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Abstract In this paper, via employing the uniformly mod-
ified form of the generalized off-shell Helmholtz free
energy, we investigate the topological numbers for the four-
dimensional neutral Lorentzian Taub–NUT, Taub–NUT–
AdS and Kerr–NUT spacetimes, and find that these solu-
tions can also be classified into one of three types of those
well-known black hole solutions, which implies that these
spacetimes should be viewed as generic black holes from the
viewpoint of the thermodynamic topological approach.
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1 Introduction

In the great family of four-dimensional exact solutions in
General Relativity, the Lorentzian NUT-charged spacetimes
belong to a very important class of asymptotically locally flat

a e-mail: wdcwnu@163.com (corresponding author)

solutions to the Einstein field equations [1,2]. Since its birth,
the prevailing view has commonly excluded the Lorentzian
NUT-charged spacetimes from the big family of black holes,
due to the Misner’s identification of the NUT charge param-
eter as unphysical [3]. However, in recent years, there has
been a surge in the studies that exploit the Lorentzian NUT-
charged spacetimes as black holes to explore their physi-
cal properties, including thermodynamics [4–25], geodesic
motion [26], Kerr/CFT correspondence [27,28], black hole
shadow [29], weak cosmic censorship conjecture [30,31],
holographic complexity [32], and so on [33–39]. Thus, a
question arises naturally as to whether the Lorentzian NUT-
charged spacetimes are generic black holes.

On the other hand, the Lorentzian NUT-charged space-
times have many peculiar properties that are mainly due to
the presence of the wire/line singularities at the polar axes
(θ = 0 and θ = π ), which are often called as the Misner
strings. For instance: (I) The NUT charge has many different
meanings and interpretations [40–44], and there are many
different explanations of the physical origin of the NUT-
charged spacetimes [45,46]. Up to date, there is no unified
explanation for these facts; (II) The Taub–NUT de Sitter
spacetimes not only provide counterexamples to the maxi-
mal mass conjecture but also violate the entropic N -bound
[47–49]; (III) The thermodynamic volume of the Euclidean
Taub–NUT–AdS spacetime can be negative [50], thus violat-
ing the reverse isoperimetric inequality [51]. Therefore, it is
very interesting to explore the physics behind these peculiar
properties of the Lorentzian NUT-charged spacetimes.

Very recently, by treating the black hole solutions as
topological defects and using the generalized off-shell free
energy, Wei et al. [52] constructed the topological num-
bers which are independent of the intrinsic parameters of
black holes and divided some black hole solutions into three
categories according to their different topological numbers.
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Because of its simplicity and easy maneuverability of the pro-
cedure, the thermodynamic topological approach proposed
in Ref. [52] soon attracted a great deal of attention and
was then successfully applied to calculate the topological
numbers of other black hole solutions [53–61]. It is natural
to investigate the topological numbers of the NUT-charged
spacetimes so as to decree whether they are black holes or
not. In this paper, we shall investigate the topological num-
bers for the four-dimensional neutral Lorentzian Taub–NUT,
Taub–NUT–AdS and Kerr–NUT spacetimes by first employ-
ing the uniformly modified form of the generalized off-shell
Helmholtz free energy, and find that from the thermodynamic
topological standpoint, these spacetimes should be viewed as
generic black holes also.

The organization of this paper is outlined as follows. In
Sect. 2, we give a brief review of the thermodynamic topolog-
ical approach proposed in Ref. [52]. In Sect. 3, we first recall
the consistent formulation of thermodynamic properties of
the four-dimensional static Lorentzian Taub–NUT spacetime
and then investigate its topological number. In Sect. 4, we
turn to discuss the case of the rotating Lorentzian Kerr–NUT
spacetime. In Sect. 5, we then extend to discuss the more gen-
eral static Lorentzian Taub–NUT–AdS4 spacetime. Finally,
our conclusion and outlook are given in Sect. 6.

2 A brief review of thermodynamic topological
approach

Following the thermodynamic topological approach pro-
posed in Ref. [52], one can first introduce the generalized
off-shell Helmholtz free energy

F = M − S

τ
(2.1)

for a black hole thermodynamical system with the mass M
and the entropy S, where τ is an extra variable that can be
regarded as the inverse temperature of the cavity surround-
ing the black hole. Only when τ = T−1, the generalized
Helmholtz free energy (2.1) is on-shell and reduces to the
black hole’s ordinary Helmholtz free energy F = M − T S
[62–64].

