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Abstract Motivated by advanced progress in the holo-
graphic theory between rotating black holes and CFT, we
explore the conformal invariance on dyonic Kerr-Sen black
hole and its gauged family. We consider a neutral massless
scalar probe on the black holes’ background within the low-
frequency limit and exhibit that the solution space possesses
SL(2, R)×SL(2, R) isometry. The periodic identification of
the azimuthal angle corresponds to the spontaneous confor-
mal symmetry breaking by temperatures TL , TR . Using the
computation of the central charges on Sakti and Burikham
(Phys Rev D 106:106006, 2022) that we recalculate by con-
sidering the contributions of all associated fields, we success-
fully derive the Bekenstein-Hawking entropy from Cardy
entropy formula. Furthermore, we also calculate the absorp-
tion cross-section from gravity side for generic non-extremal
dyonic Kerr-Sen black hole and near-extremal gauged dyonic
Kerr-Sen black hole. Our calculations show that those quan-
tities are in a perfect match with the calculation from CFT.
Therefore, our findings further support the duality between
rotating black holes and CFTs.

1 Introduction

It has been conjectured in the original Kerr/CFT correspon-
dence that quantum gravity in the near-horizon region of
extremal Kerr black hole is holographically dual to two-
dimensional (2D) conformal field theory (CFT) with a certain
boundary condition [1]. This conjecture has been explored
extensively in the last decade for many black hole solutions
in different theories, for example in low energy limit of het-
erotic string theory [2], in Einstein–Maxwell–Dilaton–Axion
theory [3], and in Rastall gravity [4,5]. So far, these calcu-
lations show that the near-horizon extremal geometry pos-
sesses SL(2, R)×U (1) isometry group where theU (1) sym-
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metry on the asymptotic infinity gets enhanced into Virasoro
algebra. Furthermore, one can find another copy of Virasoro
algebra from a different analysis on the boundary conditions
as given in Refs. [6,7]. The isometry emerging exactly from
the spacetime metric denotes the existence of warped AdS
structure. The realization for the support of this Kerr/CFT
conjecture is the precise agreement between Bekenstein-
Hawking entropy and Cardy’s growth of states in 2D CFT.

For the non-extremal rotating black holes, the near-
horizon geometry has no global AdS structure. However,
interestingly, some arbitrary symmetries are hidden in the
solution space of the probe scalar field on the black hole’s
background. The first revelation of the hidden conformal
symmetry was found in Ref. [8]. The conformal invariance is
shown to appear as quadratic Casimir operators for the scalar
probe possessing SL(2, R) × SL(2, R) isometry. This hid-
den conformal invariance has been explored also for extremal
rotating black holes [9,10] and near-extremal black holes
[11,12]. Fascinatingly, one also can find the similar hidden
conformal invariance for deformed scalar wave equation [13–
15]. The extension for this exploration of the hidden confor-
mal symmetry for higher spin fields can be found in Ref. [16].
Moreover, this conformal invariance appears also on the hori-
zonless compact object resulting in similar CFT prescription
[17,18]. For the review of the Kerr/CFT correspondence in
extremal, near-extremal, and non-extremal cases, one can see
in Ref. [19].

In the study of hidden conformal symmetry, the computa-
tion of the central charges is carried out by numerologically
observing the Bekenstein–Hawking entropy in order to find
the agreement with Cardy formula. Nevertheless, recently,
another significant advance for the computation of the cen-
tral charges for the non-extremal background has been dis-
covered. In Ref. [20], they have exhibited explicitly a full set
of V irL ×V irR symmetries for the non-extremal Kerr black
holes. The Wald–Zoupas boundary counter term is used to
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remove certain obstructions that leads to the discovery of
non-vanishing left- and right-moving central charges. This
calculation eventually has proven the numerological obser-
vation done in the original work of hidden conformal sym-
metry [8]. In that work, they have generalized the work on
Schwarzschild black holes that implements a different class
of symmetry generators [21]. The success of these works is
then generalized for generic Killing horizons [22]. The near-
horizon expansion in conformal coordinates for this generic
Killing horizons shows that, on the bifurcation surface, the
spacetime metric possesses a locally AdS3 structure. This has
suggested some more studies on the dual CFT description for
arbitrary Killing horizons.

Motivated by the previous advanced study on the confor-
mal invariance of the rotating black holes, in this paper we
investigate hidden conformal invariance for dyonic rotating
black holes in Einstein–Maxwell–Dilaton–Axion (EMDA)
theory, namely dyonic Kerr-Sen and its gauged family. This
study is also the extension of the results in Ref. [13] for Kerr-
Sen black holes. We want to extend our previous study where
we have carried out the conformal symmetry directly on the
spacetime metric for near-horizon extremal dyonic rotating
black hole in Einstein–Maxwell–Dilaton–Axion (EMDA)
theory, its gauged, and ultraspinning families [23]. The pres-
ence of the dyonic/magnetic charge, as well as the gauge cou-
pling constant make a rich structure for the horizons of the
black holes, which in turn, needs careful analysis to reveal
the conformal structure for the wave equation of a neutral
massless scalar probe in the background of the black holes.
We also calculate the scattering cross-section of the scalar
field in the near region of the non-extremal dyonic Kerr-Sen
black hole, as well as the near-extremal gauged Kerr-Sen
black hole. We also discuss the real-time correlators for both
backgrounds of the black hole solutions.

The organization of this paper is given as follows. After
giving the introduction in Sect. 1, we consider two main black
hole solutions from EMDA theory that will be studied in
Sect. 2. In Sect. 3, we give the calculation of the central charge
by considering the contributions from all fields. In Sect. 4, we
consider a neutral massless scalar probe on the background
of dyonic Kerr-Sen and gauged dyonic Kerr-Sen black holes.
We study the hidden conformal symmetries of the solution
space of the scalar probes for both black holes. The entropy
is computed using Cardy prescription of 2D CFT. The scat-
tering issues of the scalar probes are then investigated in
Sect. 5 to obtain the absorption cross-sections. We discuss
the absorption cross-section for generic non-extremal dyonic
Kerr-Sen black hole and near-extremal gauged dyonic Kerr-
Sen black hole from gravity and CFT computations. We also
provide the analysis of real-time correlators that correspond
with the retarded Green’s function. In the end, we summarize
the whole paper in Sect. 6.

