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Abstract We investigate the effect of one loop quantum
corrections on the elastic scattering of dark matter off the
nucleon in a fermionic dark matter model. The model intro-
duces two new singlet fermions and a singlet scalar. The
fermions communicate with the SM particles through a Higgs
portal. It is found that some viable regions in the parameter
space respecting the bounds from the observed relic density,
the Higgs invisible decay width, and direct detection exper-
iment, will be shrunk significantly when one loop effects
are taken into account. The regions already resided below
the neutrino floor, partly may come into regions which are
testable by the current or future direct detection experiments.
In addition, some regions being viable at tree level, may be
excluded when quantum corrections are included.

1 Introduction

The thermal production of weakly interacting massive parti-
cles (WIMPs) as dark matter (DM) candidates is a quite nat-
ural and ubiquitous mechanism [1–6]. The particle nature of
dark matter will be demystified if its direct interaction with
ordinary matter shows up in the so called direct detection
(DD) experiments. On the theory side, the DM interaction
with atoms may be so weak that it lies below the neutrino floor
(NF) or not being detectable in the current DD experiments.
The point is that when we present theoretical prediction of
the DM-nucleon interaction, it is fare to know how much the
computations are accurate in the perturbation theory.

There are models with dark matter candidates which may
evade strong bounds from DD experiments. These models
can be classified into two types. The first type occurs when
the scattering amplitude at tree level and at zero momentum
transfer vanishes by virtue of a symmetry breaking pattern.
An example is the complex scalar DM model, wherein the
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DM candidate is a pseudo-Goldstone boson after a softly bro-
ken symmetry [7–9]. In the same category, it is demonstrated
that via a scale symmetry breaking in a model with scalar dark
matter, tree level DD cross section decreases significantly
[10]. The second type contains models in which the scattering
cross section of DM off nucleons is velocity or momentum
suppressed, thus, escaping the DD bounds. Some instances
are thermal DM candidates having a pseudo-scalar type inter-
action with nucleons [11–27]. When DM-nucleon scattering
cross section is suppressed at tree-level, it deems reasonable
to include loop corrections. This may bring regions below
the neutrino floor within reach of the present or future DD
experiments. Works in this direction have been growing and
the present findings generally show that the quantum cor-
rections modify the viable parameter space significantly, see
references [28–42].

There may be other situations that loop effects of DM-
nucleon scattering become salient. This is when the coupling
involving in the DM-nucleon scattering cross section has
small effect on the DM annihilation cross section, and in fact
a second coupling mainly controls the size of the relic density.
These types of models may be extensions to the simplest sim-
plified DM models which are excluded almost entirely by the
current direct detection experiments. The focus in this work
is on a fermionic DM model with two fermion WIMPs, one
of which playing the role of DM. As shown in [43], a large
viable parameter space is available in this model satisfying
the observed relic abundance and respecting the DD bounds.
Working at tree level DM-nucleon scattering, it is found that
parts of the parameter space are below the neutrino floor,
and there are regions which respect the latest DD bounds.
Now, by incorporating one loop effects, the arising question
is that how the regions placing below the neutrino floor or the
regions which are allowed by DD upper limits, will change to
become regions above the neutrino floor or excluded regions,
respectively.
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The paper has the following structure. The dark matter
model including two fermionic WIMPs which communicate
with the SM particles via scalar-Higgs portal are introduced
in Sect. 2. A brief discussion is given in Sect. 3 about the
annihilation cross section and the tree level DD cross sec-
tion of the DM particle. The invisible decay of the SM Higgs
is introduced in Sect. 4. In Sect. 5, by imposing constraints
from observed relic abundance and upper limits from DD
experiments we show the viable parameter space by con-
sidering only tree level DD cross. We introduce in Sect. 6
the renormalization program for the present model, and find
expressions for the counter terms needed to cancel the rel-
evant divergences at one loop level. We collect the formu-
las representing different loop contributions to the DD cross
section at one loop order in Sect. 7. In Sect. 8 our results are
presented. The conclusion is given in Sect. 9.

2 Model

We describe here a renormalizable extension to the SM with
two extra Dirac fermion fields χ1 and χ2, which are singlet
under gauge symmetry of the SM. The new fermions com-
municate with the SM particles via a real singlet scalar ϕ.
The scalar potential of the model accommodating the singlet
scalar and the SM Higgs reads

V (ϕ, H) = μ2
H H†H + λH (H†H)2 + λ1ϕH

†H

+ λ2ϕ
2H†H + 1

2
m2ϕ2 + λ0ϕ + λ3ϕ

3 + λϕ4,

(1)

The singlet scalar field gets a zero vacuum expectation value
(vev), and the Higgs doublet in the unitary gauge is parame-
terized around its vacuum as

H =
(

0
vH+h′√

2

)
, (2)

where vH is the vacuum expectation value of the Higgs field
with vH = 246 GeV. We choose μH and λ0 such that at
tree level the tadpole terms for the fields, s and h′, become
zero; i.e., tϕ = tH = 0. The fermion fields χ1 and χ2 trans-
form under Z2 symmetry as χi → −χi . The particles of the
standard model interact with the DM only through the Higgs
portal. In this work we set λ = λ3 = 0. The renormalizable
Lagrangian containing the interactions of the new fermions
with the singlet scalar is as follows

LDark = κ1ϕχ̄1χ1 + κ2ϕχ̄2χ2 + (κ12ϕχ̄1χ2 + h.c). (3)

The mass matrix of the scalars is not diagonal, so in the
following we obtain the physical masses and eigenstates. By

taking double derivative of the potential with respect to h′
and ϕ, the elements of the mass matrix are obtained

M2 =
(
m2

ϕ = m2 + 1
2λ2v

2
H m2

ϕh′ = λ1vH

m2
ϕh′ = λ1vH m2

h′ = 1
2λHv2

H

)
. (4)

The mass eigenstates that diagonalize the mass matrix are
defined

h = sωϕ + cωh
′, s = cωϕ − sωh

′, (5)

where sω = sin ω and cω = cos ω, and the mixing angle, ω,
is given by

tan 2ω = 2m2
ϕh′

m2
h′ − m2

ϕ

. (6)

The mass eigenvalues are obtained as

m2
h,s = m2

ϕ + m2
h′

2
± 1

2
(m2

ϕ − m2
h′) sec 2ω. (7)