In Ref. [52], a key vector φ is defined as

φ =
(

∂F

∂rh
, − cot � csc �

)
, (2.2)

where the two parameters obey 0 < rh < +∞, 0 ≤ � ≤ π ,
respectively. The component φ� is divergent at � = 0 and
� = π , implying that the direction of the vector is outward
here.

A topological current can be defined using the Duan’s φ-
mapping topological current theory [65–68] as follows:

jμ = 1

2π
εμνρεab∂νn

a∂ρn
b, μ, ν, ρ = 0, 1, 2, (2.3)

where ∂ν = ∂/∂xν and xν = (τ, rh, �). The unit vec-
tor n reads as n = (nr , n�), where nr = φrh/‖φ‖ and
n� = φ�/‖φ‖. Since it is easy to demonstrate that the afore-
mentioned current (2.3) is conserved, and one can quickly
arrive at ∂μ jμ = 0 and then demonstrate that the topological
current is a δ-function of the field configuration [67–69]

jμ = δ2(φ)Jμ
(φ

x

)
, (2.4)

where the three dimensional Jacobian Jμ(φ/x) satisfies:
εab Jμ(φ/x) = εμνρ∂νφ

a∂ρφb. It is simple to show that jμ

equals to zero only when φa(xi ) = 0, and one can deduce
the topological number W as follows:

W =
∫

�

j0d2x =
N∑
i=1

βiηi =
N∑
i=1

wi , (2.5)

where βi is the positive Hopf index counting the number of
the loops of the vector φa in the φ-space when xμ are around
the zero point zi , while ηi = sign(J 0(φ/x)zi ) = ±1 is the
Brouwer degree, and wi is the winding number for the i-th
zero point of φ that is contained in the domain �.

3 Four-dimensional Lorentzian Taub–NUT spacetime

As the simplest case, we will investigate the four-dimensional
Lorentzian Taub–NUT spacetime solution [2], and adopt the
following line element in which the Misner strings [3] are
symmetrically distributed along the polar axis:

ds2 = − f (r)

r2 + n2 (dt + 2n cos θ dϕ)2 + r2 + n2

f (r)
dr2

+(r2 + n2)(dθ2 + sin2 θ dϕ2), (3.1)

where f (r) = r2 −2mr −n2, in which m and n are the mass
and NUT charge parameters, respectively. The event horizon
radius rh is the largest root of the equation f (rh) = 0, namely,
rh = m + √

m2 + n2.

3.1 Consistent thermodynamics

First, let’s briefly recapitulate the (ψ−N )-pair formalism [4,
5] of the consistent thermodynamic of the four-dimensional
Lorentzian Taub–NUT spacetime.
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The Bekenstein–Hawking entropy is taken as one quarter
of the area of the event horizon

S = A

4
= π(r2

h + n2), (3.2)

and the Hawking temperature is thought of as being propor-
tional to the surface gravity κ on the event horizon

T = κ

2π
= f ′(rh)

4π(r2
h + n2)

= rh − m

2π(r2
h + n2)

= 1

4πrh
, (3.3)

in which a prime denotes the partial derivative with respective
to its variable.

In the (ψ −N )-pair formalism, one intentionally divides
the Komar integral into three patches: the spatial infinity,
the horizon, and two Misner string tubes, and defines a non-
globally conserved Misner charge. For the global conserved
charge, the Komar mass related to the timelike Killing vector
∂t is: M = m, which is computed via the Komar integral at
infinity.