2 Black holes spacetimes and their properties

2.1 Dyonic Kerr-Sen black hole

The dyonic Kerr-Sen spacetime is the solution of the
Einstein–Maxwell–Dilaton–Axion (EMDA) theory,

L = √−g

[
R − 1

2
(∂φ)2 − 1

2
e2φ(∂χ)2 − e−φF2

]

+χ

2
εμνρλFμνFρλ, (1)

where R is the Ricci scalar, F = d A is the Maxwell tensor,
and the last term is the topological term. φ is the dilaton field
while χ is the (pseudoscalar) axion field. This Lagrangian
can be written to another form as given in low energy limit
of heterotic strng theory (see Appendix A). The spacetime
metric is given in Ref. [24]. In this paper, we follow the
spacetime metric form in shifted radial coordinate which is
exactly given in Ref. [23]. The black hole spacetime metric
is given by

ds2 = − 	


2 X
2 + 
2

	
dr2 + 
2dθ2 + sin2 θ


2 Y 2, (2)

respectively, where

X = dt − a sin2 θdφ,

Y = adt − (r2 − d2 − k2 + a2)dφ,


2 = r2 − d2 − k2 + a2 cos2 θ,

	 = r2 − 2mr − d2 − k2 + a2 + p2 + q2. (3)

The electromagnetic field, its dual, dilaton, and axion fields
related to metric (2) are given by

A = q(r + d − p2/m)


2 X − p cos θ


2 Y, (4)

B = p(r + d − p2/m)


2 X + q cos θ


2 Y, (5)

eφ = (r + d)2 + (k + a cos θ)2


2 , (6)

χ = 2
kr − da cos θ

(r + d)2 + (k + a cos θ)2 . (7)

The dual gauge potential can be obtained from −dB =
e−φ�F+χF . The parametersm, a, q, p, d, k are mass, spin,
electric charge, magnetic (dyonic) charge, dilaton charge, and
axion charge of the black hole, respectively. For non-dyonic
solution, the solution has been carried out in Ref. [25]. The
dilaton and axion charges explicitly depend on the electro-
magnetic charges with the following relations

d = p2 − q2

2m
, k = pq

m
. (8)

The thermodynamic relation of dyonic Kerr-Sen black
hole has been investigated in Ref. [24]. The Hawking temper-
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ature, Bekenstein–Hawking entropy, angular velocity, elec-
tric potential, and magnetic potential of the black hole solu-
tion are given by

TH = r+ − m

2π(r2+ − d2 − k2 + a2)
, (9)

SBH = π(r2+ − d2 − k2 + a2), (10)

�H = a

r2+ − d2 − k2 + a2
, (11)

�H = q(r+ + d − p2/m)

r2+ − d2 − k2 + a2
, (12)

�H = p(r+ + d − p2/m)

r2+ − d2 − k2 + a2
. (13)

The position of the inner and outer horizons are as given by

r± = m ±
√
m2 + d2 + k2 − a2 − p2 − q2. (14)

Above thermodynamic quantities are studied in the macro-
scopic point of view. The microscopic description of the ther-
modynamic quantities can also be studied extensively using
different novel methods such as Kerr/CFT correspondence
[1]. We have applied the Kerr/CFT method to this black hole
in Ref. [23] to calculate the entropy using Cardy’s growth of
states for 2D CFT to extremal dyonic Kerr-Sen black hole.
Note that in extremal case, the position of the event horizon
is located on r+ = r− = m. To reproduce Cardy entropy,
we have applied the asymptotic symmetry group to calculate
the central charge while the temperature has been computed
using generalized Frolov-Thorne vacuum. It has been found
that, enticingly the central charge possesses two branches
given by [23]

cL = 12am±, (15)

where the mass is given by

m2± = 1

2
(a2 + p2 + q2)

⎡
⎣1 ±

√
1 −

(
p2 + q2

a2 + p2 + q2

)2
⎤
⎦ .

(16)

The mass will reduce into one only when the spin reaches
zero implying that the black hole is not rotating anymore.
This also results in vanishing entropy like for the case of
GMGHS black hole [26]. The left-moving temperature for
the input to Cardy formula is the given by [23]

TL = m2± − d2 − k2 + a2

4πam±
. (17)

The final result is the Cardy entropy

SCFT = π(m2± − d2 − k2 + a2), (18)

which is equal to Bekenstein–Hawking entropy. When we
assume q = 0, we recover the results from extremal Kerr-

Sen black hole. These results also recover the entropy of
extremal Kerr black hole when all electromagnetic charges
vanish.

2.2 Gauged dyonic Kerr-Sen black hole

The gauged version of the dyonic Kerr-Sen black hole or the
Kerr-Sen-AdS black is given by [23] which is the solution of
the following action

Lgauged = L + √−g
4 + e−φ + eφ(1 + χ2)

l2
. (19)

The spacetime metric is given by

ds2 = − 	


2 X
2 + 
2

	
dr2 + 
2

	θ

dθ2 + 	θ sin2 θ


2 Y 2, (20)

where

X = dt − a sin2 θ
dφ

�
,

Y = adt − (r2 − d2 − k2 + a2)
dφ

�
,

	 = (r2 − d2 − k2 + a2)

(
1 + r2 − d2 − k2

l2

)
,

−2mr + p2 + q2

	θ = 1 − a2

l2
cos2 θ, � = 1 − a2

l2
,


2 = r2 − d2 − k2 + a2 cos2 θ. (21)

The electromagnetic field, its dual, dilaton, and axion fields
are given by Eqs. (4)–(7) but with metric functions (21). From
this gauged version of dyonic Kerr-Sen black hole solution,
several solutions can be obtained by taking some limits. The
Kerr-Sen-AdS black hole can be obtained when one turns
off p = 0 that also will cause k = 0. When one consider
equal charges q = p, dilaton charge will vanish. When we
assume that q = p = 0, we can find the Kerr-AdS black hole
solution.

When the gauge coupling constant l arises as the vacuum
expectation value, this parameter can include in the first law
of thermodynamics for black holes [27]. The gauge coupling
constant can be considered as the source of the pressure on the
black holes, giving rise to another thermodynamic quantity.
All of the thermodynamic quantities of the gauged dyonic
Kerr-Sen black hole is given by

M = m

�
, J = ma

�
, Q = q

�
, P = p

�
, (22)

TH = r+(2r2+ − 2d2 − 2k2 + a2 + l2) − ml2

2π(r2+ − d2 − k2 + a2)l2
, (23)

SBH = π

�
(r2+ − d2 − k2 + a2), (24)

�H = a�

r2+ − d2 − k2 + a2
, (25)
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�H = q(r+ + d − p2/m)

r2+ − d2 − k2 + a2
, (26)

�H = p(r+ + d − p2/m)

r2+ − d2 − k2 + a2
, (27)

V = 4

3
r+S, P = 3

8πl2
. (28)

Those quantities satisfy the following thermodynamic rela-
tion

dM = THdS + �Hd J + �HdQ + �HdP + VdP. (29)

The event horizon r+ for this gauged case is different with
non-gauged one. In this gauged case, the cosmological con-
stant is considered as a thermodynamic variable expressed in
terms of P . This leads to the conjecture that this asymptoti-
cally AdS black hole solution may violate the isoperimetric
inequality [27,28]. For this gauged dyonic Kerr-Sen black
hole, it depends on the value of d, k [24]. When it violates
the inequality, the entropy of this black hole is maximized.
Furthermore, proposing cosmological constant as another
thermodynamic variable is also based on the study where
mass of the black hole should be considered as enthalpy of
the spacetime. The consequence of this is we must add the
cosmological constant term analogous to pressure in Smarr
formula [27,28].

The Kerr/CFT calculation for this extremal gauged fam-
ily has also been applied in Ref. [23]. The resulting central
charge for this black hole solution is given by

cL = 12ar+
υ

, (30)

where

υ = 1 + 6r2+ − 2d2 − 2k2 + a2

l2
. (31)

All of the horizons coincides into one r+ for extremal black
holes. Fascinatingly, it has been noted in Ref. [23] that for this
gauged black hole, there possibly more than two branches of
the central charge in terms of mass since d, k ∼ 1/m. The
left-moving temperature is then given by

TL = υ(r2+ − d2 − k2 + a2)

4πar+�
. (32)

As the final result, using Cardy entropy formula it has been
found that

SCFT = π

�
(r2+ − d2 − k2 + a2). (33)

When we assumeq = 0, we recover the results from extremal
gauged Kerr-Sen black hole. These results also recovers the
entropy of extremal Kerr-AdS black hole when all electro-
magnetic charges vanish.