In our numerical computations we takemh = 125 GeV as the
SM Higgs mass, and ms is the physical mass of the singlet
scalar being a free parameter in our model. The couplings
λH and λ1 are obtained in terms of the mixing angle and the
physical masses of the scalars,

λH = m2
s sin2 ω + m2

h cos2 ω

2v2
H

, λ1 = m2
s − m2

h

2vH
sin 2ω. (8)

A set of independent free parameters in our model is:
m1,m2,ms, λ2, κ1, κ2, κ12, ω. We may define the mass dif-
ference between the two fermions as � = m2 −m1, assum-
ing that the light fermion is χ1, being our dark matter can-
didate with mass mDM. Without lose of generality, we can
take κ2 ∼ 0. The size of its one loop correction is then
δκ2 ∼ κ2

12/(16π2), which is still quite small for κ12 ∼ O(1).
This will simplify our calculations. We end up having seven
independent free parameters: m1,m2,ms, λ2, κ1, κ12, ω. We
will use m1 = mDM interchangeably. The quartic couplings
of the potential are constrained theoretically by requiring the
stability of the potential. The stability conditions are λH > 0,
λ > 0, and in case λ2 < 0, then λλH > λ2

2/4.

3 Annihilation cross section vs DD cross section

A detailed discussion is laid out on the relic density calcu-
lations and the tree-level DD cross section in [43] for the
present model. Here we provide a short recap. There are two
ways through which fermion DM can annihilate. (1) Through
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s-channel; by mediating h or s scalars, where DM may anni-
hilate to the SM particles, a pair of Higgs, and a pair of
singlet scalars. (2) Through t/u-channel; by mediating χ1 or
χ2, where DM may annihilate to a pair of Higgs or a pair of
singlet scalars. The annihilation cross section formulas are
provided in Appendix A.

The condition where κ12 = 0, reduces the model to the
simplest scenario. In this case, the annihilation cross section
is a combination of terms each of which is proportional to
κ2

1 , κ3
1 or κ4

1 . On the other hand, the elastic scattering cross
section is proportional to κ2

1 . Therefore, in order to get the
relic density right, large coupling κ1 is required, and this
will give rise to quite a large direct detection cross section.
As demonstrated in [43], unless the mixing angle is quite
small, the entire parameter space of the simplest fermionic
model (other than a resonance region with mDM ∼ ms/2) is
excluded by DD experiments.

For a given mixing angle, when κ12 �= 0 then the DM
annihilation cross section finds some new contributions as
a function of κ4

12, κ
2
12κ

2
1 , and so on. However, the DD cross

section at tree level in this case remains intact, being propor-
tional to κ2

1 . Now it is possible for the two cross sections to
move in opposite directions. To evade DD bounds (demand-
ing small DD cross section), small κ1 is required, and at the
same time to have large enough annihilation cross section,
terms proportional to κ4

12 will dominate when sizable κ12 of
O(1) is picked out.

4 Invisible Higgs decay

In this model, if kinematically allowed, the SM Higgs may
decay invisibly as: h → ss, h → χ1χ1, and h → χ1χ2.
These new decay channels will alter the theoretical decay
width of the Higgs,


tot
h = cos2(ω) 
SM

h + �(mh − 2ms)
(h → ss)

+ �(mh − 2mχ1)
(h → χ1χ1)

+ �(mh − mχ1 − mχ2)
(h → χ1χ2), (9)

where � is the step function, and 
SM
h is the Higgs decay

width computed within the SM. The Higgs decay to a pair of
singlet scalars has the width


(h → ss) = A2

128πmh

√
1 − 4m2

s/m
2
h, (10)

where, the coupling A is given by

A = (2 sin ω − 3 sin2 ω)λ1 + (6 sin2 ω − 2 cos ω)vHλ2

− 6 sin2 ω cos ω vHλH . (11)

The decay width for the Higgs decay to two identical
fermions is


(h → χ1χ1) = κ2
1mh sin2 ω

8π
(1 − 4m2

χ1
/m2

h)
3/2. (12)

When the Higgs particle decays to χ1χ2, its decay width
reads


(h → χ1χ2) = κ2
12 sin2 ω

8πm3
h

[m2
h − (mχ1 + mχ2)

2]3/2

× [m2
h − (mχ1 − mχ2)

2]1/2. (13)

There is an experimental upper limit on the branching ratio
of the invisible Higgs decay at the 95% CL, as Br(h →
invisible) � 0.18 [44]. The mass of the Higgs is measured to
be ∼ 125 GeV, and its total decay width is 
Higgs = 3.2+2.8

−2.2
MeV [45]. The constraint from the invisible Higgs decay
becomes more effective for small mass of the singlet scalar
and fermions, as well as, for large mixing angle.

5 DD cross section at tree level

In this section we present our results concerning the DD cross
section at tree level in perturbation theory. The following con-
straints are considered in the present and next sections: The
upper limit from XENON1T experiment [46], and projected
limit from XENONnT (20 ty) at 90% CL are imposed [47].
The lower bounds on the DM-nucleon scattering cross sec-
tion is set by the neutrino floor [48]. The neutrino floor is a
bound below which the detection of DM is very difficult. The
predicted relic abundance by the model for each point in the
parameter space is subject to the observed value �h2 ∼ 0.12
[49]. The DD cross section at tree level is spin-independent
(SI) in this model. The relevant Feynman diagram for this
process is shown in Fig. 1. As mentioned in the previous
section, the DD cross section at tree level depends only on
one coupling, κ1. At the limit of zero momentum transfer we
arrive at the following formula for the the scattering ampli-
tude as

MLO
χ1χ1

= Cχ̄1χ1q̄q, (14)

where the effective coupling C is

C = κ1 sin(2ω)
mq

2vH

(
1

m2
h

− 1

m2
s

)
. (15)
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Fig. 1 Feynman diagram for
DM-quark elastic scattering at
tree level

The elastic scattering cross section of DM-proton is described
by this formula

σ p = m4
pm

2
DMκ2

1 sin2(2ω)

π(mp + mDM)2v2
H

(
1

m2
h

− 1

m2
s

)2

f 2, (16)

where mp stands for the proton mass, and f ∼ 0.28 is the
hadronic form factor. Let us take a numerical look at the tree-
level DM-nucleon scattering cross section. The range of the
parameters used in our scan over the parameter space are, 10
GeV < mDM < 2 TeV, 0.001 < κ1 < 1, and 0.001 < κ12 <

1. The rest of the free parameters in the scan are fixed as,
λ2 = 0.5 and sin ω = 0.1. The results are shown in Fig. 2
and Fig. 3 for the DM-proton cross section as a function of
DM mass forms = 50 GeV andms = 250 GeV, respectively.
In both cases the mass difference between the two fermions
is, � = 20 GeV.