There are also other Killing horizons associated with
the Misner strings in the Lorentzian Taub–NUT spacetime,
namely, the north/south pole axis is a Killing horizon related
to the Killing vector [5]: k = ∂t + ∂ϕ/(2n), whose corre-
sponding surface gravity can be calculated as

κ̂ = 1

2n
, (3.4)

and the associated Misner potential is

ψ = κ̂

4π
= 1

8πn
. (3.5)

It is a simple matter to check that the above thermodynamic
quantities simultaneously fulfil both the differential and inte-
gral mass formulae:

dM = TdS + ψdN , (3.6)

M = 2T S + 2ψN , (3.7)

with the gravitational Misner charge

N = −4πn3

rh
, (3.8)

being conjugate to the Misner potential ψ .
The expression of the Helmholtz free energy is then given

as [4,5,15]

F = M − T S − ψN = m

2
. (3.9)

3.2 Topological number

Next, we will obtain the topological number of the four-
dimensional Lorentzian Taub–NUT spacetime. The expres-
sion for the Helmholtz free energy of the Lorentzian Taub–
NUT spacetime can be recovered via a Wick-rotated back
procedure from the Euclidean action of the Euclidean Taub–
NUT spacetime:

IE = 1

16π

∫
M
d4x

√
gR+ 1

8π

∫
∂M

d3x
√
h(K−K0), (3.10)

where h is the determinant of the induced metric hi j , K is the
trace of the extrinsic curvature tensor defined on the boundary
with this metric, and K0 is the subtracted one of the massless
Taub–NUT solution as the reference background.

The free energy calculated by the action integral is: I/β =
m/2 = F , where β = 4πrh is the interval of the time
coordinate. Replacing T with 1/τ in Eq. (3.9) and using
m = (r2

h − n2)/(2rh), the generalized off-shell Helmholtz
free energy is modified as

F = M − S

τ
− ψN = rh

2
− π(r2

h + n2)

τ
. (3.11)

Utilizing the definition of Eq. (2.2), the components of the
vector φ can be easily computed as follows:

φrh = 1

2
− 2πrh

τ
, φ� = − cot � csc �. (3.12)

By solving the equation: φrh = 0, one can obtain a curve on
the rh − τ plane, which is just a straight line for the four-
dimensional Taub–NUT spacetime:

τ = 4πrh . (3.13)

For the Lorentzian Taub–NUT spacetime, we plot, respec-
tively, the zero points of the component φrh in Fig. 1, and
the unit vector field n on a portion of the � − rh plane in
Fig. 2 with τ = 4πr0 in which r0 is an arbitrary length scale
set by the size of a cavity enclosing the Taub–NUT space-
time. From Fig. 1, one can observe that the behavior of the
Taub–NUT spacetime resembles that of the Schwarzschild
black hole, and this indicates that the NUT charge parame-
ter seems to have no effect on the thermodynamic topologi-
cal classification for neutral static asymptotically locally flat
spacetime. Therefore, it would be interesting to explore the
connection between the geometric topology and the thermo-
dynamic topology, for instance, to investigate the topological
number of the ultraspinning black holes [70–77] and their
usual counterparts.

In Fig. 2, the zero point is located at rh = r0 and � = π/2.
one can determine the winding number w for an arbitrary
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Fig. 1 Zero points of the vector φrh shown in the rh − τ plane. There
is only one Taub–NUT spacetime for any value of τ

Fig. 2 The red arrows represent the unit vector field n on a portion of
the rh − � plane for the Taub–NUT spacetime with τ/r0 = 4π . The
zero point (ZP) marked with black dot is at (rh/r0,�) = (1, π/2). The
blue contour C is a closed loop enclosing that zero point

loop since it is independent of the loops that surround the
zero point; for instance, through a look at the blue contour C
in Fig. 2. If the calculation is made for the forward rotation
in the anticlockwise direction, then the winding number is
w = −1, which coincides with those of the Schwarzschild
black hole [52] and the d ≥ 6 singly rotating Kerr black
hole [58]. In this sense, the Lorentzian Taub–NUT spacetime
behaves like a genuine black hole. Since the winding number
is related to local thermodynamic stability, with positive and
negative values corresponding to stable and unstable black
hole solutions [52] respectively, one can naturally conclude
that the Taub–NUT spacetime is an unstable black hole in
an arbitrary given temperature just like the Schwarzschild

black hole. Turning to the topological global properties, we
have the topological number W = −1 for the Taub–NUT
spacetime from Fig. 2, which is also the same as the results
of the Schwarzschild black hole and the d ≥ 6 singly rotat-
ing Kerr black hole. Therefore, from the point of view of
topological numbers, the Lorentzian Taub–NUT spacetime
should be accepted into the black hole family. In addition,
it can be concluded that although the Taub–NUT spacetime
and Schwarzschild black hole are obviously different in geo-
metric topology aspect, they are the same class from the per-
spective of the thermodynamic topology.

