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Abstract In this article, we provide a new model of static
charged anisotropic fluid sphere made of a charged perfect
fluid in the context of 5D Einstein–Maxwell–Gauss–Bonnet
(EMGB) gravity theory. To generate exact solutions of the
EMGB field equations, we utilize the well-behaved Tolman–
Kuchowicz (TK) ansatz together with a linear equation of
state (EoS) of the form pr = βρ − γ , (where β and γ are
constants). Here the exterior space-time is described by the
EGB Schwarzschild metric. The Gauss–Bonnet Lagrangian
termLGB is coupled with the Einstein–Hilbert action through
the coupling constant α. When α → 0, we obtain the
general relativity (GR) results. Here we present the solu-
tion for the compact star candidate EXO 1785-248 with
mass= (1.3 ± 0.2)M�; radius = 10+1

−1 km. respectively. We
analyze the effect of this coupling constant α on the prin-
cipal characteristics of our model, such as energy density,
pressure components, anisotropy factor, sound speed etc. We
compare these results with corresponding GR results. More-
over, we studied the hydrostatic equilibrium of the stellar
system by using a modified Tolman–Oppenheimer–Volkoff
(TOV) equation and the dynamical stability through the crit-
ical value of the radial adiabatic index.The mass-radius rela-
tionship is also established to determine the compactness
factor and surface redshift of our model. In this way, the
stellar model obtained here is found to satisfy the elemen-
tary physical requirements necessary for a physically viable
stellar object.

a e-mails: pramitrej@gmail.com; pramitr@sccollegednk.ac.in
b e-mail: abdelghani.errehymy@gmail.com (corresponding author)
c e-mail: m_daoud@hotmail.com

1 Introduction

Owing to the difficulties encountered by the general theory
of relativity (GTR) in explaining the anomalous behavior of
gravitational events such as the accelerated expansion of the
cosmos in a late-time [1,2], alternative or extended grav-
ity theories have suddenly gained considerable importance.
Conjecturing the presence of exotic matter fields, including
quintessence fields (QFs), ghost fields (GFs), dark energy
(DE), and dark matter (DM), to name a few, is one approach
to solving this problem. There is currently no empirical evi-
dence for these conjectures, but a variety of experiments are
being carried out. In this concern, de Rham [3] proposes
that the graviton is not massless but actually bears a small
mass to explain the dark sector. This has several implica-
tions for physics, which have already been addressed previ-
ously in the literature. Reexamining the geometrical side of
the field equations offers an alternative approach, meanwhile
higher curvature impacts may have a role to play. Specifically,
the Einstein–Gauss–Bonnet (EGB) theory has shown to be
promising in this aspect and is hence widely investigated. It
should be noted that the EGB is part of a more generic cate-
gory of theories named Lovelock’s polynomial Lagrangians
which are the most comprehensive tensor theory yielding at
most 2nd-order motion equations. The most common the-
ory is owed to Horndeski [4] if one allows the Lagrangian
to involve both tensor and scalar fields. The reality that the
Gauss–Bonnet Lagrangian naturally manifests in the appli-
cability of heterotic string theory at the low energy limit [5]
provides another compelling argument in favor of the EGB
theory. For inhomogeneous distributions of dust [6,7] and
null dust [8], the causal structure of the singularities deviates
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from general relativity. The challenge we are studying seems
to be whether gravitational effects with higher curvature play
an important role in stellar evolution. In fact, Einstein’s GTR
forms the basis for the majority of our knowledge of dis-
coveries in relativistic astrophysics. So it is therefore quite
natural to wonder what consequence the higher curvature
contributions have on stellar configurations if the GTR is
to be replaced by a higher curvature theory that maintains
2nd order motion equations and shrinks to GTR in the solar
system scale constraint.

Although five-dimensional celestial bodies are not phys-
ically obtainable, their occurrence has not been excluded.
Kaluza [11] and Klein [12] made the first advances in higher
dimensional gravity by analyzing a five-dimensional man-
ifold and explaining the behavioral patterns of the electro-
dynamic field by four components of the metric tensor, ten
by the typical four-dimensional space-time manifold, and
one additional dimension by a scalar field. Following that,
modern works on brane-world cosmologies requiring higher
dimensions have received significant coverage, despite the
fact that its emphasis has since waned. The additional dimen-
sions are usually explained by the fact that they are topolog-
ically coiled and extremely tiny in size. Keep in mind that
the LHC experiment probed for additional dimensions on a
large scale but was unsuccessful in finding any. Nevertheless,
this does not exclude the possibility of additional dimensions
at the microscopic level. Indeed, quantum field theory actu-
ally requires space-time dimensions of the size of Ten and
Eleven. As we demonstrate in this paper, despite their small
size, they may have a significant impact on certain features
of the gravitational field.

