the strong repulsive nature of
massive gravitons give rise to the repulsive effect of gravity
and pushes the geometry for non-asymptotic flatness, both
in f (R, T ) and Einstein massive gravity.

Finally, the Tolman–Oppenheimer–Volkov (TOV) equa-
tion is investigated for the equilibrium condition analysis.
Although, the gravitational force is zero due to the constant
redshift function, but the wormhole model is stable by the
interaction of anisotropic and hydrostatic force terms.
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