4 Lorentzian Kerr–NUT spacetime

In this section, we will extend the above discussion to the
case of a rotating NUT-charged spacetime by considering the
four-dimensional Kerr–NUT spacetime [78–81], whose line
element with the Misner strings symmetrically distributed
along the rotation axis is

ds2 = −�(r)

�

[
dt + (2n cos θ − a sin2 θ)dϕ

]2 + �

�(r)
dr2

+�dθ2 + sin2 θ

�

[
adt − (r2 + a2 + n2)dϕ

]2
, (4.1)

where

� = r2 + (n + a cos θ)2, �(r) = r2 − 2mr − n2 + a2,

in which m and a are the mass and rotation parameters,
respectively. The horizon is determined by: �(rh) = 0,
which gives rh = m ± √

m2 + n2 − a2.

4.1 Consistent thermodynamics

Now we briefly recall the (ψ − N )-pair formalism [7]
of the consistent thermodynamics of the four-dimensional
Lorentzian Kerr–NUT spacetime. The Bekenstein–Hawking
entropy is taken as one quarter of the event horizon area:

S = A

4
= π(r2

h + n2 + a2), (4.2)

while the Hawking temperature is proportional to the surface
gravity κ on the event horizon

T = κ

2π
= f ′(rh)

4π(r2
h + n2 + a2)

= rh − m

2π(r2
h + n2 + a2)

. (4.3)

The angular velocity at the event horizon and the Misner
potential are given by

� = a

r2
h + n2 + a2

, ψ = 1

8πn
. (4.4)
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As for the global conserved charge, the Komar mass M = m
at infinity is related to the timelike Killing vector ∂t .

It is easy to check that the above thermodynamic quanti-
ties satisfy the differential first law and integral Bekenstein–
Smarr mass formula simultaneously,

dM = TdS + �d J + ψdN , (4.5)

M = 2T S + 2�J + 2ψN , (4.6)

with the gravitational Misner charge and the angular momen-
tum

N = −4πn3

rh
, J =

(
m + n2

rh

)
a, (4.7)

being conjugate to the Misner potential ψ and the angular
velocity, respectively. Note that both of them do not have a
global character, due to having a location-dependent factor
1/rh .

With the help of the above expressions and using m =
(r2

h − n2 + a2)/(2rh), the Gibbs free energy of the Kerr–
NUT spacetime reads

G ≡ M − T S − ψN − �J = m

2
, (4.8)

which is identical to the one calculated via the action integral
[7], just like the non-rotating case.

4.2 Topological number

In order to calculate the thermodynamical topological num-
ber of the Kerr–NUT spacetime, we then consider the
Helmholtz free energy which is given by

F = G + �J = M − T S − ψN . (4.9)

It coincides with the result of Eq. (4.19) given in Ref. [8] in
the case of the parameters e = g = 0 are turned off.

It is straightforward to modify the generalized Helmholtz
free energy as

F = M− S

τ
−ψN = r2

h + a2

2rh
− π(r2

h + n2 + a2)

τ
. (4.10)

Then, the components of the vector φ are given by

φrh = r2
h − a2

2r2
h

− 2πrh
τ

, φ� = − cot � csc �. (4.11)

Therefore, using the thermodynamic topological approach
and solving the equation: φrh = 0, we get

τ = 4πr3
h

r2
h − a2

(4.12)

Fig. 3 Zero points of the vector φrh shown in the rh − τ plane. The
generation point for the Kerr–NUT spacetime is represented by the black
dot with τc. At τ = τ1, there are two Kerr–NUT spacetimes. Obviously,
the topological number is: W = −1 + 1 = 0

as the zero point of the vector field φrh .
Taking a = r0 for the Kerr–NUT spacetime, we plot the

zero points of the component φrh in Fig. 3, and the unit vec-
tor field n on a portion of the � − rh plane in Fig. 4 with
τ/r0 = 40, respectively. In Fig. 3, one generation point can
be found at τ/r0 = τc/r0 = 32.65. In Fig. 4, the zero points
are located at (rh/r0,�) = (1.30, π/2), and (2.77, π/2),
respectively. Based upon the local property of the zero points,
we can obtain the topological number: W = −1 + 1 = 0
for the Kerr–NUT spacetime, which is same as that of the
Kerr black hole [58]. Thus, the big family of the black holes
should contain the four-dimensional Kerr–NUT spacetime.
In addition, it also can be concluded that although the Kerr–
NUT spacetime and Kerr black hole are obviously different
in geometric topology aspect, they seem to be the same kind
from the perspective of the thermodynamic topology, just
like the Taub–NUT spacetime and Schwarzschild black hole
as discussed in Sect. 3 and Ref. [52], respectively.