3 Central charge

In the previous section, we have shown the central charges
obtained in Ref. [23] fro dyonic Kerr-Sen black hole and
its gauged family. However, in Ref. [23], only the contribu-
tion from the graviton has been considered explicitly. The
objective of this section is to re-calculate the central charge
computed in Ref. [23] for dyonic Kerr-Sen metric (2) and
its gauged family (20). In this section, we will perform the
computation of the conserved quantities that lead to the cen-
tral charges associated to the diffeomorphisms of all fields in
EMDA theory.

We will compute the diffeomorphisms and the conserved
charges related to near-horizon extremal gauged dyonic Kerr-
Sen black hole given in Eq. (4.14) in Ref. [23],

ds2 = �(θ)

(
−r2dt2 + dr2

r2 + α(θ)dθ2
)

+γ (θ) (dφ + erdt)2 , (34)

where the metric functions are given by

�(θ) = 
2+
υ

, α(θ) = υ

	θ

, γ (θ) = r4
0 	θ sin2 θ


2+�2
,


2+ = r2+ − d2 − k2 + a2 cos2 θ, e = 2ar+�

r2
0 υ

. (35)

The near-horizon gauge field is given by [23],

A = fa(θ) (dφ + erdt)

+q
[
(r+ + d)2 + k2 − a2 − 2p2r+/m

]
ê(r2+ − d2 − k2 + a2)

dφ, (36)

fa(θ) =
q
[

2r+ p2

m − (r+ + d)2 − k2 + a2 cos2 θ
]

2ar+�
2+
r2

0 ,

+2apr+ cos θ

2ar+�
2+
r2

0 . (37)

For the ungauged case, we just need to set 1/ l2 = 0.
Instead of using the calculation provided in Ref. [2], we

will perform the similar computation given in Ref. [29,30]
where they manage to compute the central charges of the
gauged supergravity black holes. For this calculation we can-
not write all related fields into the antisymmetric tensor field
B or antisymmetric tensor H as given in [2]. The last term
in (1) as the topological term will give another contribution.
Moreover, it has been pointed out also in [31,32] that cos-
mological constant term does not contain the derivatives of
metric deviation hμν , so it will not contribute on the super-
potential of the central term.

Now we recall the asymptotic symmetry group (ASG)
of a spacetime which is the group of allowed symmetries
which obey the imposed boundary conditions. To calculate
the charges associated with ASG of gauged dyonic Kerr-Sen
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solution, we consider the asymptotic symmetries of the action
(19) that includes the diffeomorphisms ξ such that [29,30]

δξφ = ∂φ = ξμ∇μφ, (38)

δξ Aμ = aμ = ξνFμν + ∇μ(Aνξ
ν), (39)

δξ gμν = hμν = ∇μξν + ∇νξμ, (40)

as well as the gauge transformation related to the gauge field,
graviton, and dilaton field, respectively,

δ�Aμ = ∂μ�, δ�gμν = 0, δ�φ = 0. (41)

In order to compute the non-trivial diffeomorphisms, we must
impose some arbitrary boundary conditions. In this case, we
follow the boundary conditions from Ref. [29] for all fields
for the near-horizon extremal metric (34).

hμν ∼

⎛
⎜⎜⎜⎜⎝

O(r2) O
(

1
r2

)
O ( 1

r

) O(1)

O
(

1
r3

)
O
(

1
r2

)
O ( 1

r

)
O ( 1

r

) O ( 1
r

)
O(1)

⎞
⎟⎟⎟⎟⎠ , (42)

aμ ∼
(
O(r),O

(
1/r2

)
,O(1),O(1/r)

)
, (43)

∂φ ∼ O(1), (44)

in the basis (t, r, θ, φ). The boundary conditions on metric
deviation is already implemented in most of the Kerr/CFT
correspondence’s papers (see [2,33–39] for example). The
most general diffemorphisms that preserve the boundary con-
ditions (42)–(44) are given by

ξε = εn(φ)∂φ − rε′
n(φ)∂r , ξ̄ = ∂t , (45)

where εn(φ) = −e−inφ . The diffeomorphisms commute to
each other. Above diffeomorphisms satisfy

i[ξm, ξn]LB = (m − n)ξm+n . (46)

Nonetheless, the boundary conditions (43) are not satisfied
under ξε since we find δε A = faε′(dφ − krdt) or δε Aφ is
of the order of 1 at infinity. So, we must add a compensating
U (1) gauge transformation to restore δε Aφ = O(1/r) as
given by � = − fa(θ)ε(φ). Now the asymptotic symmetries
consist of (ξn,�n) satisfying

[�n,�m] = ξμ
n ∂μ�m − ξμ

m∂μ�n, (47)

i[(ξn,�n), (ξm,�m)] = (n − m)(ξn+m,�n+m). (48)

The associated conserved charge is then

Qξ,� = 1

8π

∫
∂�

ktotξ,�, (49)

where the superpotential ktotξ,� = kgξ + kFξ,� + ktopξ,� + kφ
ξ rep-

resenting the contributions from graviton, electromagnetic
field, topological term, and the dilaton field. The given inte-
gral is over the boundary of a spatial slice. The contributions

of corresponding fields on the central charge are given explic-
itly by

kgξ = 1

8π

{
ξν∇μh − ξν∇σ h

μσ + h

2
∇νξμ

−hρν∇ρξμ + ξσ ∇νhμσ

+ hσν

2

(∇μξσ + ∇σ ξμ
)}

dxμ ∧ dxν, (50)

kFξ,� = 1

16π

{(
− kχ F

μνδφ + 2kχh
μλFν

λ

− kχδFμν − 1

2
hkχ F

μν

)
(Aρξρ + �)

−kχ F
μνaρξρ − 2ξμkχ F

νλaλ

−kχa
μgνσ (Lξ Aσ + ∂σ �)

}
dxμ ∧ dxν, (51)

ktopξ� = 1

8π

{
εμνλσ (hχ,AFλσ δφ + hχ∂Fλσ )(Aρξρ + �)

+εμνλσ hχ Fλσaρξρ − 2ξνhχεμλρσ Fρσaλ

−2hχεμνρσaρ(Lξ Aσ + ∂σ �)

}
dxμ ∧ dxν, (52)

kφ
ξ = 1

8π
ξν∇μφδφ dxμ ∧ dxν, (53)

where kχ = 4e−φ, hχ = χ/2, δFμν = ∂μaν − ∂νaμ. We
should note that the last two terms in Eqs. (50)–(52) vanish
for an exact Killing vector and an exact symmetry, respec-
tively. The charge Qξ generates symmetry through the Dirac
brackets. The ASG possesses algebra which is given by the
Dirac bracket algebra of the following charges [31]

{Qξ,�, Q ξ̄ ,�̄}DB = 1

8π

∫
∂�

(
kgξ

[
Lξ̄ g; g

]

+kφ
ξ [Lξ̄ g,Lξ̄ φ; g, φ]