For a long time, the existence of spherically symmetric
static black hole (BH) solutions in the EGB theory paradigm
has been studied extensively [13–15]. Subsequently, several
other factors have been explored for the GB solution in de
Sitter (dS) and anti-de Sitter (AdS) space [16,17], including
thermophysical properties related to the cosmological hori-
zon and the BH horizon. Additionally, some authors have
recently examined specific solutions relating to BHs in great
detail (see e.eg. Refs. [18–21]). Considerable efforts have
been made to study the geodesic motion of a test particle
[22], the radius of photon spheres [23], the Hawking evapo-
ration of AdS BHs [24], the phase transition of RN-AdS BHs
[25], solutions of regular BHs [26], solutions of wormholes
fulfilling energy conditions [27,28], and the gravitational col-
lapse of an incoherent spherical dust cloud was proposed in
[29–32].

The study of EGB gravity may also be important with
respect to the prospect of overcoming some issues in strong
field regimes. The study of cosmic structures may also offer
important restrictions on the alternative theories of gravity
that are being considered in this context. A significant num-
ber of mass-radius relations are accessible at the moment

through electromagnetic measurements of extreme events
like short gamma-ray bursts (SGRBs), and more recently
through gravitational waves (GWs). It is worth noting that
the theoretical building of the neutron star (NS) equation of
state (EoS) is strongly constrained by the observational data
for NSs with masses around 2 M� [33,34]. Until now, the
composition and structural properties of relativistic compact
bodies are not well recognized in detail. Many solutions to
Einstein’s gravitational field equations defining the internal
construction of relativistic compact bodies have now been
derived, all assuming static and spherical symmetry. Due to
the complexity of the Einstein field equations, however, it
is typically difficult to find exact solutions in GR that are
physically realizable. In light of modified theories of grav-
ity, the situation gets more challenging. So, in order to arrive
at exact solutions, researchers employ a number of mathe-
matical methodologies. Many such concepts have been dis-
cussed, in particular, an algorithm that produces all regular
static, spherically symmetric perfect-fluid solutions of Ein-
stein’s equations by selecting a single monotone function
[35] and its enlargement to locally anisotropic fluids in [36].
With compact objects, however, there is flexibility in select-
ing the appropriate interior solutions. Schwarzschild found
the first exact solution to Einstein’s field equations in 1916
[37], which improved our ability to predict many physical
events. By using spherically symmetric perfect fluid solu-
tions of Einstein’s equations, Tolman [9] initially derived the
simplest model to represent stellar interiors. Following that,
several works – both theoretical and observational – on var-
ious aspects of modified gravity theories have been reported
in recent literature [38–55,55–64].

The foregoing arguments encouraged us to make a thor-
ough study of the stability and appropriateness of anisotropic
solutions for relativistic compact stars. In this article, we
are mainly interested in exploring the salient features of
the static-charged anisotropic fluid sphere consisting of a
charged perfect fluid in the framework of 5D EMGB gravity
theory. We are using the well-behaved TK ansatz together
with a linear EoS of the form pr = βρ − γ , (where β and
γ are constants) to generate exact solutions of the EMGB
field equations and analyze the effect of the Gauss–Bonnet
Lagrangian term LGB which is coupled with the Einstein–
Hilbert action through the coupling constant α on the prin-
cipal physical characteristics of the stellar model. We would
also like to point out that the characteristics of the matter con-
figuration and higher dimensional effects are directly related.

The manuscript is organized in the following way: in
Sects. 2, 3 and 4, we are providing the relevant EGB gravity
formalism as well as the EMGB field equations and their solu-
tions, respectively. The discussion of matching conditions
for constant evaluations can be found in Sect. 5. In Sect. 6,
we have been discussing significant results for the actual
charged model and its stability in Sect. 6.6. Finally, we are
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presenting our concluding remarks in Sect. 7. Throughout the
paper, we have employed the essentially positive signature
(−, +, +, +, +).

2 Einstein–Gauss–Bonnet gravity

To construct the field equations in EGB gravity, we need
a modified action that differs from the Einstein scenario.
In this study, we will be working on five dimensions. In
five-dimensional spacetime with a matter field, the modified
action for EGB gravity can be written as,

IG = 1

16π

∫
d5x

√−g [R − 2� + αLGB] + Smatter. (1)

where g signifies the determinant of the metric gi j , R displays
the five-dimensional Ricci scalar, and � stands for the cos-
mological constant, whereasSmatter denotes the action related
to the matter field. The GB coupling constant α is correlated
to the string tension in string theory and has length squared
dimensions, representing ultraviolet corrections to Einstein’s
theory. It should be noted that according to Maedaa [30],
the coupling constant α must be nonnegative for Minkowski
spacetime to be stable. Consequently, we will constrain our
study to the case where the GB coupling constant α is non-
negative. The Ricci scalar, Ricci tensor, and Riemann curva-
tures are specifically combined in the GB term LGB, which
is stated by