In both figures, it is evident that there are points with
small DD cross section which reside below the XENONnT
bound and the neutrino floor. When ms = 50 GeV, a broader
range of viable DM candidates are found with respect to the
case when ms = 250 GeV. The reason is that when ms is
smaller, then annihilation of DM to a pair of singlet scalars
is possible with smaller DM candidates and this will affect
the range of the viable parameter space. As expected, the
lower DD cross section, the smaller coupling κ1 is picked
out. The other involved coupling, κ12, is quite large in the
low DD cross section regions. This latter coupling has to
be large in order to control the size of the theoretical relic
density in such a way to satisfy the observed density.

Next, we redo our scan with 50 GeV < ms < 250 GeV,
and let the couplings κ1 and κ12 take smaller values in the
range, 0.0001 < κ1 < 1 and 0.0001 < κ1 < 1. The other
parameters are kept the same as before. It is expected that by
taking smaller κ1, smaller DD cross section is achieved which
goes well below the neutrino floor. This is demonstrated in
Fig. 4, wherein the cross section of DM-proton scattering is
shown as a function of the DM mass. There, we notice that
a large portion of the parameter space is below the neutrino
floor.

So, the main point that motivates the computations of
the DD cross section at one loop order, is the existence of

one loop Feynman diagrams for DM-nucleon scattering with
purely κ12 coupling which will enhance the DD cross section
significantly in the regions with small DD cross section. It
is also numerically checked that by varying the couplings λ2

and the mass difference �, the overall picture at tree level
remains almost the same.

6 Renormalization of the model

We describe the renormalization program at one-loop order
in this section. There are seven independent parameters in our
model which need renormalization, namely, m1,m2,ms, λ2,

κ1,κ12, ω. In the following section we describe how to pursue
the program.

6.1 One-point and two-point functions

Since we have mixing in the scalar sector at tree level, then the
renormalization procedure needs a careful treatment. Note
that here we will apply the on-shell scheme in the renormal-
ization. Let us begin with the two scalar tadpoles; tϕ and tH .
The relations between the tadpole counter terms in the two
bases are

δtϕ = cω δts − sω δth,

δtH = sω δts + cω δth, (17)

where cω = cos(ω) and sω = sin(ω). The wave function
renormalization of the fields, h and s, in the present of mixing
can be formulated in the following way, as introduced in
[38,50],

(
h
s

)
→

(
1 + 1

2δZhh δchs + δα

δcsh − δα 1 + 1
2δZss

) (
h
s

)
, (18)

where δchs and δcsh are the counter terms of the off-diagonal
mass terms. Let us begin by the renormalized one-point func-
tions for the physical scalar fields, h and s, that we write them
in terms of the 1PI diagrams 
1PI

h and 
1PI
s : trh = δth +
1PI

h ,
trs = δts + 
1PI

s . At one loop level, we impose the renormal-
ization condition for the two scalar tadpoles: trs = trh = 0.
This results in δts = −
1PI

s and δth = −
1PI
h . It is worth

mentioning that when the renormalized tadepoles vanish at
one loop, it implies no shift of the vacuum state of the poten-
tial. Next, we express relations for the renormalized two-
point functions of the scalar fields,

�r
ss(p

2) = �1PI
ss (p2) + s2

ωδtH
vH

+
[
(p2 − m2

s )δZss − δm2
s

]
,

�r
hh(p

2) = �1PI
hh (p2) + c2

ωδtH
vH

+
[
(p2 − m2

h)δZhh − δm2
h

]
,
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Fig. 2 Tree-level DD cross section is shown as a function of DM mass
for ms = 50 GeV and � = 20 GeV. In the left (right) panel, κ1
(κ12) is shown in the vertical color spectrum. All the points respect

the observed relic density and invisible Higgs decay bound. Upper lim-
its from XENON1t and projected XENONnT are placed. The neutrino
floor is also shown

Fig. 3 The same as in Fig. 2, with ms = 250 GeV

�r
sh(p

2) = �1PI
sh (p2) + sωcωδtH

vH

+ p2(δchs + δcsh) + m2
h(δω − δchs)

− m2
s (δω + δcsh). (19)

We choose the one-shell renormalization conditions for the
two-point functions as follow,

�r
ss(m

2
s ) = �r

hh(m
2
h) = 0,

d

dp2 �r
ss(p

2)|p2=m2
s

= d

dp2 �r
hh(p

2)|p2=m2
h

= 0, (20)

and from these relations four counter terms are determined,

δm2
s = �1PI

ss (m2
s ) + s2

ωδtH
vH

, δm2
h = �1PI

hh (m2
h) + c2

ωδtH
vH

δZss = − d

dp2 �1PI
ss (p2)|p2=m2

s
, δZhh

= − d

dp2 �1PI
hh (p2)|p2=m2

h
. (21)

We can fix three counter terms, δchs , δcsh and δω by imposing
the conditions

�r
sh(m

2
h) = �r

sh(m
2
s ) = 0, δcsh = δchs, (22)

to find

δω = 1

2(m2
s − m2

h)

[
�1PI

sh (m2
h) + �1PI

sh (m2
s ) + s2ωδtH

vH

]

δchs = 1

2(m2
s − m2

h)

[
�1PI

sh (m2
h) − �1PI

sh (m2
s )

]
. (23)

Now we consider the renormalized two point function of the
two fermions, χ1 and χ2
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Fig. 4 The same as in Fig. 2, with 50 GeV < ms < 250 GeV

�r
χiχi

(/p) = �1PI
i i (/p) + /pδZii − δmi

�r
χiχ j

(/p) = �1PI
i j (/p). (24)

With the renormalization conditions,

�r
χiχi

(/p = mi ) = 0,
d

d /p
�r

χiχi
(/p)|/p=mi = 0. (25)

We can then obtain the two parameters,

δZii = d�1PI
i i (/p)

d /p
|/p=mi , δmi = �1PI

i i (mi )+miδZii . (26)

A comment is appropriate to mention here. It is turned out
in [51] that the mixing angle, ω, remains gauge dependence
in the on-shell renormalization scheme. A suggested in [52]
to get gauge-independent definition for δω, one may define
it in a physical process, like the decay h → ττ . We have
checked this in our numerical results and it is found out that
the gauge dependence of the one-shell renormalization at one
loop order is up to about 1%.