+kAξ,�

[
Lξ̄ g,Lξ̄ A + d�,Lξ̄ φ; g, A, φ

]

+ ktopξ,�

[
Lξ̄ g,Lξ̄ A + d�,Lξ̄ φ; g, A, φ

])

= Q[(ξ,�),(ξ̄ ,�̄)] +
(
kgξ

[
Lξ̄ ḡ; ḡ

]

+kAξ,�

[
Lξ̄ ḡ,Lξ̄ Ā + d�,Lξ̄ φ̄; ḡ, Ā, φ̄

]

+ktopξ,�

[
Lξ̄ ḡ,Lξ̄ Ā + d�,Lξ̄ φ̄; ḡ, Ā, φ̄

]

+ kφ
ξ [Lξ̄ ḡ,Lξ̄ φ̄; ḡ, φ̄]

)
, (54)

where ḡ, Ā, φ̄ are the background solutions for each field.
Because of δξφ+δ�φ = 0, the contribution from the dilaton

field vanishes. Hence, kφ
ξ = 0. Moreover, one can also obtain

that kF = ktop = 0 by inserting ξ,�. On the other hand,
cA = ctop = cφ = 0. So, the remaining non-zero contribu-
tion to the central charge is from the gravity. One can find
the algebra of the charge Qn associated to ASG generators
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(ξn,�n) above Dirac bracket as

i{Qm, Qn}DB = (m − n)Qm+n + cL
12

(m3 − xm)δm+n,0.

(55)

The constant x is just a constant that can be absorbed into
Q0. So, we obtain that

cL = cg = 3e

�

∫ π

0
dθ
√

�(θ)α(θ)γ (θ) = 12ar+
υ

. (56)

This result is exactly similar with the result given in Ref.
[23] as shown in Eq. (30). When the cosmological constant
vanishes, we obtain that υ = 1, so we recover the central
charge in Eq. (15).

4 Hidden conformal symmetry and CFT entropy

4.1 Dyonic Kerr-Sen black hole

In this section, we are going to demonstrate that there is a
hidden conformal symmetry on the dyonic Kerr-Sen black
hole likewise its non-dyonic family [13]. Firstly, we need to
find the radial equation of the scalar probe where the confor-
mal symmetry is hidden. The massless scalar field equation
for the scalar probe, is given by

∇α∇α� = 0. (57)

We notice that the dyonic Kerr-Sen black hole (2) have two
translational Killing vectors i.e., ∂t and ∂φ . So, we can sepa-
rate the coordinates in the scalar field as

�(t, r, θ, φ) = e−iωt+imφR(r)S(θ). (58)

It is worth to point out that we can also assume the charged
scalar field in the wave equation. However, as noted in
[13], the Kerr-Sen black hole does not have charge picture.
It means that when the scalar field is electromagnetically
charged, the solution space does not shows well-defined hid-
den conformal symmetry. Nevertheless, this case is different
for dyonic Kerr-Newman which possesses hidden conformal
symmetry both in electric and magnetic pictures [40]. Plug-
ging Eq. (58) into Eq. (57), leads to two differential equations
i.e., the angular S(θ) and radial R(r) wave functions,
[

1

sin θ
∂θ (sin θ∂θ ) − m2

sin2 θ
− a2ω2 sin2 θ

]
S(θ) = −KhS(θ),

(59)[
∂r (	∂r ) +

[
(r2 − d2 − k2 + a2)ω − am

]2

	
+ 2amω

]
R(r),

= Kh R(r). (60)

where the separation constant Kh is the eigenvalues on a
sphere.

The hidden conformal symmetries can be seen when we
look at the near region (r � 1/ω) of the scalar wave equa-
tion and also by neglecting some terms. Some terms can
be neglected when we consider low frequency. In order to
get so, we consider the low-frequency limit for the scalar
field ωM � 1. Consequently, we also need to impose
ωa � 1, ωd � 1, and ωk � 1. This also implies that
ωq � 1 and ωp � 1. Within this approximation, the radial
equation (60) reduces to
[
∂r (	∂r ) + r+ − r−

r − r+
A + r+ − r−

r − r−
B + C

]
R(r) = 0,

(61)

where

A =
[
(r2+ − d2 − k2 + a2)ω − am

]2

(r+ − r−)2 ,

B = −
[
(r2− − d2 − k2 + a2)ω − am

]2

(r+ − r−)2 ,

C = −Kh, (62)

where we will take Kh = h(h + 1). This form of radial
wave equation is very fruitful to reveal the hidden confor-
mal symmetry. It is important to note also that we will not
explore the angular wave equation because this does not
have SL(2, R) × SL(2, R) isometry, yet SU (2) × SU (2)

isometry [16]. So, in this case, we do not need to go fur-
ther exploring the angular equation. This angular equation,
somehow, is similar to those of Kerr black hole [1]. The
SL(2, R) × SL(2, R) isometry is crucial to apply Cardy’s
growth of states from 2D CFT.

Secondly, after finding the radial equation in the low-
frequency approximation, to reveal the hidden conformal
symmetry, it is worth to perform the following coordinate
transformations for the generic non-extremal black holes

ω+ =
√
r − r+
r − r−

e2πTRφ+2nRt ,

ω− =
√
r − r+
r − r−

e2πTLφ+2nL t ,

y =
√
r+ − r−
r − r−

eπ(TL+TR)φ+(nL+nR)t . (63)

We can define three locally conformal operators in terms of
the new conformal coordinates ω+, ω− and y as

H1 = i∂+, (64)

H0 = i

(
ω+∂+ + 1

2
y∂y

)
, (65)

H−1 = i
(
ω+2∂+ + ω+y∂y − y2∂−

)
, (66)
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as well as

H̄1 = i∂−, (67)

H̄0 = i

(
ω−∂− + 1

2
y∂y

)
, (68)

H̄−1 = i
(
ω−2∂− + ω−y∂y − y2∂+

)
. (69)

Note that ∂± = ∂
∂ω± . A set of operators given in Eqs. (64)–

(66) satisfies the SL(2, R) Lie algebra as the follows[
H0, H±1

] = ∓i H±1,
[
H−1, H1

] = −2i H0, (70)

while other set of operators (67)–(69) also forms SL(2, R)

algebra. From any of two sets of operators, the quadratic
Casimir operator can be formed as

H2 = H̄2 = −H2
0 + 1

2
(H1H−1 + H−1H1)

= 1

4
(y2∂2

y − y∂y) + y2∂+∂−. (71)

It is easier to notice the relation between the quadratic
Casimir operator (71) and the radial equation (61) by bringing
it back in terms of coordinates (t, r, φ). In old coordinates,
the quadratic Casimir operator is given by

H2 = (r − r+)(r − r−)∂2
r + (2r − r+ − r−)∂r

+r+ − r−
r − r−

(
nL − nR

4πG
∂φ − TL − TR

4G
∂t

)2

−r+ − r−
r − r+

(
nL + nR

4πG
∂φ − TL + TR

4G
∂t

)2

, (72)

where G = nLTR − nRTL .
We obtain the hidden conformal symmetry on the radial

equation by comparing the radial equation (61) and the
Casimir operator (72) that represents SL(2, R) × SL(2, R)

isometry. We find that the radial equation (61) can be rewrit-
ten in terms of the quadratic Casimir operator as given by

H2R(r) = H̄2R(r) = −CR(r). (73)

This radial equation stores the information of the tempera-
tures and charges of 2D CFT given as follows

nL = − 1

2(r+ + r−)
, nR = 0, (74)

TL = r2+ + r2− + 2(a2 − d2 − k2)

4πa(r+ + r−)
, TR = r+ − r−

4πa
. (75)

For the extremal black hole, the non-vanishing temperature
is only TL as given in Eq. (17). The temperature identification
indicates the broken symmetry by the periodic identification
φ ∼ φ + 2π on the vector fields (64)–(69). This represents
the spontaneously broken SL(2, R) × SL(2, R) symmetry
into U (1) ×U (1) subgroup.