LGB = Ri jkl Ri jkl − 4Ri j Ri j + R2. (2)

We also incorporate the matter action Smatter, which triggers
the stress-energy tensor for the matter field, Ti j . We now get
the following equations of motion by varying the action (1)
in relation to the metric gi j ,

Gi j + αHi j = 8πG

c4 Ti j ,

where Ti j = − 2√−g

δ
(√−gSm

)
δgi j

. (3)

Here, the Einstein tensor and the tensor containing the contri-
butions from the GB component are denoted by the symbols
Gi j and Hi j , respectively. These both tensors are explicitly
expressed as

Gi j = Ri j − 1

2
R gi j ,

Hi j = 2
(
RRi j − 2Rik R

k
j − 2Ri jkl R

kl − RiklδR
klδ
j

)

−1

2
gi j LGB. (4)

The GB term does not exist for n ≤ 4 but actively contributes
to the curvature of the spacetime for n ≥ 5 since it is a
topological invariant in the four-dimensional spacetime. In

writing the Einstein–Maxwell–Gauss–Bonnet (EMGB) field
equations, here we are using geometrized units, and thus we
have taken G = c = 1 throughout the discussion.

3 Field equations

The five-dimensional line element for a static spherically
symmetric spacetime has the standard form

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2(dθ2

+ sin2 θdφ2 + sin2 θ sin2 φ2dψ), (5)

in coordinates (xi = t, r, θ, φ, ψ). By considering the
comoving fluid velocity as ua = e−νδa0 , the Einstein–
Maxwell–Gauss–Bonnet (EMGB) field equation (3) yields
the following set of independent equations in view of the
metric (5),

κρ + E2

= − 3

e4λr3

[
4αλ′ + re2λ − re4λ − r2e2λλ′ − 4αe2λλ′

]
,

(6)

κpr − E2

= 3

e4λr3

[
− re4λ +

(
r2ν′ + r + 4αν′)e2λ − 4αν′],

(7)

κpt + E2

= 1

e4λr2

[
− e4λ − 4αν′′ + 12αν′λ′ − 4α(ν′)2

]

+ 1

e2λr2

[
1 − r2ν′λ′ + 2rν′ − 2rλ′ + r2(ν′)2

]

+ 1

e2λr2

[
r2ν′′ − 4αν′λ′ + 4α(ν′)2 + 4αν′′],

(8)

κσ = 2

r2 e
−λ/2(r2E)′, (9)

where ρ, pr and pt respectively denote the matter density,
radial and transverse pressure of the fluid. Here E is the
electric field intensity, σ is the proper charge density and
κ = 8π . Note that a ′ denotes the differentiation with respect
to the radial coordinate r . If q(r) represents the total charge
contained within the 5− D sphere of radius r , then it can be
defined by the relativistic Gauss law as

q(r) = 2π2
∫ r

0
σr3eλdr. (10)
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4 Solution of the field equations

To solve the above field equations (6)–(8) we utilize the fol-
lowing ansatz

eλ(r) = 1 + ar2 + br4, eν(r) = C2eBr
2
, (11)

where a, b, B,C are constants. These metric potentials con-
form to the well-known Tolman–Kuchowicz [9,10] space-
time.

Using this Tolman–Kuchowicz ansatz given in Eq. (11),
the field equations (6)–(8) can be rewritten as,

κρ + E2 = 3

r3�4

[
− 8αr(a + 2br2)

�

+8αr(a + 2br2)�

+2r3(a+2br2)�−r�2+r�4)
]

(12)

κpr − E2 = 3

r3�4

[
− 8αBr + (r

+8αBr + 2Br3)�2 − r�4
]

(13)

κpt + E2 = 1

�5

[
48αB(a+2br2)

+8αB(a−2B+br2)�

−4
(
a−2B+2aαB+A1r

2
)
�2−(a+br2)�4

−�3
(
a+2B+br2−4B2(4α + r2)

)]
(14)

The anisotropic factor � = pt− pr assumes the following
form

� = 1

4π�5

[
24αB(a + 2br2) − 8αB(a + B + br2)�

−2(a − 2B + 8aαB + A2r
2)�2 + (a + br2)�4

+�3
(
a + br2 + 2B(−2 + 4αB + Br2)

)]
− E2

4π
(15)

where,

� = (1 + ar2 + br4),

A1 = −aB + b(2 + 6αB),

A2 = −aB + 2b(1 + 6αB)