6.2 Renormalization of the couplings κ1 and κ12

Since the ultra-violet divergences are universal we opt for the
minimal subtraction scheme. We will look at two vertices
hχ1χ1 and hχ1χ12 to find the relevant counter terms. We
begin by the vertex hχ1χ1 and write,


NLO
hχ1χ1

= 
LO
hχ1χ1

+ 
1PI
hχ1χ1

+ 
CT
hχ1χ1

, (27)

where
1PI
hχ1χ1

indicates the loop correction to the triple vertex,

and the vertex counter terms are collected in 
CT
hχ1χ1

. Com-
bining the mixing effects and wave function renormalization
the full expression for 
CT

hχ1χ1
reads


CT
hχ1χ1

= 1

2
λhχ1χ1δZhh + λhχ1χ1δZχ1χ1

+ λsχ1χ1(δchs − δω)

+ λhχ1χ2

�1PI
χ1χ2

(m1)

m2 − m1
+ ∂λhχ1χ1

∂κ1
δκ1, (28)
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Fig. 5 Triangle diagrams contributing to 
1PI
hχ1χ1

and 
1PI
sχ1χ1

. S stands
for the two scalars h and s, and χi = χ1, χ2

where for the couplings we have

λhχ1χ1 = − sin(ω)κ1, λsχ1χ1 = − cos(ω)κ1,

λhχ1χ2 = − sin(ω)κ12. (29)

The divergent part of δκ1 is found as

δκ1|div = 1

sin(ω)

(

1PI
hχ1χ1

+ 
CT
hχ1χ1

|δκ1

)
|div. (30)

The relevant Feynman diagrams as triple vertex corrections
are shown in Fig. 5. Following the same approach the diver-
gent part of δκ12 cab be found. The counter term of this triple
vertex is


CT
hχ1χ2

= 1

2
λhχ1χ2δZhh + λhχ1χ2δZχ2χ2

+ λsχ1χ2(δchs − δω)

+ 1

2
λhχ2χ2

�1PI
χ1χ2

(m1)

m2 − m1

+ 1

2
λhχ1χ1

�1PI
χ1χ2

(m2)

m1 − m2
+ ∂λhχ1χ2

∂κ12
δκ12, (31)

where, λsχ1χ2 = − cos(ω)κ12, and λhχ2χ2 = 0, since κ2 = 0
as discussed in Sect. 2. Finally, we can get the divergent part
of δκ12 by

δκ12|div = 1

sin(ω)

(

1PI
hχ1χ2

+ 
CT
hχ1χ2

|δκ12

)
|div. (32)

7 DD cross section at one loop

In this section we present the amplitude for DM-quark scat-
tering at one loop level or next to leading order (NLO). The
structure of the one loop corrections to the DM scattering off
the nucleons are shown as Feynman diagrams in Fig. 6. The
diagrams entail one-loop contributions as triple vertex cor-
rections, internal propagator corrections, and Box diagrams,
respectively. The scattering amplitude can then be written as

Fig. 6 One-loop Feynman diagrams including all types of corrections
to the DM scattering off the quarks. The left diagram indicates vertex
corrections, the diagram in the middle stands for propagator corrections,
and the last diagrams shows box corrections. The scalar, hi , indicates
scalar s or h

MNLO = MLO + MVC + MPC + MBox, (33)

where MVC, MPC and MBox stand for vertex correction of
χ1χ1hi , propagator correction and Box correction, respec-
tively. We begin with the vertex correction. There are two
types of corrections for the vertex χ1χ1hi , as already shown
in Fig. 5. Including these vertex corrections, it is possible to
find an effective scattering amplitude. Let’s begin with the
vertex correction where only one scalar runs in the loop. The
corresponding scattering amplitude is

MVC
(a) =

[
αi

(p1 − p2)2 − m2
hi

]

×
(

κ3
1

∫
d4l

(2π)4

(q̄q) χ̄(p2)( /p2 − /l + m1)( /p1 − /l + m1)χ(p1)

[(p2 − l)2 − m2
1][(p1 − l)2 − m2

1][l2 − m2
h j

]

+ 2κ1κ2
12

∫
d4l

(2π)4

(q̄q) χ̄(p2)( /p2 − /l + m1)( /p1 − /l + m2)χ(p1)

[(p2 − l)2 − m2
1][(p1 − l)2 − m2

2][l2 − m2
h j

]
)

,

(34)

where hi = s, h, and αh = (−mq/vH )cω, and αs =
(mq/vH )sω. At zero momentum transfer we get the follow-
ing relation for the effective scattering amplitude. Note that
the amplitude is obtained in the minimal subtraction scheme,

MVC
(a) = mqκ

3
1

16π2vH

[
4

ε̄
+ cωs3

ω

m2
h

F(m1,mh) + sωc3
ω

m2
h

F(m1,ms)

− sωc3
ω

m2
s

F(m1,ms) − cωs3
ω

m2
s

F(m1,mh)

]

× q̄q χ̄1χ1 + mqκ1κ
2
12

16π2vH

×
[

4

ε̄
+ cωs3

ω

m2
h

F(m1,m2,mh) + sωc3
ω

m2
h

F(m1,m2,ms)

− sωc3
ω

m2
s

F(m1,m2,ms) − cωs3
ω

m2
s

F(m1,m2,mh)

]
q̄q χ̄1χ1,

(35)

where in the above expression, F(m1,mi ) = F(m1,m1,mi ),
and 1/ε̄ = 1/ε − γE + log(4π), γE being the Euler–
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Mascheroni constant. These functions are defined in
Appendix B.