To compute the entropy from CFT, we assume that the
central charge of the extremal black holes connects smoothly

with the non-extremal one [23] like in the original paper of
hidden conformal symmetry [8]. However, for future study,
one can extend the calculation of the central charge using
soft-hair method as given in Ref. [20] where the result shall
match with that of the extremal one given in Ref. [23]. So,
from the central charge (15) we can rewrite for non-extremal
one as follows

cL = cR = 12am± = 6a(r+ + r−). (76)

Inserting this central charges together with the temperatures
(75) to Cardy entropy formula

SCFT = π2

3
(cLTL + cRTR), (77)

one can find the entropy of non-extremal dyonic Kerr-Sen
black hole. This entropy in given by

SCFT = π(r2+ − d2 − k2 + a2). (78)

This entropy will also exactly match with the entropy of non-
extremal Kerr-Sen black hole when p = 0 [24] and matches
with non-extremal Kerr black hole when q = p = 0 [8]. This
further supports the results from extremal black holes stating
that non-extremal dyonic Kerr-Sen black hole is holograph-
ically dual with 2D CFT.

4.2 Gauged dyonic Kerr-Sen black hole

After showing the hidden conformal symmetry on the dyonic
Kerr-Sen black, it is fascinating also to extend this computa-
tion for its gauged family or when the cosmological constant
is present. We just need to employ the similar scalar wave
equation (57) and its ansatz (58) with background metric
(20). Plugging Eq. (58) into Eq. (57), leads to two differ-
ential equations i.e., the angular S(θ) and radial R(r) wave
functions,
[

1

sin θ
∂θ (sin θ∂θ ) − m2�2

sin2 θ
+ 2amω� − a2ω2 sin2 θ

	θ

]
S(θ)

= −KhS(θ), (79)[
∂r (	∂r ) +

[
(r2 − d2 − k2 + a2)ω − am�

]2

	
− Kh

]
R(r) = 0,

(80)

which are different from non-gauged case including separa-
tion constant Kh .

Similarly, the hidden conformal symmetries can be seen
when we look at the near region and consider the low-
frequency limit. These assumptions allow us to simplify the
radial equation. Nevertheless, we need an extra treatment for
this gauged family because the function 	 is quartic because
there exist cosmological horizons beside the inner and outer
horizons. It is compulsory to approximate 	 in the near-
horizon region. In the near-horizon region, we can obtain the
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following approximation

	 	 υ(r − r+)(r − r∗), (81)

where υ is given in (31) and

r∗ = r+ − 1

υr+

[
2r2+(2r2+ − 2d2 − 2k2 + a2 + l2)

l2

− (r2+ − d2 − k2 + a2)(r2+ − d2 − k2 + l2)

l2

+q2 + p2
]
. (82)

Note that r∗ is not the inner horizon. However, when the
gauge coupling constant satisfies 1/ l2 ∼ 0, this is exactly
similar. Now the radial equation (80) is simplified as given
by
[
∂r

(
	

υ
∂r

)
+ r+ − r∗

r − r+
As + r+ − r∗

r − r∗
Bs + Cs

]
R(r) = 0,

(83)

where

As =
[
(r2+ − d2 − k2 + a2)ω − am�

]2

υ2(r+ − r∗)2 ,

Bs = −
[
(r2∗ − d2 − k2 + a2)ω − am�

]2

υ2(r+ − r∗)2 ,

Cs = −Kh

υ
. (84)

It is worth to note that this radial equation can be used to
calculate the entropy. However, in order to compute the scat-
tering, we need to consider also the asymptotic region which
in this case, we cannot use this radial equation.

After finding the radial equation in the low-frequency
approximation, we will perform again the coordinate trans-
formations. These coordinate transformations are not so dif-
ferent with the non-gauged family since we just need to use
r∗ instead of using r−. For the generic non-extremal black
holes, we have the following coordinate transformations

ω+ =
√
r − r+
r − r∗

e2πTRφ+2nRt ,

ω− =
√
r − r+
r − r∗

e2πTLφ+2nL t ,

y =
√
r+ − r∗
r − r∗

eπ(TL+TR)φ+(nL+nR)t . (85)

First set of locally conformal operators in terms of the new
conformal coordinates is similar as given by (64)–(66) that
satisfies the SL(2, R)Lie algebra. The other set is also similar
as (67)–(69) that also forms SL(2, R) algebra. From any of
two sets of operators, again, we can form a quadratic Casimir
operator (71).

It is obvious that we have revealed the hidden conformal
symmetry on the radial equation by comparing the radial
equation (83) and the Casimir operator (72) that represents
SL(2, R) × SL(2, R) isometry for this gauged family. The
remaining differences from non-gauged case are the stored
information which are the temperatures and charges of 2D
CFT. The temperatures and charges of 2D CFT for the gauged
dyonic Kerr-Sen solution are given by the following

nL = − υ

2(r+ + r∗)
, nR = 0, (86)

TL = υ[r2+ + r2∗ + 2(a2 − d2 − k2)]
4πa(r+ + r∗)�

, TR = υ(r+ − r∗)
4πa�

.

(87)

For the extremal black hole, the non-vanishing temperature
is only TL as given in Eq. (32). Similarly with non-gauged
family, the temperature identification indicates the broken
symmetry spontaneously from SL(2, R) × SL(2, R) into
U (1) ×U (1) subgroup by the periodic identification of φ.

Likewise the non-gauged case, the central charges are
assumed to be connected smoothly with that of extremal case
which is given in Eq. (30) that is recalculated as given in Eq.
(56). Hence, we can find that

cL = cR = 6a(r+ + r∗)
υ

. (88)

For non-gauged case, we know that υ = 1, r∗ = r−. So, in
this case, the central charges reduce to those of dyonic Kerr-
Sen black hole. By employing this central charges together
with the temperatures (87) to Cardy entropy formula (77),
one can obtain the entropy of non-extremal gauged dyonic
Kerr-Sen black hole as given by

SCFT = π

�
(r2+ − d2 − k2 + a2). (89)

We can also recover the entropy of non-extremal gauged
Kerr-Sen black hole when p = 0 [24] and the non-extremal
Kerr-AdS black hole whenq = p = 0. Again, this result sup-
ports the conjecture that non-extremal gauged dyonic Kerr-
Sen black hole is holographically dual with 2D CFT.

