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Abstract The covariant canonical gauge theory of gravity
(CCGG) is a gauge field formulation of gravity which a priori
includes non-metricity and torsion. It extends the Lagrangian
of Einstein’s theory of general relativity by terms at least
quadratic in the Riemann–Cartan tensor. This paper investi-
gates the implications of metric compatible CCGG on cos-
mological scales. For a totally anti-symmetric torsion tensor
we derive the resulting equations of motion in a Friedmann–
Lemaître–Robertson–Walker (FLRW) Universe. In the limit
of a vanishing quadratic Riemann–Cartan term, the arising
modifications of the Friedmann equations are shown to be
equivalent to spatial curvature. Furthermore, the modified
Friedmann equations are investigated in detail in the early
and late times of the Universe’s history. It is demonstrated
that in addition to the standard �CDM behaviour of the scale
factor, there exist novel time dependencies, emerging due to
the presence of torsion and the quadratic Riemann–Cartan
term. Finally, at late times, we present how the accelerated
expansion of the Universe can be understood as a geometric
effect of spacetime through torsion, rendering the introduc-
tion of a cosmological constant redundant. In such a scenario
it is possible to compute an expected value for the parameters
of the postulated gravitational Hamiltonian/Lagrangian and
to provide a lower bound on the vacuum energy of matter.

1 Introduction

Mysterious components such as dark energy (DE) caused
Einstein’s theory of general relativity (GR) to become a
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incomplete and thus unsatisfactory explanation of gravity on
cosmological scales. As a result, there has been a plethora
of attempts to modify GR, for example by introducing addi-
tional degrees of freedom in the form of scalar fields [1–3]
or vector fields [4–7].

In this work however, we continue the path taken in [8–
11] which is to use the theory of canonical transformations
within the De Donder–Weyl formalism [12,13] and the ideas
of gauge theory to arrive at a more general theory of gravity
called covariant canonical gauge theory of gravity (CCGG).
CCGG is based on merely four postulates [14], namely:

(i) Hamilton’s principle.
(ii) Non-degeneracy of the total and gravitational

Lagrangian.
(iii) Diffeomorphism invariance.
(iv) Equivalence principle.

Employing the Palatini approach [15] of treating the met-
ric and the connection independently, these postulates,
together with the formalism of canonical transformations,
have been shown to result in the so-called CCGG equations
[8] which generalise Einstein’s field equation. In particular,
non-metricity and torsion are not a priori neglected within
this approach.

As usual for gauge theories, the Lagrangian, or respec-
tively the Hamiltonian, of the free fields cannot be determined
and has to be postulated. Non-degeneracy restricts the choice
of the free gravitational HamiltonianHgr however and forces
us [16] to include at least a term quadratic in the Riemann–
Cartan tensor. The ansatz for Hgr used in CCGG extends the
Einstein theory by a trace-free Kretschmann term. This has
been shown to be consistent with low-redshift data [17].

The goal of this paper is to study the implications of
the CCGG equations on cosmological scales, setting forth
earlier investigations [18,19]. In Sect. 2 a brief review of
the underlying theory and the resulting CCGG field equa-
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tion is presented. In order to make contact with standard
�CDM results, a constraint on the torsion tensor and energy–
momentum conservation is proposed in Sect. 3. A specific
ansatz, satisfying this constraint, is then presented and the
resulting equations of motion are derived in Sect. 4 with help
of the xAct-package in mathematica [20]. Thereafter a
brief discussion is given in Sect. 5 on the limiting case in
which the Kretschmann term vanishes. The key portion of
this work is Sect. 6, where the asymptotic equations of motion
are investigated in the early and late epochs of the Universe.
Lastly, a summary and our conclusions complete this paper
in Sect. 7.

Throughout this paper we employ natural units, in which
h̄ = c = 1. Furthermore, the Misner–Thorne–Wheeler con-
vention (+ + +) [21] is used.

2 Setup

The gauging process of CCGG has been worked out in detail
within the framework of De Donder–Weyl theory in [14] and
results in the action integral

S =
∫

d4x L̃

=
∫

d4x

[
1

2
k̃ μν
i

(
∂eiμ
∂xν

− ∂eiν
∂xμ

+ ωi
jν e

j
μ − ωi

jμ e jν

)

+ 1

2
q̃ jμν
i

(
∂ωi

jμ

∂xν
− ∂ωi

jν

∂xμ
+ ωi

nν ωn
jμ − ωi

nμ ωn
jν

)

− H̃gr + L̃matter

]
. (1)

Greek indices denote components with respect to a holo-
nomic basis whereas Latin indices refer to a non-holonomic
basis. The tetrads eiα translate between the holonomic
and non-holonomic bases. In this regard we have gμν =
eiμe

j
νηi j , where ηi j is the Minkowski metric. A tilde always

denotes a tensor density. Thus the “momentum tensor den-
sity” is given by

q̃ mαβ
l ≡ ε q mαβ

l := ∂L̃
∂(∂β ωl

mα)
, (2)

and denotes the canonical conjugate of the spin connection
ωl

mα . Further, the conjugate of the tetrads is

k̃ αβ
l ≡ ε k αβ

l := ∂L̃
∂(∂β e

l
α)

. (3)