The second diagram with vertex corrections in the scat-
tering process involves two scalars ruining in the loop. The
resulting scattering amplitude is found as

MVC
(b) =

[
αk

(p1 − p2)2 − m2
k

]

×
(

κ2
1

∫
d4l

(2π)4
(q̄q) χ̄(p2)(/l + m1)χ(p1)

[(p2 − l)2 − m2
i ][(p1 − l)2 − m2

j ][l2 − m2
1]

+ κ2
12

∫
d4l

(2π)4
(q̄q) χ̄(p2)(/l + m2)χ(p1)

[(p2 − l)2 − m2
i ][(p1 − l)2 − m2

j ][l2 − m2
2]

)
, (36)

where the indices i, j, k stand for the scalars h and s. In the
formula above, αk takes the same definition as before. The
integration will be performed at the limit of zero momentum
transfer. The effective amplitude is obtained by taking into
account all the possible triple scalar couplings in the triangle
loop. The final result is finite and follows as

MVC
(b) = mqm1κ2

1
16π2vH

[
cωs2

ω

m2
h

chhhG(mh ,m1) + sωc2
ω

m2
h

cshhG(mh ,ms ,m1)

+ c3
ω

m2
h

chssG(ms ,m1) − s3
ω

m2
s
cshhG(mh ,m1)

− cωs2
ω

m2
s

chssG(mh ,ms ,m1) − sωc2
ω

m2
s

csssG(ms ,m1)

]

× q̄q χ̄1χ1 + κ2
12(m1 → m2), (37)

where G(mi ,m1) = G(mi ,mi ,m1), and G functions are
given in Appendix B. As well, the scalar couplings, ci jk , are
given in Appendix B.

Another type of corrections to the scattering amplitude
are due to propagator corrections as shown in Fig. 6 (the
diagram in the middle). These corrections come in as self-
energy correction to the scalar propagators s and h. At zero
momentum transfer the amplitude reads

MPC =
∑

i, j=h,s

fi g j
�r

i j (p
2 = 0)

m2
hi
m2

h j

mqκ1

vH
q̄q χ̄1χ1, (38)

where fs = − cos ω, fh = − sin ω, and gs = sin ω, gh =
cos ω. The renormalized two-point functions are defined in
Eq. (19), �r

i j = �r
hh,�

r
ss,�

r
sh .

The last contributions to the amplitude are those from box
diagrams, see the right diagram in Fig. 6. Including both
t-channel and u-channel, the amplitude at zero momentum
transfer is written

MBox =
(
mq

vH

)2
ci jkd jk

∫
d4l

(2π)4

×
[ q̄(pq )(/pq + /l + mq )q(pq )χ̄1(pχ )(/l + /pχ + mχi )χ1(pχ )

(l2 − m2
h j

)(l2 − m2
hk

)((l + pχ )2 − m2
χi

)(pq + l)2 − m2
q

−
q̄(pq )(/pq − /l + mq )q(pq )χ̄1(pχ )(/l + /pχ + mχi )χ1(pχ )

(l2 − m2
h j

)(l2 − m2
hk

)((l + pχ )2 − m2
χi

)(pq − l)2 − m2
q

]
, (39)

where mh j = mh,ms , and mχi = mχ1,mχ2 . The parame-
ter, ci jk , is the multiplication of couplings coming from ver-
tices involving χi and hi , and the coupling d jk presents cou-
plings which come from vertices with quarks. ci jk param-
eters are, cχ1hh = κ2

1 sin2 ω, cχ1ss = κ2
1 cos2 ω, cχ1hs =

κ2
1 sin ω cos ω, cχ2hh = κ2

12 sin2 ω, cχ2ss = κ2
12 cos2 ω,

cχ2hs = κ2
12 sin ω cos ω, and d jk parameters are, dhh =

cos2 ω, dss = sin2 ω, dsh = cos ω sin ω. To compute the
effective scattering amplitude, we set the quark mass to
zero in the denominator and when contracting the fermion
lines in the numerator, will omit terms which generate
momentum suppressed operators. Thus, what remains in the
end is the spin-independent operator q̄qχ1χ1. Taking into
account these approximations, the effective scattering ampli-
tude reads

MBox =
(
mq

vH

)2

ci jkd jk

×
[
H1(mχ1 ,mχi ,mh j ,mhk ) − H2(mχ1 ,mχi ,mh j ,mhk )

]
× mqq̄q χ̄1χ1, (40)

where the functions, H1,2(mχ1,mχi ,mh j ,mhk ), is defined
in Appendix B. We expect that the Box corrections be a
subleading contribution to the cross section, because of the
small extra factor, mq/vH , arising from the second scalar-
quark vertex in the loop diagram. A consistency check of
our calculation is the cancellation of the divergences in the
scattering amplitude at one loop order. This is done by using
the Mathematica tool Package-X [53], also cross checking
our results obtained independently.

8 Results

Here, we present our numerical results for the DD cross sec-
tion at one loop level. First, we look at the ratio σNLO/σLO

as a function of the coupling κ1, while relaxing the bound
from the observed relic density. The result for the mass split-
ting � = 1, 100 GeV, and the mixing angle sin ω = 0.1,
are shown in Fig. 7. We also decrease the mixing angle as
sin ω = 0.05 and present the results in Fig. 8. A general
trend in all the figures is that the ratio is approaching unity
with increasing the coupling κ1 from 0.01 to 1, for the given
values of the coupling κ12 = 1, 2. This result is expected.
The DD cross section at one loop depends on both κ1 and
κ12, while it only depends on the coupling κ1 at tree level.
For instance, when κ1 ∼ O(10−2) and κ12 ∼ O(1) then
σNLO/σLO ∝ κ2

12/κ
2
1 . Now by increasing κ1, the cross sec-
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Fig. 7 Shown are the ratio of DD cross section at one-loop to DD
cross section at tree level as a function of the coupling κ1. In all plots,
the mixing angle is such that sin ω = 0.1. Two values are chosen for

the mass difference between the fermions, � = 1, 100 GeV. The cou-
pling κ12 = 1, 2. The constraint from the observed relic density is not
imposed

tion at tree level starts increasing, such that when κ1 ∼ O(1),
then we approach the limit σNLO ∼ σLO.