5 Lorentzian Taub–NUT–AdS4 spacetime

In this section, we turn to explore the Lorentzian Taub–NUT
spacetime with an negative cosmological constant, namely,
the Lorentzian Taub–NUT–AdS4 spacetime, whose metric is
still given by Eq. (3.1), but now f (r) = r2−2mr−n2+(r4+
6n2r2 − 3n4)/ l2, in which the AdS radius l appears in the
thermodynamic pressure P = 3/(8πl2)of the 4-dimensional
AdS black hole [51,82].

5.1 Consistent thermodynamics

We now recollect the thermodynamical properties of the four-
dimensional Taub–NUT–AdS spacetime. The Bekenstein–
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Fig. 4 The red arrows represent the unit vector field n on a portion of
the rh−� plane for the Kerr–NUT spacetime with a/r0 = 1 and τ/r0 =
40. The zero points (ZPs) marked with black dots are at (rh/r0,�) =
(1.30, π/2), and (2.77, π/2) for ZP1 and ZP2, respectively. The blue
contours Ci are closed loops surrounding the zero points

Hawking entropy is taken as one quarter of the event horizon
area:

S = A

4
= π(r2

h + n2), (5.1)

and the Hawking temperature is assumed to be proportional
to the surface gravity κ on the event horizon

T = κ

2π
= f ′(rh)

4π(r2
h + n2)

= rh − m

2π(r2
h + n2)

+ r3
h + 3n2rh

πl2(r2
h + n2)

,

(5.2)

where rh is the location of the event horizon.
The conformal mass is: M = m, and the Misner potential

is

ψ = 1

8πn
. (5.3)

It is easy to verify that the above thermodynamic quanti-
ties satisfy the differential first law and integral Bekenstein–
Smarr mass formula simultaneously [4,5],

dM = TdS + ψdN + VdP, (5.4)

M = 2T S + 2ψN − 2V P, (5.5)

with the gravitational Misner charge and the thermodynamic
volume

N = −4πn3

rh

[
1 + 3(n2 − r2

h )

l2

]
,

V = 4

3
πrh(r

2
h + 3n2), (5.6)

being conjugate to the Misner potential ψ and the pressure
P = 3/(8πl2), respectively.

5.2 Topological number

One can find that the Helmholtz free energy reads [4]

F ≡ M − T S − ψN = m

2
− rh(r2

h + 3n2)

2l2
, (5.7)

which coincides with those computed via the action integral,
namely F = I/β. In order to get this result, one can calculate
the Euclidean action [4] for the Euclidean spacetime

IE = 1

16π

∫
M
d4x

√
g
(
R + 6

l2

)
+ 1

8π

∫
∂M

d3x
√
hK

− 1

8π

∫
∂M

d3x
√
h
[2

l
+ l

2
R(h)

]
, (5.8)

where K and R(h) are the extrinsic curvature and Ricci
scalar of the boundary metric, respectively. In order to cancel
the divergence, the above action also contains the Gibbons–
Hawking boundary term and the necessary AdS boundary
counterterms [83–87], apart from the standard Einstein–
Hilbert term.

It is now a position to investigate the topological number
of the four-dimensional Lorentz Taub–NUT–AdS spacetime.
Replacing T with 1/τ and substituting l2 = 3/(8π P), thus
the modified form of the generalized off-shell Helmholtz free
energy is

F = M− S

τ
−ψN = rh

2
+4π P

3
rh(r

2
h+3n2)−π(r2

h + n2)

τ
.

(5.9)

Then, the components of the vector φ are obtained as follows:

φrh = 1

2
+ 4π P(r2

h + n2) − 2πrh
τ

, φ� = − cot � csc �.