Along with TK-metric we also assume that the radial pressure
pr is related to the matter density ρ by a linear equation of
state,

pr = βρ − γ (16)

where β and γ are positive constants.
Adding Eqs. (12) and (13) we get,

ρ + pr = 1

4π�5

[
3
(
a + B + (2b + aB)r2 + bBr4

)

×
(

1 + (4α + r2)(a + br2)(1 + �)
)]

(17)

Solving Eq. (17) with the help of Eq. (16), the matter
density(ρ) and radial pressure(pr ) are obtained as,

ρ = 1

(1 + β)

[
γ + 1

4π�5

(
3
(
a + B

+(2b + aB)r2 + bBr4
)

×
(

1 + (4α + r2)(a + br2)(1 + �)
))]

(18)

pr = 1

4(1 + β)

[
− 4γ + 1

π�5

×
(

3β
(
a + B + (2b + aB)r2 + bBr4

)

×
(

1 + (4α + r2)(a + br2)(1 + �)
))]

(19)

By using the expression of ρ in Eq. (6) the expression for the
electric field intensity is obtained as,

E2 = 3

r3�4

[
− 8αr(a + 2br2)

�
+ 8αr(a + 2br2)�

+2r3(a + 2br2)� − r�2 + r�4)
]

− 8π

(1 + β)

[
γ + × 1

4π�5

(
3
(
a + B

+(2b + aB)r2 + bBr4
)

×
(

1 + (4α + r2)(a + br2)(1 + �)
))]

(20)

Consequently the expression for the transverse pressure
pt is obtained as,

pt = 1

8π�5

[
48αB(a + 2br2) + 8αB(a − 2B + br2)�

−4
(
a − 2B + 2aαB + A1r

2
)
�2 − (a + br2)�4

−�3
(
a + 2B + br2 − 4B2(4α + r2)

)]
− E2

8π

(21)

5 Exterior spacetime and boundary condition

In order to determine the constant parameters i.e., a, b, B,

and C for our proposed model it is necessary to match
the interior space-time solution in a smooth way with an
appropriate static and spherically symmetric exterior vacuum
Schwarzschild solution. Since here we are investigating the
interior anisotropic solution in 5-D Einstein–Gauss–Bonnet
gravity, the most suitable and appropriate static exterior vac-
uum Schwarzschild solution is proposed by Boulware–Deser
[65]. This Einstein–Gauss–Bonnet–Schwarzschild solution
is expressed by the following line element:
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ds2 = −F(r)dt2 + dr2

F(r)

+r2(dθ2 + sin2 θdφ2 + sin2 θ sin2 φ2dψ2) (22)

where F(r) = K + r2

4α

(
1 −

√
1 + 8αM

r4 − 8αQ2

3r6

)
. The

quantities M is the gravitational mass, Q represents the
charge of the fluid as determined by an isolated observer
at spatial infinity and K is an arbitrary constant.

Using continuity of the metric functions and their deriva-
tives, namely grr , gtt and ∂gtt

∂r across the boundary r = R we
get,

1

1 + aR2 + bR4 = F(R), (23)

C2eBR2 = F(R), (24)

2BRC2eBR2 =
−4

√
3αQ2 + 3R6

(
Q1 − √

3
)

6αR5Q1
. (25)

where, Q1 =
√

3 − 8α(Q2−3MR2)

R6

Now by solving Eq. (23), we obtain the expression for b
as a function of α and a as,

b = 12α(1 − K − aK R2) + R2(1 + aR2)(Q2 − 3)

12αK R4 + 3R6 − Q2R6

(26)

where, Q2 =
√

9 − 24α(Q2−3MR2)

R6

Now from the condition pr (r = R) = 0 we get,

0 = 1

4(1 + β)

[
− 4γ + 1

π�5
R

×
(

3β
(
a + B + (2b + aB)R2 + bBR4

)

×
(

1 + (4α + R2)(a + bR2)(1 + �R)
))]

(27)

where, �R = (1 + aR2 + bR4) At the center of the star the
electric field is obtained as,

E2(0) = 6a(1 − 8αB + 2β + 8aαβ) − 6B − 8γπ

1 + β
(28)

We know from regularity of electric charge that the elec-
tric field vanishes at the center of the fluid configuration,
E2(r = 0) = 0. Thus by simultaneously solving the equa-
tions pr (r = R) = 0 and E2(r = 0) = 0, we obtain the
expressions for B and γ as functions of α, β, a and b as,

B =
[
�4

R

(
a + 2aβ + 8a2αβ

− 1

�5
R

[
β
(
a + 2bR2

)(
1 + (4α + R2)

×(a + bR2)(1 + �R)
)])] / [

8a5αR8 +

×(1+bR4)4+4a3R4
(

1+bR4
)(

R2+12α(1+bR4)
)

+a4R6
(
R2 + 32α(1 + bR4)