Another observation is that by decreasing the mixing
angle, the ratio increases slightly. The reason is that the cross
section at tree level only depends on sin ω, while the cross
section at one loop includes terms depending on cos ω as
well.

Next, we continue our computations to find the regions
respecting the observed relic abundance, and bounds from
direct detection experiments. First, we keep the same val-
ues for the free parameters as those in our computations
at tree level; λ2 = 0.5 and sin(ω) = 0.1. The singlet
scalar masses are fixed at two distinct values, ms = 50, 150
GeV. The range of the other free parameters in our scan are,
0.001 < κ1, κ12 < 1 and 10 GeV < mDM < 2 TeV. We show
the DD cross section at one loop in terms of the DM mass.
The results with � = 1 GeV andms = 50 GeV are presented

in Fig. 9, with � = 1 GeV and ms = 150 in Fig. 10, with
� = 100 GeV and ms = 50 in Fig. 11, and with � = 100
GeV and ms = 150 in Fig. 12. In all the figures, as it was
anticipated, we notice an enhancement on the DD cross sec-
tion in the regions with both small κ1 and large κ12. It is such
that the regions below the neutrino floor shift to the regions
which are respected by XENONnT bounds. In the case with
� = 1 GeV and ms = 50, a small region around mDM ∼ 60
GeV still remains below the neutrino floor. Another obser-
vation is that the regions with DD cross section above the
neutrino floor get smaller loop corrections. The reason is
that in these regions the ratio, σNLO/σLO, decreases since κ1

grows eventually and one loop and tree level cross sections
are almost comparable in size.

Moreover, we scan regions in the parameter space where
the mixing angle is quite small, for instance, sin ω = 0.001.
In this case, we pick out the single scalar mass as ms = 50

123



473 Page 10 of 24 Eur. Phys. J. C (2023) 83 :473

Fig. 8 The same as in Fig. 7, with the mixing angle such that sin ω = 0.05

GeV, and the mass splitting parameter as � = 1 GeV. The
results presented in Fig. 13 for this quite smaller mixing
angle, show that the entire viable parameter space shifts
downward and resides below the XENON1T bound. When
κ12 ∼ 0, it is evident that the viable points lie slightly above
XENONnT bounds, while there are regions below the neu-
trino floor at tree level if one chooses non zero value for κ12.
Again, including the one loop corrections to the DD cross
section push a large portion of the viable region above the
neutrino floor.

We also consider a case where the singlet scalar mass is
quite large, ms = 500 GeV, and sin ω = 0.01. In this case
we take a wider range for the couplings as, 0 < κ1, κ12 <

2. As shown in Fig. 14, in this case the viable parameter
space is a resonance region around mDM ∼ 250 GeV and a
region with mDM � 500 GeV. Now in the plots with the one
loop corrections added, we see that viable regions below the
neutrino floor go up and reside well above the neutrino floor.

9 Conclusion

In this work we have considered a DM model with two
fermionic WIMPs, where the light one is the DM candidate.
The interactions between fermions and the SM particles are
possible through a scalar-Higgs portal. This model is moti-
vated given that a large portion of the parameter space in
the simplest scenario with only one fermion is excluded by
the current DD experiments. Adding the second fermion to
the minimal model, opens up larger viable parameter space
respecting bounds from the observed relic density and DD
experiments.

The main goal in this work has been to compute the one
loop corrections to the DM-nucleon scattering cross section.
It is found that by including these quantum corrections the
allowed parameter space at tree level will change. More sig-
nificantly, it happens for the regions below the limit of the
neutrino floor on the DD cross section, where the coupling κ1
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Fig. 9 DD cross section at one loop is shown as a function of DM mass for ms = 50 GeV and � = 1 GeV. All the points respect the observed
relic density. Upper limits from XENON1t and projected XENONnT are placed. As such, the neutrino floor is shown

is relatively smaller. This feature comes out as result of a char-
acteristic in this model we explain here. The only coupling
which determines the magnitude of the DD cross section at
tree level is κ1. The other coupling, κ12, saturates the anni-
hilation cross section when κ1 is much smaller. Now, at one
loop, the DD cross section incorporates some extra terms
with pure κ12 coupling. Thus, It becomes feasible to get a
very large loop corrections in the regions with very small κ1

and at the same time with large κ12.
In conclusion, when studying the viable parameter space,

there are situations that the regions with quite small direction
detection cross section lying below the neutrino floor might
be sensitive to one loop corrections, making the quantum
correction indispensable in these cases.
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10 Appendix A

In this section we present the dark matter annihilation cross
section formulas. The co-annihilation processes are included
in our analysis but their cross sections are not given here. The
s-channel annihilation cross section with the SM fermions,
Z-boson and W-boson in the final state are

σvrel(χ̄1χ1 → f̄ f ) = Ncm2
f κ

2
1 sin2 2ω

8πsv2
H

×
[
(p1.p2)

2 − 2(p1.p2)m
2
f + 2m2

f m
2
1 − m4

1

]
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Fig. 10 The same as in Fig. 9, with ms = 150 GeV

×
∣∣∣∣ 1

s − m2
s + ims
s

− 1

s − m2
h + imh
h

∣∣∣∣
2

, (41)

σvrel(χ̄1χ1 → Z Z) = κ2
1 sin2 2ω

16πsv2
H

×
[
(p1.p2)

3 − 2(p1.p2)
2m2

Z + (p1.p2)
2m2

1 + 2(p1.p2)

m4
Z − (p1.p2)m

4
1 − 3m4

Zm
2
1 + 2m2

Zm
4
1 − m6

1

]

×
∣∣∣∣ 1

s − m2
s + ims
s

− 1

s − m2
h + imh
h

∣∣∣∣
2

, (42)

σvrel(χ̄1χ1 → W+W−) = κ2
1 sin2 2ω

8πsv2
H

×
[
(p1.p2)

3 − 2(p1.p2)
2m2

W + (p1.p2)
2m2

1 + 2(p1.p2)

m4
W − (p1.p2)m

4
1 − 3m4

Wm2
1 + 2m2

Wm4
1 − m6

1

]

×
∣∣∣∣ 1

s − m2
s + ims
s

− 1

s − m2
h + imh
h

∣∣∣∣
2

. (43)