5 Scattering cross-section on non-extremal background

Beside the entropy calculation, another probe to prove the
Kerr/CFT correspondence conjecture is to calculate the
absorption cross-section. The calculation of the absorption
cross-section from 2D CFT shall match the calculation from
gravity. In this section, we will prove that matching on the
absorption cross-section.
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5.1 Scattering off dyonic Kerr-Sen black hole

In this subsection, we consider the absorption cross-section
of scalar probes in the background of the generic non-
extremal dyonic Kerr-Sen black hole. So, we need to find
the solution to the scalar wave equation (61). In order to
solve that equation, we require to use the following radial
coordinate transformation

z = r − r+
r − r−

. (90)

This implies that when r+ ≤ r ≤ ∞, we have 0 ≤ z ≤
1. In this new coordinate, it is easy to find that 1 − z =
(r+ −r−)/(r −r−). Now the radial part of the wave equation
becomes[
z(1 − z)∂2

z + (1 − z)∂z + A

z
+ B + C

1 − z

]
R(z) = 0,

(91)

where the constants A, B,C are given by (62). Above equa-
tion has the ingoing and outgoing solutions and can be solved
by hypergeometric function as given by

Rin(z) = z−i
√
A(1 − z)(1+l)

2F1(as, bs; cs; z), (92)

Rout (z) = zi
√
A(1 − z)(1+l)

2F1(a
∗
s , b

∗
s ; c∗

s ; z), (93)

respectively, where as = 1 + h − i(
√
A + √−B), bs =

1 + h − i(
√
A − √−B), and cs = 1 − 2i

√
A. To study

the absorption cross-section for a wave coming from infinity
towards the outer event horizon, the ingoing solution will be
considered. We want to see the asymptotic behavior of the
solution at the matching region r  M but still satisfying
near region (r � 1/ω). In order to do so, we can use the
following relation

2F1(as , bs; cs; z)
= �(cs)�(cs − as − bs)

�(cs − as)�(cs − bs)
2F1(as , bs; as + bs − cs; 1 − z)

+(1 − z)cs−as−bs �(cs)�(as + bs − cs)

�(as)�(bs)

× 2F1(cs − as , cs − bs; cs − as − bs; 1 − z), (94)

and 2F1(as, bs; cs; 0) = 1. Hence, in asymptotic region
z → 1, we have

Rin(r  M) ∼ D0r
h + D1r

−1−h, (95)

where

D0 = �(cs)�(1 + 2h)

�(as)�(bs)
, D1 = �(cs)�(−1 − 2h)

�(cs − as)�(cs − bs)
.

(96)

The essential part of the absorption cross-section can be read
out directly from the coefficient D0, namely,

Pabs ∼ |D0|−2 ∼ sinh
(

2π A1/2
)

|� (as)� (bs)|2. (97)

Note that the constant D1 is suppressed by the constant D0,
so we can ignore D1 in the absorption cross-section above.
For more detail explanation, we refer to see Ref. [41].

After deriving the absorption cross-section from gravity
calculation, it is time to derive it from CFT side. The absorp-
tion cross-section from CFT is given by [41]

Pabs ∼ TL
2hL−1TR

2hR−1 sinh

(
ω̃L

2TL
+ ω̃R

2TR

)

×
∣∣∣∣�
(
hL + i

ω̃L

2πTL

)
�

(
hR + i

ω̃R

2πTR

)∣∣∣∣
2

. (98)

We already have the left- and right- moving temperatures
of the dyonic Kerr-Sen black hole given in Eq. (75). The
conformal weights of the operator dual to the scalar field are
given by

hL = hR = h + 1. (99)

The last, to find agreement between (97) and (98), we need
to identify the proper left and right frequencies ωL , ωR . In
order to do so, we consider the first law of thermodynamics
for the general charged rotating black holes, namely,

TH δSBH = δM − �H δ J − �H δQ − �H δP, (100)

where TH , SBH ,�H ,�H , and�H are given by Eqs. (9)–(13).
Nevertheless, it is crucial that for neutral scalar probe we use
in this computation, we have δQ = δP = 0. Furthermore,
we can vary the Cardy formula (77) in terms of conjugate
charges EL , ER as given by

δSCFT = δEL

TL
+ δER

TR
. (101)

One can find the conjugate charges via δSBH = δSCFT . Note
that we do not consider the correction of the entropy, so we
can apply that relation [19]. Using the identification ω = δM
and m = δ J yields to the identification of δEL ,R as ωL ,R .
By equating the variations of entropy in (100) and (101), we
obtain that

δEL = ωL = r2+ + r2− + 2(a2 − d2 − k2)

2a
ω,

δER = ωR = ωL − m. (102)

These identifications are needed in order to match the
Bekenstein–Hawking entropy and Cardy entropy formula.
Furthermore, one can check that these identifications are con-
sistent with the result for the extremal case. Using this result,
we finally can write

as = hR − i
ωR

2πTR
, bs = hL − i

ωL

2πTL
,

2π A1/2 = ωL

2TL
+ ωR

2TR
. (103)

So, we find the final agreement between absorption cross-
section between gravity calculation (97) and CFT calcula-
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tion (98). Those are the finite temperature absorption cross-
section of an operator dual to the neutral probe scalar field in
2D CFT to dyonic Kerr-Sen black hole.

5.2 Scattering off gauged dyonic Kerr-Sen black hole

Now we consider scalar probes in the background of the
generic non-extremal gauged dyonic Kerr-Sen black hole.
So, we need to find the solution of the scalar wave equation
(83). In order to solve the equation, we use the following
coordinate transformation

z = r − r+
r − r∗

. (104)

In this new coordinate, the radial wave equation becomes[
z(1 − z)∂2

z + (1 − z)∂z + As

z
+ Bs + Cs

1 − z

]
R(z) = 0,

(105)

where the constants As, Bs,Cs are given by (84). Similarly,
that radial wave equation can be solved by hypergeometric
function where the ingoing solution is also given by Eq. (92)
where now as = 1 + h − i(

√
As + √−Bs), bs = 1 + h −

i(
√
As − √−Bs), and cs = 1 − 2i

√
As . It is important to

note that the constant h is different with non-gauged case
where it should satisfy

h = 1

2

(
−1 +√

1 − 4Cs

)
. (106)

Note that the radial equation (105) holds only at the
very near-horizon region. Although we can find the scalar
radial solution, we cannot study the asymptotic behavior
of the radial wave function because the expansion of 	 to
the quadratic order in near-horizon region is problematic.
Nonetheless, if we consider the near-horizon region of the
near-extremal black holes, the same treatment can still be
employed. From the definition of z on (104), only when
r+ 	 r∗, we do not need to move very far from the hori-
zon to find z → 1. For this condition, the discussion of the
scattering amplitudes for the near-extremal gauged dyonic
Kerr-Sen black hole will be given in the next subsection.
However, we can still study conjugate charges EL , ER for
this generic non-extremal gauged Kerr-Sen black hole.

In order to compute the conjugate charges, we consider the
first law of thermodynamics for the general gauged charged
rotating black holes, namely,

TH δSBH = δM − �H δ J − �H δQ − �H δP − V δP,

(107)

where above quantities are given by Eqs. (22)–(28). Note
that for neutral scalar probe, we have δQ = δP = δP = 0.
Moreover, the variation Cardy formula in terms of conjugate
charges EL , ER is given by (101). Again, one can find the

conjugate charges via δSBH = δSCFT . Using the identifica-
tion δM as ω and δ J asm yields to the identification of δEL ,R

as ωL ,R . By equating the variations of entropy in (101) and
(100), we obtain that

δEL = ωL = r2+ + r2∗ + 2(a2 − d2 − k2)

2a�
ω,

δER = ωR = ωL − m. (108)

So, we find the left and right frequencies of 2D CFT for
generic non-extremal gauged dyonic Kerr-Sen black holes.