)
+ β

(
1 + bR2(4α

+R2)(2+bR4)
)
+2a

(
1+bR4

)(
R2(β + 2(1 + bR4)2)

+4α
(
β + (1 + bR4)3)) + a2R2

(
R2(β +

×6(1 + bR4)2) + 4α
(
β + 8(1 + bR4)3))]

, (29)

γ =
[

3β

(
2a(1 + 4aα)(1 + β)

+
[
2b + a

(
a + 16αb + 2a(1 + 4aα)β

)]

×R2 + ab
(

1 + (2 + 8aα)β
)
R4

)

×
(

1 + (4α + R2)(a + bR2)(1 + �R)

)] / [
4π�R

×
(

8a5αR8 + (1 + bR4)4 + 4a3R4(1 + bR4)

(
R2 + 12α(1 + bR4)

) + a4R6(R2 + 32α(1 + bR4)
)

+β
(
1 + bR2(4α + R2)(2 + bR4)

) + 2a(1 + bR4)

×
[
R2(β + 2(1 + bR4)2) + 4α

(
β + (1 + bR4)3)]

+a2R2
[
R2(β+6(1+bR4)2)+4α

(
β+8(1+bR4)3)])]

(30)

Now by solving Eq. (24), we obtain the expression for C in
terms of B as,

C = e− BR2
2 F(R), (31)

Here we have used the approximated mass and radius of
the compact star candidate EXO 1785-248 to determine the
values ofb,C, B andγ . To design a realistic stellar model, we
fix the values of β anda as β = 0.25 anda = 0.031 with K =
0.29 so as to obtain physical validity. Using these determined
constants, we will now discuss the physical characteristics of
our obtained solution.

6 Physical analysis of the present charged model

The model must satisfy the following regularity and real-
ity requirements within the stellar configuration in order to
be a viable, regular, and stable charged anisotropic com-
pact stellar model with a certain radius. The behavior of
anisotropic solutions of our compact stellar model is investi-
gated through graphical analysis of metric potentials, matter
variables, energy conditions, causality conditions, Herrera’s
cracking approach, adiabatic index, compactness factor, and
redshift parameters.

123



392 Page 6 of 13 Eur. Phys. J. C (2023) 83 :392

Fig. 1 Variation of metric
functions eλ and eν with respect
to r for EXO 1785-248

6.1 Regularity of metric co-efficient

In the survey of relativistic compact stars, the presence of
singularities is recognized as a crucial problem. With this
in mind, we are investigating the nature of the metric con-
stituents in the core of these compact relativistic stars. For
the solutions to be physically realizable [35], the metric con-
stituents inside the compact stars must be regular and posi-
tive. From Eq. (11), we can see that

d

dr

[
eν

]=2BC2reBr
2
,

d2

dr2

[
eν

] =
(

1+2r2
)
eBr

2
. (32)

This gives d
dr [eν]r=0 = 0 and d2

dr2 [eν]r=0 > 0 at the center.
We can also notice in Eq. (11) that the other metric element
ensures the form

[
eλ

]
r �=0 = 1+O(r2) near the center. There-

fore, the metric components considered are non-singular at
r = 0 and monotonically increasing. They thus satisfy all the
conditions required to be physically acceptable which can be
verified from Fig. 1.

6.2 Regularity of pressure and density

To reinforce the physical validity of our solution, the central
values of the other physical quantities, namely matter density,
and pressure must also be finite and non-singular to show
their finiteness at the center. In this context, we found the
central values of the physical quantities at the center r = 0.
Firstly, the central density is obtained as,

ρc = ρ(r = 0) = 3(1 + 8aα)(a + B) + 4γπ

4(1 + β)π
, (33)

and secondly, the expression for central pressure is obtained
as,

pc = pr (r = 0) = 3(1 + 8aα)(a + B)β − 4γπ

4(1 + β)π
. (34)

The radial and tangential pressures are equal and always pos-
itive at the center, where r = 0. A graphical representation
of the requirements of the star enables for testing if they are
always satisfied.

6.3 Evolution of fluid parameters

Here we explore the viable properties of charged anisotropic
compact stellar configuration and describe its evolution
graphically. Furthermore, the comparison of our theoretical
findings with empirical data could provide strong evidence in
favor of the considered 5-D EMGB model. We start by ana-
lyzing some realistic characteristics of the stellar configura-
tions such as the matter density, radial and lateral pressures
along with their derivatives, the anisotropy factor, and the
trace profile through graphs. We acknowledge that due to the
extremely dense stellar profile, the matter contents should be
higher in the stellar interior. In this respect, we have shown in
Fig. 2 that the behavior of the physical parameters, namely ρ,
pr and pt is positive and decreases monotonically towards
the stellar surface, which shows a very compact profile of
the considered stellar configuration. Then, we analyzed the
density and pressure gradients viz., dρ/dr , dpr/dr , dpt/dr
and demonstrated that their behaviors are negative and regu-
lar, which ensures the presence of an intensive stellar object
in the 5-D EMGB model, as illustrated in Fig. 3. It’s worth
noting that the matter variables have high values compared
to the GTR.