The annihilation cross section with two singlet scalars in
the final state is given by
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Fig. 11 DD cross section at one loop is shown as a function of DM mass for ms = 50 GeV and � = 100 GeV. All the points respect the observed
relic density. Upper limits from XENON1t and projected XENONnT are placed. As such, the neutrino floor is shown
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Fig. 12 The same as in Fig. 11, with ms = 150 GeV
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Fig. 13 The same as in Fig. 9 with the mixing angle as sin ω = 0.001
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Fig. 14 DD cross section at one loop is shown as a function of DM mass forms = 500 GeV and � = 1 GeV. Here the mixing angle is sin ω = 0.01.
All the points respect the observed relic density. Upper limits from XENON1t and projected XENONnT are placed. As such, the neutrino floor is
shown
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σvrel(χ̄1χ1 → ss) =
√

1 − 4m2
h/s

32π2s

∫
d�

[
1

8
b2

1
κ2

1 sin2 ω[p1.p2 − m2
1]

(s − m2
h)

2
+ 3

4
bb1

κ2
1 sin2 ω cos ω[p1.p2 − m2

1]
(s − m2

s )(s − m2
h)

− 3b
κ1κ

2
12 sin ω cos3 ω[2(p1.p3)m1 − (p1.p2)m2 − 2(p1.p2)m1 + m2m2

1]
(s − m2

s )(u − m2
2)

+ 9

8
b2 κ2

1 cos2 ω sin2 ω[p1.p2 − m2
1]

(s − m2
s )

2

+ b1
κ1κ

2
12 sin ω cos2 ω[2(p1.p3)m1 + (p1.p2)m2 − m2m2

1 − 2m3
1]

(s − m2
h)(t − m2

2)

+ b1
κ3

1m1 sin ω cos2 ω[2(p1.p3) + (p1.p2) − 3m2
1]

(s − m2
h)(t − m2

1)

+ 3b
κ3

1m1 sin ω cos3 ω[2(p1.p3) + (p1.p2) − 3m2
1]

(s − m2
s )(t − m2

1)
− κ4

1 cos4 ω

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 10(p1.p3)m2

1 + (p1.p2)m2
s + m2

sm
2
1 + 8m4

1]
(t − m2

1)
2

+ κ4
1 cos4 ω

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m2

1 + (p1.p2)m2
s + 4(p1.p2)m2

1 + m2
sm

2
1 − 4m4

1]
(t − m2

1)(u − m2
1)

− 2
κ2

1 κ2
12 cos4 ω

(t − m2
1)(t − m2

2)
[2(p1.p3)

2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m1m2

− 8(p1.p3)m
2
1 + (p1.p2)m

2
s − (p1.p2)m1m2 + (p1.p2)m

2
1

+ m2
sm

2
1 + 3m2m

3
1 + 5m4

1] + 2
κ2

1 κ2
12 cos4 ω

(t − m2
1)(u − m2

2)

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) + 2(p1.p3)m1m2

− 4(p1.p3)m
2
1 + (p1.p2)m

2
s + (p1.p2)m1m2 + 3(p1.p2)m

2
1

+ m2
sm

2
1 − 3m2m

3
1 − m4

1] − κ4
12 cos4 ω

(t − m2
2)

2

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 4(p1.p3)m1m2 − 6(p1.p3)m

2
1

+ (p1.p2)m
2
s − (p1.p2)m

2
2 + (p1.p2)m

2
1 + m2

sm
2
1 + m2

1m
2
2 + 4m2m

3
1 + 3m4

1]

+ κ4
12 cos4 ω

(t − m2
2)(u − m2

2)
× [2(p1.p3)

2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m
2
1

+ (p1.p2)m
2
s + (p1.p2)m

2
2 + 2(p1.p2)m1m2 + (p1.p2)m

2
1 + m2

sm
2
1 − m2

1m
2
2 − 2m2m

3
1 − m4

1]
]
, (44)

where

b = sin ω cos ωλ1 − 2 cos2 ωλ2vH − sin2 ωλHvH ,

b1 = 3 sin3 ωλ1 − 2 sin ωλ1 − 6 cos ω sin2 ωλ2vH

+2 cos ωλ2vH + 3 cos ω sin2 ωλHvH . (45)

As such, the annihilation cross section with two Higgs
particles in the final state is
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σvrel(χ̄1χ1 → hh) =
√

1 − 4m2
h/s

32π2s

∫
d�

[
1

8
b2

2
κ2

1 cos2 ω[p1.p2 − m2
1]

(s − m2
s )

2 − 3

4
b3b2

κ2
1 cos2 ω sin ω[p1.p2 − m2

1]
(s − m2

s )(s − m2
h)

+ b2m1
κ3

1 cos ω sin2 ω[2p1.p3 − 3p1.p2 + m2
1]

(s − m2
s )(u − m2

1)

+ b2
κ1κ

2
12 cos ω sin2 ω[2(p1.p3)m1 − (p1.p2)m2 − 2(p1.p2)m1 + m2m2

1]
(s − m2

s )(u − m2
2)

+ 9

8
b2

3
κ2

1 cos2 ω sin2 ω[p1.p2 − m2
1]

(s − m2
h)

2

− 3b3m1
κ3

1 cos ω sin3 ω[2p1.p3 − 3p1.p2 + m2
1]

(s − m2
h)(u − m2

1)

− 3b3
κ1κ

2
12 cos ω sin3 ω[2(p1.p3)m1 − (p1.p2)m2 − 2(p1.p2)m1 + m2m2

1]
(s − m2

h)(u − m2
2)

− κ4
1 sin4 ω

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 10(p1.p3)m2

1 + (p1.p2)m2
h + m2

hm
2
1 + 8m4

1]
(t − m2

1)
2

+ κ4
1 sin4 ω

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m2

1 + (p1.p2)m2
h + 4(p1.p2)m2

1 + m2
hm

2
1 − 4m4

1]
(t − m2

1)(u − m2
1)

− 2
κ2

1 κ2
12 sin4 ω

(t − m2
1)(t − m2

2)
[2(p1.p3)

2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m1m2

− 8(p1.p3)m
2
1 + (p1.p2)m

2
h − (p1.p2)m1m2

+ (p1.p2)m
2
1 + m2

hm
2
1 + 3m2m

3
1 + 5m4

1]