5.3 Superradiant scattering off gauged dyonic Kerr-Sen
black hole

As we have mentioned in the previous subsection, we can-
not study the scattering issue on generic non-extremal gauged
dyonic Kerr-Sen black hole due to the breaking down of near-
horizon approximation on asymptotic region. However, this
might be avoided by working on near-extremal case. For the
near-horizon region, where we can expand the metric func-
tion 	 by the quadratic order in (r − r+) as (81), we use the
radial wave equation (83) to find the scattering cross-section.
So, for a near-extremal black hole, it is allowed to consider
the following near-extremal coordinate transformations from
black hole coordinates (r, t, φ) to (y, τ, ϕ), as

r = r+ + r∗
2

+ λr0y, r+ − r∗ = μλr0,

t = r0�

λ
τ, φ = ϕ + �Hr0�

λ
τ, (109)

where r2
0 = r2+ + a2 − d2 − k2 and λ → 0 shows the

near-horizon limit and μ is the near-extremality parameter.
We also need to consider the scalar probe with frequencies
around the superradiant bound ωs = m�H , given by

ω = ωs + ω̂
λ

r0
. (110)

The limit λ → 0 implies the superradiant bound. We can
re-write the radial equation (83) by
[
∂y

(
y − μ

2

) (
y + μ

2

)
∂y + At

y − μ
2

+ Bt

y + μ
2

+ Ct

]
R(y) = 0,

(111)

where

At = ω̂2

υ2μ
, Bt = − μ

υ2

(
ω̂

μ
− 2m�Hr+

)2

, Ct = Ct (ω̂),

(112)

and Ct is the separation constant which is distinct with the
one when we have not deemed the superradiant bound. Then
we can perform the change of coordinate from y to z, by
z = y−μ/2

y+μ/2 , where the radial equation (111) becomes
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[
z(1 − z)∂2

z + (1 − z)∂z + Ât

z
+ B̂t + Ct

1 − z

]
R(z) = 0,

(113)

where

Ât = ω̂2

υ2μ2 , B̂t = − 1

υ2

(
ω̂

μ
− 2m�Hr+

)2

. (114)

Above form of radial equation is similar to that of non-
gauged case (91). The ingoing solution to differential equa-
tion (113) is also given by hypergeometric function

R(z) = z−i
√

Ât (1 − z)1+h
2F1(as, bs; cs; z), (115)

with the parameters as = 1 + h − i(
√
Ât +

√
−B̂t ), bs =

1 + h − i(
√
Ât −

√
−B̂t ), and cs = 1 − 2i

√
Ât . For this

superradiant case, the relation between h and Ct is given by

h = 1

2

(
−1 +√

1 − 4Ct

)
. (116)

For the asymptotic region of the radial coordinate r (or equiv-
alently y  μ/2), where z ∼ 1, the solution (115) reduces
to

R(y) ∼ D0y
h + D1y

−1−h, (117)

where

D0 = �(cs)�(1 + 2h)

�(as)�(bs)
, D1 = �(cs)�(−1 − 2h)

�(cs − as)�(cs − bs)
.

(118)

Note that h + 1 is the conformal weight of the scalar field.
For the coefficient (118), we find the absorption cross-

section of the scalar fields as

Pabs ∼ |D0|−2 ∼ sinh
(

2π Â1/2
t

)
|� (as)� (bs)|2. (119)

To further support the correspondence between the near-
extremal gauged Kerr-Sen black hole and 2D CFT, we show
that the absorption cross-section for the scalar fields (119)
can be obtained from the absorption cross-section in a 2D
CFT (98). To find the agreement between (98) and (119), we
require to choose proper left and right frequencies ωL , ωR .
In order to do so, we can consider the first law of thermo-
dynamics given in Eq. (107) and compare with Eq. (101).
For near-extremal and near-horizon gauged dyonic Kerr-Sen
family, we obtain

ωL = m, ωR = r0

a�

(
ω̂ − μm�Hr+

)
, (120)

while the temperatures and conformal weights are now given
by

TL = υ

4π�Hr+
, TR = υr0

4πa�
λμ, hL = hR = 1 + h.

(121)

This result is in a good match with the CFT prediction (98).
This remarkable identifications (120)–(121) are exactly the
same as the ones (87) and (108), which were obtained respec-
tively from the conformal coordinate transformation in the
low-frequency limit and the first law of thermodynamics for
generic non-extremal gauged dyonic Kerr-Sen black hole.
This gives rise to another nontrivial evidence to support the
Kerr/CFT correspondence for the black holes in EMDA the-
ory.

5.4 Real-time correlator

More on supporting Kerr/CFT correspondence, one can also
compute the real-time correlator. The asymptotic behav-
iors of the scalar field with ingoing boundary condition on
the background of dyonic Kerr-Sen black hole (95) and
on gauged dyonic Kerr-Sen black hole (117) indicate that
two coefficients possess different roles. D0 indicates the
source while D1 indicates the response. Hence, the two-point
retarded correlator is simply [42,43]

GR ∼ D1

D0
= �(−1 − 2h)

�(1 + 2h)

�(as)�(bs)

�(cs − as)�(cs − bs)
, (122)

on dyonic Kerr-Sen black hole’s background. For gauged
family, the two-point retarded correlator has similar form as
(122), however, the values of h, as, bs, cs are different. From
Eq. (122), it is easy to check that

GR ∼ �(hL − i ωL
2TL

)�(hR − i ωR
2TR

)

�(1 − hL − i ωL
2TL

)�(1 − hR − i ωR
2TR

)
. (123)

Then we can write above two-point retarded correlator into

GR ∼ sin

(
πhL + i

ωL

2TL

)
sin

(
πhR + i

ωR

2TR

)

×
∣∣∣∣�
(
hL + i

ωL

2TL

)
�

(
hR + i

ωR

2TR

) ∣∣∣∣
2

, (124)

by using the relation �(z)�(1 − z) = π/ sin(π z). Since
hL , hR are integers, so we have

sin

(
πhL + i

ωL

2TL

)
sin

(
πhR + i

ωR

2TR

)

= (−1)hL+hR sin

(
i

ωL

2TL

)
sin

(
i

ωR

2TR

)
. (125)

In CFT, the Euclidean correlator is given by

GE (ωEL , ωER) ∼ T 2hL−1
L T 2hR−1

R eiωEL/2TL eiωER/2TR

×
∣∣∣∣�
(
hL + ωEL

2TL

)
�

(
hR + ωEL

2TR

) ∣∣∣∣
2

. (126)

where we can define the Euclidean frequencies ωEL = iωL ,
and ωER = iωR . It is important noting that GE corresponds
to the values of retarded correlator GR . The retarded Green
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function GR is analytic on the upper half complex ωL ,R-
plane. The value of GR along the positive imaginary ωL ,R-
axis gives the following correlator

GE (ωEL , ωER) = GR(iωL , iωR), ωEL ,ER > 0. (127)

At finite temperature, ωEL ,ER should take discrete values of
the Matsubara frequencies, given by

ωEL = 2πmLTL , ωER = 2πmRTR, (128)

where mL and mR are half integers for fermionic modes and
integers for bosonic modes. At these certain frequencies, the
gravity computation for correlator (124) matches precisely
with CFT result trough Eq. (127) up to a numerical normal-
ization factor [44].