An interesting key factor when analyzing the matter con-
figuration is the pressure anisotropy, whose direction relies
on the pressure components. When � = pt − pr < 0, the
anisotropy is negative, indicating that the pressure is oriented
internally, while when � = pt − pr > 0, the anisotropy
is positive, indicating that the pressure is oriented exter-
nally. The graphical visualization of the anisotropy factor
� is yielded in Fig. 4 (left panel), which shows that the cur-
rent stellar model has a positive anisotropy factor �, where
pt > pr then � > 0. Therefore, the stellar structure is dis-
closed to a repulsive force that offsets the gravitational gradi-
ent, this phenomenon enables the production of a more com-
pact stellar configuration. The radial and transverse pressures
coincide at the center, i.e., � vanishes at r = 0. Addition-
ally, the radial and transverse pressure values diverge with
increasing radius, which causes the anisotropy to keep mov-
ing in the direction of the surface of the spherical stellar con-
figuration. Besides, Fig. 4 (right panel) demonstrates that the
trace profile i.e., ( pr+2pt

ρ
) is positive with increasing behavior
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Fig. 2 (Left) matter density (ρ), (middle) radial pressure (pr ) and (right) tangential pressure (pt ) are plotted against the radial distance r

Fig. 3 Density and pressure gradients: (left) dρ
dr , (middle) dpr

dr and (right) dpt
dr are shown against the radial distance r

Fig. 4 (Left) anisotropic factor
(�) and (right) trace profile
( pr+2pt

ρ
) are plotted against the

radial distance r

throughout the interior of the object. This result advocates the
hefty profile of stellar matter variables, thereby representing
compact environments of the considered stellar configura-
tion.

6.4 Electric field

It is generally recognized that the regularity of the electric
charge must be effectively zero at the center and positive
for r > 0, which aids in avoiding gravitational collapse.
To confirm this regularity, we have presented in Fig. 5 (left
panel), the trend in the electric field. In this context, we notice
that the electric field vanishes at the stellar core and is posi-
tive throughout the stellar configuration, but it takes a max-
imum value within the stellar configuration at r ≈ 5.5 km
instead of the stellar surface. It is well-known that the stellar
core can become unstable under the effect of strong electric
fields. On the other hand, quasi-static equilibrium states can
be generated by the presence of charges up to 1020 coulombs.
Due to pair production within the stellar configuration caused

by very high charge densities and extremely strong electric
fields, the core of the stellar configuration becomes unstable.
Next, Fig. 5 (right panel) illustrates how the charge density
behaved for the hypothetical stellar configuration. The charge
density is consequently seen to be non-singular at the stellar
configuration’s center, decreases monotonically to the stellar
configuration’s surface layer, and attains a non-zero value at
the stellar frontier.

6.5 Energy conditions

An ordinary matter can be distinguished from an exotic fluid
on the basis of the energy conditions (ECs) on matter vari-
ables. These restrictions give detailed information about the
physical viability of the solutions. Strong, weak, null, and
dominant energy conditions (SEC, WEC, NEC, and DEC)
for charged stellar configuration are given by the following
inequalities,

SEC : ρ + pr + 2pt + E2

4π
≥ 0, (35)
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Fig. 5 (Left) total charge (E2)
and (right) charge density (σ )
are shown against the radial
distance r

Fig. 6 Variation of energy conditions with respect to the radial distance r

W EC : ρ + pr ≥ 0, ρ + pt + E2

4π
≥ 0 (36)

NEC : ρ + E2

8π
≥ 0, (37)

DEC : ρ − pr + E2

4π
≥ 0, ρ − pt ≥ 0. (38)

Figure 6 illustrates the graphical behavior of these energy
conditions which shows that our system is consistent with
all these ECs. This guarantees that the charged matter that
composes our stellar model is realistic and physically viable.

6.6 Stability of the stellar model

In this section, we will investigate the stability of our stellar
model by using the two methods given by (i) causality condi-
tion via Herrera’s cracking concept and (ii) determining the
relativistic adiabatic index.