(5.10)

from which one can get the zero point of the vector field φrh

as

τ = 4πrh
8π P(r2

h + n2) + 1
. (5.11)
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Fig. 5 Zero points of the vector φrh shown on the rh − τ plane with
Pr2

0 = 0.002 for the Taub–NUT–AdS4 spacetime. The annihilation
point for this spacetime is represented by the red dot with τc. There
are two Taub–NUT–AdS4 spacetimes when τ = τ1. Obviously, the
topological number is: W = 1 − 1 = 0

Fig. 6 The red arrows represent the unit vector field n on a portion of
the rh −� plane with Pr2

0 = 0.002 and τ/r0 = 26 for the Taub–NUT–
AdS4 spacetime. The zero points (ZPs) marked with black dots are at
(rh/r0,�) = (3.32, π/2), (6.30, π/2) for ZP1 and ZP2, respectively.
The blue contours Ci are closed loops surrounding the zero points

Note that Eq. (5.11) consistently reduces to the one obtained
in the four-dimensional Schwarzschild–AdS black hole case
[61] when the NUT charge parameter n vanishes.

Taking the pressure Pr2
0 = 0.002 and the NUT charge

parameter n/r0 = 1, in Figs. 5 and 6, we plot the zero points
of φrh in the rh − τ plane and the unit vector field n on a
portion of the � − rh plane for the Taub–NUT–AdS4 space-
time. For the Taub–NUT–AdS4 spacetime, we observe that
the topological number is W = 0, which is the same as

Table 1 The topological number W , numbers of generation and annihi-
lation points for the four-dimensional neutral Lorentzian NUT-charged
spacetimes

Solutions W Generation point Annihilation point

Taub–NUT −1 0 0

Kerr–NUT 0 1 0

Taub–NUT–AdS 0 0 1

that of the Schwarzschild–AdS4 black hole [55,61], and this
implies that the NUT charge parameter also seems to have
no impact on the thermodynamic topological classification
for the neutral static asymptotically local AdS spacetime.
Furthermore, it indicates that the Taub–NUT–AdS4 solution
can still be categorized as one of the three types of known
black hole solutions [52]. As a result, at least according to the
thermodynamic topological approach, the Lorentzian Taub–
NUT–AdS4 spacetime should be included into a member of
the black hole family.

6 Conclusion and outlook

Our results obtained in this paper are summarized in Table 1.
In this work, we have employed the uniformly modified
form of the generalized off-shell Helmholtz free energy
and investigated the topological numbers for the four-
dimensional uncharged Lorentzian Taub–NUT, Taub–NUT–
AdS and Kerr–NUT spacetimes. We showed that the Taub–
NUT spacetime has: W = −1, which is the same as that of
the Schwarzschild black hole [52]. We found that the Kerr–
NUT spacetime has: W = 0, which is identical to that of the
Kerr black hole [58]. We also demonstrated that the Taub–
NUT–AdS4 spacetime has:W = 0, which coincides with that
of the Schwarzschild–AdS4 black hole [61]. Therefore, one
can conclude that the existence of the NUT charge parameter
seems has no impact on the topological number of the neutral
asymptotically locally flat/AdS spacetimes. It can be inferred
that the four-dimensional Taub–NUT, Taub–NUT–AdS and
Kerr–NUT spacetimes should be viewed as generic black
holes from the viewpoint of the thermodynamic topological
approach.

There are two promising topics to be pursued in the future.
The first intriguing topic is to explore the phase transitions
of the NUT-charged AdS spacetimes, such as the Hawking–
Page phase transitions [88] and the P–V criticality [89],
and we expect that this will help to unravel the mystery of
the NUT-charged spacetimes. The second interesting topic
is to extend the present work to the more general charged
RN–NUT(–AdS) and rotating charged Kerr–Newman–NUT
cases.
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Perhaps, one has just touched the tip of an iceberg, much
more needs to be explored.
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for rotating NUTs. Phys. Lett. B 798, 134972 (2019). https://doi.
org/10.1016/j.physletb.2019.134972. arXiv:1905.06350

8. A.B. Ballon, F. Gray, D. Kubizňák, Thermodynamics of rotat-
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