+ 2
κ2

1 κ2
12 sin4 ω

(t − m2
1)(u − m2

2)
[2(p1.p3)

2 − 2(p1.p3)(p1.p2) + 2(p1.p3)m1m2

− 4(p1.p3)m
2
1 + (p1.p2)m

2
h + (p1.p2)m1m2 + 3(p1.p2)m

2
1

+ m2
hm

2
1 − 3m2m

3
1 − m4

1] − κ4
12 sin4 ω

(t − m2
2)

2

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 4(p1.p3)m1m2

− 6(p1.p3)m
2
1 + (p1.p2)m

2
h − (p1.p2)m

2
2 + (p1.p2)m

2
1 + m2

hm
2
1

+ m2
1m

2
2 + 4m2m

3
1 + 3m4

1] + κ4
12 sin4 ω

(t − m2
2)(u − m2

2)

× [2(p1.p3)
2 − 2(p1.p3)(p1.p2) − 2(p1.p3)m

2
1

+ (p1.p2)m
2
h + (p1.p2)m

2
2 + 2(p1.p2)m1m2 + (p1.p2)m

2
1

+ m2
hm

2
1 − m2

1m
2
2 − 2m2m

3
1 − m4

1]
]
, (46)

where

b2 = 3λ1 cos ω sin2 ω − λ1 cos ω + 6λ2vH sin3 ω

−4λ2vH sin ω + 3λHvH cos2 ω sin ω,

b3 = λ1 cos ω sin ω + 2λ2vH sin2 ω + λHvH cos2 ω. (47)

And finally, when a singlet scalar and a Higgs particle are
in the final state, the annihilation cross section reads
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σvrel(χ̄1χ1 → hs)

=
√

1 − 4m2
h/s

32π2s

∫
d�

[
1

4
b2

1
κ2

1 cos2 ω[p1.p2 − m2
1]

(s − m2
s )

2 + 1

4
b2

2
κ2

1 sin2 ω[p1.p2 − m2
1]

(s − m2
h)

2

− 1

2
b1b2

κ2
1 cos ω sin ω[p1.p2 − m2

1]
(s − m2

s )(s − m2
h)

+ 1

2
b1m1

κ3
1 cos2 ω sin ω[4p1.p3 + 2p1.p2 + m2

h − 6m2
1 − m2

s ]
(s − m2

s )(t − m2
1)

− 1

2
b2m1

κ3
1 cos ω sin2 ω[4p1.p3 + 2p1.p2 + m2

h − 6m2
1 − m2

s ]
(s − m2

h)(t − m2
1)

− 1

2
b1m1

κ3
1 cos2 ω sin ω[4p1.p3 − 6p1.p2 + m2

h + 2m2
1 − m2

s ]
(s − m2

s )(u − m2
1)

+ 1

2
b2m1

κ3
1 cos ω sin2 ω[4p1.p3 − 6p1.p2 + m2

h + 2m2
1 − m2

s ]
(s − m2

h)(u − m2
1)

+ 1

2
b1

κ1κ
2
12 cos2 ω sin ω[4(p1.p3)m1 + 2(p1.p2)m2 + m2
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11 Appendix B

Here, we provide loop functions introduced in the previous
sections. These results are obtained by using Package-X.

11.1 Loop functions for triangle diagrams

We have two types of triangle Feynman diagrams, each one
brings in corresponding loop function. For type (a), we have
the following functions

F(m1,m2,mhi ) =
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m4

hi
− 6m2

hi
m2

1 + 2m4
1 + 4m3

1m2

)
log

(
m2
hi

m2
1

)
4m3

1(m1 − m2)

−

(
m2

hi
− 4m2

1

) √
m2

hi

(
m2

hi
− 4m2

1

)
log

⎛
⎝

√
m2
hi

(
m2
hi

−4m2
1

)
+m2

hi

2mhi m1

⎞
⎠

2m3
1(m1 − m2)

+
(
−m4

hi
+ 2m2

hi
m2

1 + 2m2
hi
m1m2 + 2m2

hi
m2

2 − m4
1 − 2m3

1m2 − 2m1m3
2 − m4

2

)
4m3

1(m1 − m2)

× log

(
m2

hi

m2
2

)
−

(
−m2

hi
+ m2

1 + 2m1m2 + m2
2

) √
λ

(
m2

hi
,m2

1,m
2
2

)
2m3

1(m1 − m2)

× log

⎛
⎜⎜⎝

√
λ

(
m2

hi
,m2

1,m
2
2

)
+ m2

hi
− m2

1 + m2
2

2mhim2

⎞
⎟⎟⎠ + 5m1 + m2

2m1
, (49)

and in case m1 = m2 = m, we have

F(m,mhi )

=
3

√
m2
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For the triangle diagrams of type (b) we introduce the loop
functions

G(mhi ,mh j ,m1)

=
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, (51)

and when mhi = mh j = m, we define G(m,m,m1) =
G(m,m1) and obtain
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=
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)√
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(52)

11.2 Loop functions for box diagrams

When computing the scattering amplitude of box diagrams
we encounter two loop functions, H1 and H2. Here we pro-
vide explicit expressions for these functions. The function
H1 is
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=
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where the Källén function is λ(x, y, z) = x2 + y2 + z2 −
2xy − 2xz − 2yz. The scalar function, C0(0, 0, x, y, 0, z) is
obtained as
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And the function H2 is obtained as
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The scalar function, C0(0, x, 2x, 0, y, z) is obtained as
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11.3 Scalar couplings

The triple scalar couplings defined in Sect. 7 are

chhh = −3 cos(ω)

[
cos(ω) sin(ω)λ1

+ 2vH sin2(ω)λ2 + 2vH cos2(ω)λH

]

chhs = 3 cos(ω) sin2(ω)λ1 − cos(ω)λ1 + 6vH sin3(ω)λ2

− 4vH sin(ω)λ2 + 6vH cos2(ω) sin(ω)λH

cssh = −3 sin3(ω)λ1 − 2λ1 sin(ω) − 6vHλ2 cos(ω) sin2(ω)

+ 2vH cos(ω)λ2 + 6vH cos(ω) sin2(ω)λH

csss = −3 sin(ω)

[
cos(ω) sin(ω)λ1

− 2vH cos2(ω) − 2vH sin2(omega)λH

]
(57)
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