6.6.1 Causality condition via Herrera’s cracking concept

A very important condition to be a physically acceptable
stellar model is the causality condition, which states that the

square of the radial sound velocity (v2
r = dpr

dρ ) and that for

tangential sound velocity (v2
t = dpt

dρ ) for anisotropic compact
object should be less than unity everywhere [69], i.e.,

0 < v2
r = dpr

dρ
< 1

0 < v2
t = dpt

dρ
< 1 (39)

In other words, these conditions state that the velocity
components of sound must be less than the speed of light.
Since we have assumed a linear equation of state for radial
pressure pr , then from Eq. (16), we obtain v2

r = β. There-
fore, the radial velocity component is constant throughout
the stellar model and totally depends on parameter β, while
tangential velocity component varies with parameter α. The
expression of v2

t in EMGB gravity is highly non-linear and
complicated that has to be analyzed numerically. From Fig. 7,
it is very clear that the values of all velocity components lie
within [0, 1].

On the other hand, Herrera et al. [66–68] proposed the
cracking concept for self-gravitating compact stellar model
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Fig. 7 Components of sound velocity: (left) v2
r is plotted against r, (middle) v2

t is shown against the radial distance r and (right) the stability factor
|v2

t − v2
r | is plotted against r

by considering perfect fluid and anisotropic matter distribu-
tions. Following this concept, we have checked the cracking
condition |v2

t − v2
r | ≤ 1 and thus from Fig. 7 we find that the

present compact stellar model is potentially stable by satisfy-
ing both the causality conditions and the Herrera’s cracking
concept.

6.6.2 Relativistic adiabatic index

The adiabatic index, which measures the stiffness of the mat-
ter, is crucial for understanding the dynamical stability of a
relativistic compact object. Chandrasekhar first proposed the
dynamical stability of stellar systems against infinitesimal
radial adiabatic perturbation [72]. In his pioneering work,
he predicted that for stability of a stellar system the value
of adiabatic index � should be greater that 4/3. Several
researchers have tested the predictions of Chandrasekhar for
both isotropic and anisotropic stellar objects [73–76].

The adiabatic index is defined as,

� = ρ + pr
pr

v2
r . (40)

We have successfully plotted the behaviour of the adia-
batic index � in Fig. 8 which shows that � is greater than
4/3 for our proposed model. This confirms the stability of
this stellar system.

6.7 Hydrostatic equilibrium via modified TOV equation

The four different forces, namely gravitational force, hydro-
statics force, electric force and anisotropic force are acting
in our present model. In this section, we will investigate the
hydrostatic equilibrium of our proposed model via the mod-
ified Tolman–Oppenheimer–Volkoff (TOV) equation under
different forces. To analyze, we write the general form of the
modified TOV equation as follows:

−MG(r)(ρ + pr )

r
eν−λ − dpr

dr
+ 3

r
(pt − pr ) + σ Eeλ = 0,

(41)

Fig. 8 Behavior of the adiabatic index � as a function of the radial
distance r

proposed by Tolman–Oppenheimer–Volkoff and named as
TOV equation.
Where MG(r) is the gravitational mass within the radius r
derived from the Tolman–Whittaker formula and the Ein-
stein’s field equations and is defined by

MG(r) = 1

2
reλ−νν′. (42)

Using the expression for MG(r) in Eq. (41), we get (Fig. 9)

−ν′

2
(ρ + pr ) − dpr

dr
+ 3

r
(pt − pr ) + σ Eeλ = 0. (43)

The above expression may also be written as

Fg + Fh + Fa + Fe = 0, (44)

where Fg, Fh , Fa , and Fe represent the gravitational,
hydrostatic-gradient, anisotropic and electric force respec-
tively given by the following expression.

Fg = −ν′

2
(ρ + pr ) (45)

Fh = −dpr
dr

(46)

Fa = 3

r
(pt − pr ) (47)
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Fig. 9 Variations of different forces, such as the gravitational force Fg , hydrostatic-gradient force Fh , anisotropic force Fa and electric force Fe
respectively versus radial coordinate r for different values of α

Fe = σ Eeλ. (48)

6.8 Some physical implications of the solutions for a toy
stellar model

we can readily measure the mass function inside the radius R
by computing the integral connected directly to the density
level using the following definition,

m(R) = 4π

∫ R

0

(
ρ + q2

8π r4

)
r2 dr + Q2

2R
, (49)

conversely employing the metric function suggested by

m(R) = R

2

(
1 − e−2λ(R) + Q2

R2

)
. (50)

On the other hand, using the formula suggested by Böhmer
and Harko [70], it is easy to determine the lower and upper
limits of the mass–radius ratio,

Q2
(
18 R2+Q2

)
2 R2

(
12 R2 + Q2

) ≤ M

R
≤ 2

9
+3Q2 + 2R

√
R2 + 3Q2

9R2 ,

(51)

In addition, one may get the effective mass for the distribution
of charged matter by,

Meff = 4π

∫ R

0

(
ρ+ q2

8π r4

)
r2dr= R

2

[
1 − e−2λ(R)

]
. (52)