6 Conclusions

In this paper, we have explicitly extended the study of holog-
raphy on the dyonic black holes in EMDA theory with van-
ishing and non-vanishing gauge coupling constant l. Specif-
ically, we have constructed the hidden conformal invariance
for the dyonic Kerr-Sen and gauged dyonic Kerr-Sen black
holes. To reveal the hidden conformal invariance for both
black holes, we have mainly deemed the near region and the
low-frequency limit. Moreover, for gauged family, we also
needed to approximate to the near-horizon region to obtain
the expected radial equation. We have exhibited that both
radial equations on different black hole’s background possess
SL(2, R) × SL(2, R) squared Casimir equation, denoting a
local hidden conformal symmetry by the periodic identifi-
cation φ ∼ φ + 2π . This finding suggests that both dyonic
black holes are dual in 2D CFT with finite left- and right-
moving temperatures. We have also proved the previous
calculation of the central charge by considering the topo-
logical term and other corresponding fields. By using this,
we then obtained the matching between Cardy entropy for-
mula and Bekenstein-Hawking entropy of both dyonic black
holes. This denotes that generic non-extremal dyonic Kerr-
Sen black hole and its gauged family are holographically dual
to 2D CFT.

To further support the holography, the absorption cross-
section of the scalar field perturbation has also been consid-
ered via gravity and CFT computations. In investigating the
scattering issue, for gauged one, we could not use the near-
horizon approximation for the generic non-extremal black
hole. Nevertheless, we could apply that approximation when
we consider the near extremality. From our computation, the
matching of the absorption cross-section has been exhibited
to have a perfect agreement by identifying the arbitrary left
and right CFT frequencies. It has been shown also the tem-
peratures for near-extremal condition.

We have then performed the computation of retarded
Green’s function or the two-point correlator. We have found
the perfect agreement between the retarded Green’s functions
and the CFT Euclidean correlators which are restricted by
conformal invariance. It is worth noting also that the real-time
correlator is closely related to the absorption cross-section
where we could see from the imaginary part of the retarded
Green’s function at Matsubara frequencies.
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Appendix A: Effective Lagrangian of low energy limit of
heterotic string theory

In this paper, we consider two different actions given by (1)
and its gauged one (19). The difference between those action
is the presence of the potential term as shown in Eq. (19). In
the case of 1/ l2 = 0, the potential term containing cosmo-
logical constant will vanish. Interestingly, one can write the
Lagrangian (1) in another form, the effective Lagrangian of
the low energy limit of the heterotic string theory [24] given
by

Le f f = √−g

(
R − 1

2
(∂φ)2 − e−φF2 − 1

12
e−2φH2

)
,

(129)

where H2 = HμνρHμνρ is an antisymmetric tensor where
it is defined by H = dB − A ∧ F/4 = −e2φ � dχ . For
this effective Lagrangian, we need to introduce a new field
B, the antisymmetric tensor field. The star operator repre-
sents Hodge duality. The term A∧ F/4 is the Chern–Simons
term. However, when the cosmological constant is present,
one cannot write (19) into above action, so this is a spe-
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cial case in supergravity theory. Hence, the main difference
between the effective action for dyonic Kerr-Sen solution
and its gauged family is the potential term which contains
cosmological constant that couples to the dilaton and axion
fields.
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Jennie Traschen, Thermodynamic volumes and isoperimetric
inequalities for de Sitter black holes. Phys. Rev. D 87, 104017
(2013)

29. G. Compére, K. Murata, T. Nishioka, Central charges in extreme
black hole/CFT correspondence. JHEP 05, 077 (2009)

30. S.M. Noorbakhsh, M. Ghominejad, Ultra-spinning gauged super-
gravity black holes and their Kerr/CFT correspondence. Phys. Rev.
D 95, 046002 (2017)

31. G. Barnich, F. Brandt, Covariant theory of asymptotic symmetries,
conservation laws and central charges. Nucl. Phys. B 633, 3 (2002)

32. G. Barnich, G. Compére, Surface charge algebra in gauge theories
and thermodynamic integrability. J. Math. Phys. 49, 042901 (2008)

33. T. Hartman, K. Murata, T. Nishioka, A. Strominger, CFT duals for
extreme black holes. JHEP 04, 019 (2009)

34. H. Lü, J. Mei, C.N. Pope, Kerr-AdS/CFT correspondence in diverse
dimensions. JHEP 04, 054 (2009)

35. M. Astorino, Microscopic entropy of the magnetised extremal
Reissner–Nordström black hole. JHEP 10, 016 (2015)

36. M. Astorino, CFT duals for accelerating black holes. Phys. Lett. B
760, 393 (2016)

37. M. Sinamuli, R.B. Mann, Super-entropic black holes and the Kerr-
CFT correspondence. JHEP 08, 148 (2016)

38. M.F.A.R. Sakti, A. Suroso, F.P. Zen, CFT duals on extremal rotating
NUT black holes. Int. J. Mod. Phys. D 27, 1850109 (2018)

39. M.F.A.R. Sakti, A. Suroso, F.P. Zen, Kerr/CFT correspondence on
Kerr-Newman-NUT-Quintessence black hole. Eur. Phys. J. Plus
134, 580 (2019)

40. C.-M. Chen, Y.-M. Huang, J.-R. Sun, M.-F. Wu, S.-J. Zou, Twofold
hidden conformal symmetries of the Kerr-Newman black hole.
Phys. Rev. D 82, 066004 (2010)

41. I. Bredberg, T. Hartman, W. Song, A. Strominger, Black hole super-
radiance from Kerr/CFT. JHEP 04, 019 (2010)

42. B. Chen, C.-S. Chu, Real-time correlators in Kerr/CFT correspon-
dence. JHEP 05, 004 (2010)

43. B. Chen, J. Long, Real-time correlators and hidden conformal sym-
metry in the Kerr/CFT correspondence. JHEP 06, 018 (2010)

44. A. Sen, Rotating charged black hole solution in heterotic string
theory. Phys. Rev. Lett. 69, 1006 (1992)

123


	Hidden conformal symmetry for dyonic Kerr-Sen black hole and its gauged family
	Abstract 
	1 Introduction
	2 Black holes spacetimes and their properties
	2.1 Dyonic Kerr-Sen black hole
	2.2 Gauged dyonic Kerr-Sen black hole

	3 Central charge
	4 Hidden conformal symmetry and CFT entropy 
	4.1 Dyonic Kerr-Sen black hole
	4.2 Gauged dyonic Kerr-Sen black hole

	5 Scattering cross-section on non-extremal background
	5.1 Scattering off dyonic Kerr-Sen black hole
	5.2 Scattering off gauged dyonic Kerr-Sen black hole
	5.3 Superradiant scattering off gauged dyonic Kerr-Sen black hole
	5.4 Real-time correlator

	6 Conclusions
	Acknowledgements
	Appendix A: Effective Lagrangian of low energy limit of heterotic string theory
	References