We also signify compactification for the effective mass-to-
radius ratio, u, which is given as follows,

u = Meff

R
. (53)

This serves as the basis for evaluating the surface redshift
function zs , which is stated as,

zs = (1 − 2u)−
1
2 − 1. (54)

These four quantities’ behaviors, namely, mass function,
compactness factor, gravitational redshift, and surface red-
shift, are displayed in Fig. 10. The graph demonstrates that
each physically significant variable meets the criteria of a
realizable stellar configuration. It should be noted that the
mass function at the center is guaranteed to be regular. We
can also see that the three quantities, namely mass function,
compactness factor, and surface redshift are monotonically
increasing functions, but the quantity: gravitational redshift
is a monotonically decreasing function as a function of the
radius r and also all these quantities are positive inside the
stellar body. In particular, the plot demonstrates that the mass-
radius ratio and its lower and upper limits for the compact
stellar candidate under consideration in this research comply
completely with the criteria listed in Table 1, which may be
confirmed in [70]. However, the authors [70,71] contend that
the surface redshift of an anisotropic fluid sphere is hypoth-
esized to be less than zs ≤ 5 or zs ≤ 5.211. Hence, under
these restrictions, the surface redshift is fulfilled everywhere
within the stellar configuration, which demonstrates the via-
bility of our stellar model.

Moreover, we analyzed whether the charged matter is real-
istic or exotic based on various constraints applicable to EoS
components such as 0 ≤ wr < 1, and 0 < wt < 1.
These matter-related constraints should be maintained for a
realistically charged and uncharged matter composition. The
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Fig. 10 Variation of (I) mass function, (II) compactness factor, (III) gravitational redshift, and (IV) surface redshift versus radial coordinate r for
the compact object for different values of α

Table 1 Comparative study of
lower bound, mass-radius ratio,
compactness, upper bound, and
surface red-shift of the stellar
toy model for different values of
α

α Lower bound Mass-radius compactness (u) Upper bound Surface redshift
Q2 (18R2+Q2)

2R2 (12R2+Q2)
ratio ( MR ) Meff

R
2R2+3Q2+2R

√
R2+3Q2

9R2 zs

0.12 0.0215284 0.383426 0.369062 0.463398 0.954124

0.24 0.0215284 0.383424 0.369061 0.463398 0.954115

0.36 0.0215284 0.383423 0.36906 0.463398 0.954106

0.48 0.0215284 0.383422 0.369058 0.463398 0.954097

0.60 0.0215284 0.383421 0.369057 0.463398 0.954088

EoS has the following mathematical forms,

wr = pr
ρ

& wt = pt
ρ

. (55)

It is straightforward to establish that our model of the heav-
enly objects faithfully reflects the realistic nature of the com-
position of matter under the radial and transverse components
of the EoS. These wr , & wt profiles’ graphs are displayed
in Fig. 11. The evolution of radial and transverse pressures
versus density is also shown in Fig. 11 for different values of
α.

7 Concluding remarks

In this paper, we have extensively explored the viability and
stability of a static charged anisotropic fluid sphere consist-
ing of a charged perfect fluid in the framework of 5D EMGB
gravity theory. What’s more, we have employed the well-
behaved TK ansatz together with a linear EoS of the form
pr = βρ − γ , (where β and γ are constants) to generate
exact solutions of the EMGB field equations and analyze

the effect of the Gauss–Bonnet Lagrangian term LGB which
is coupled with the Einstein–Hilbert action through the cou-
pling constant α on the main physical properties of the stellar
model.

The eventual model has been thoroughly analyzed to
identify whether it conforms to strict regularity and stabil-
ity conditions. In addition, the causality condition via Her-
rera’s cracking concept and the relativistic adiabatic index
was deemed to be satisfactory. The adherence of the prin-
cipal features such as energy density, pressure components,
anisotropy factor, sound velocity, hydrostatic equilibrium of
the stellar system via a modified TOV equation, mass-radius
relation, compactness factor, surface redshift with the recog-
nized physical behavior for different values of coupling con-
stant α has been confirmed by graphical plots using the stated
parametric values. Furthermore, our analysis demonstrates
that matter configuration attributes and higher dimensional
effects are intimately associated. The interior spacetime and
the exterior space-time described by the EGB Schwarzschild
metric were also matched to settle all integration constants
that arose along the way.
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Fig. 11 (Left) EoS parameter ωr is shown against the radial distance r , (middle) EoS parameter ωt is shown against the radial distance r , (right)
relation between pr and ρ, (bottom) relation between pt and ρ

This study has shown the meaning and significance of the
Gauss–Bonnet Lagrangian term LGB which is coupled with
the Einstein–Hilbert action through the coupling constant α

together with the TK ansatz and a linear EoS in the develop-
ment of astrophysical models that harmonize with observed
data.
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