Here L̃ denotes the Lagrangian density of the whole sys-
tem that is obtained by a complete Legendre transforma-
tion of the respective total Hamiltonian density. Informa-

tion regarding the matter content is incorporated within
L̃matter. The relevant Jacobi determinant in tetrad formalism
is ε := det(eiα) ≡ √−g, where g := det(gμν ). Varying (1)
with respect to the dynamical fields provides us with the set of
canonical equations of motion as in [14]. These hold a priori
for any arbitrary choice of torsion and non-metricity tensors.
In more detail, our choice of the free gravity De Donder–Weyl
Hamiltonian density H̃gr entails, amongst others, informa-
tion about the appearance of torsion and non-metricity. One
can show that the ansatz [19] for the free gravity De Donder–
Weyl Hamiltonian density

H̃gr = − q̃ mαβ
l q̃ lξλ

m

4g1ε
ηknηi j e

k
αe

n
ξ e

i
βe

j
λ

+ g2q̃
mαβ
l ηmne

l
αe

n
β

− k̃ αβ
l k̃ ξλ

m

2g3ε
ηlmηknηi j e

k
αe

n
ξ e

i
βe

j
λ − g4ε (4)

induces the following CCGG field equation [8,14,18,19]:

−g1Q
μν+ 1

8πG

(
Gμν+gμν�0

)+2g3W
μν=T (μν), (5)

where gμν is the metric, and gi are fundamental coupling
constants with the dimensions [g1] = 1, [g2] = L−2,
[g3] = L−2 and [g4] = L−4. The choice (4) ensures a vanish-
ing non-metricity (chosen here for simplicity) by requesting
q(lm)αβ = 0 but a non-vanishing, a priori arbitrary, torsion.

We defined the symmetric and trace-free Kretschmann
term

Qμν := RαβγμR ν
αβγ − 1

4
gμνRαβγλRαβγλ, (6)

with the Riemann–Cartan tensor

Rα
βμν := ∂μ�α

βν − ∂ν �α
βμ + �α

λμ�λ
βν − �α

λν�λ
βμ,

(7)

and

Wμν := SαβμS ν
αβ − 1

2
Sμαβ Sν

αβ − 1

4
gμνSαβγ Sαβγ (8)

with the torsion tensor

Sλ
μν := 1

2

(
�λ

μν − �λ
νμ

)
. (9)

The affine connection � can thereby be decomposed as

�α
μν = �̄α

μν + K α
μν , (10)

where �̄ is the Levi–Civita connection, and K α
μν the con-

tortion tensor. (Henceforth any object equipped with a bar
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shall denote a quantity based on �̄.) The contortion tensor is
defined as

Kλμν := Sλμν − Sμλν + Sνμλ . (11)

The constant �0 arising in Eq. (5) is related to the parameters
g1, g2, governing the strength of the quadratic and linear
terms in the Hamiltonian (4), and g4 representing the vacuum
energy of matter, as

g1g2 = − 1

16πG

6g1g
2
2 + g4 = �0

8πG
. (12)

Obviously �0 can be identified with the cosmological con-
stant. The parameter g1 in particular regulates the relative
strength of the trace-free Kretschmann term “deforming”
Einstein–Cartan gravity.

Care has to be taken with the Einstein tensor Gμν . Here
it is defined to only include the symmetric part of the Ricci
tensor

Gμν := R(μν) − 1

2
gμνR. (13)

Since torsion is present, Rμν also has an anti-symmetric por-
tion which, together with the anti-symmetric portion of the
canonical energy momentum tensor, T [μν], yields another
set of equations [8,9] relating torsion and the spin density
of matter. However, for our purposes in this paper we can
ignore this set of equations and focus solely on the symmet-
ric Eq. (5).

The gauging procedure further reveals that the energy–
momentum tensor of spacetime itself corresponds to the l.h.s.
of (5) up to a minus sign. Upon defining

�μν := −g1Q
μν + 1

8πG

(
Gμν + gμν�0

) + 2g3W
μν

(14)

the CCGG Eq. (5) are compactly written as

�μν = T (μν). (15)

3 Constraints

It is straightforward to verify that ∇ν �μν = 0 is not an
identity. Thus in general, the energy-momentum conserva-
tion ∇ν T

(μν) = 0 is not necessarily satisfied either. In order
to determine the evolutionary behaviour of energy densities
on cosmological scales, we therefore have to ensure

∇ν �μν = ∇ν T
(μν). (16)

However, (16) is difficult to solve in general. In order to make
the computations analytically tractable we have to make a few
simplifying assumptions.

For any symmetric tensor Aμν we have that

∇ν A
μν = ∇̄ν A

μν + Kμ
αν A

αν + K ν
αν A

μα. (17)

Closer inspection of the second term on the r.h.s. reveals
Kμ

αν Aαν = Kμ

(αν) A
αν , due to the symmetry of Aμν , with

Kμ

(αν) = 1

2

(
Sμ

αν − S μ
α ν + S μ

να

+ Sμ
να − S μ

ν α + S μ
αν

)
. (18)

Since Sλ
μν = −Sλ

νμ it follows that

Kμ

(αν) = 2S μ

(αν) . (19)

For the third term in (17) we find

K ν
αν = 2Sν

αν . (20)

If Sανμ is additionally anti-symmetric in its first two indices
then S(αν)μ = 0 and Sν

αν = 0. Therefore we conclude that
for a totally anti-symmetric torsion tensor the divergence of
a symmetric (2, 0)-tensor is equal to the divergence based
solely on the Levi-Civita connection ∇ν A

μν = ∇̄ν A
μν . By

assuming a totally anti-symmetric torsion tensor henceforth,
relation (16) becomes

∇̄ν �μν = ∇̄ν T
(μν) (21)

due to the symmetry of �μν .
In the following we wish to apply this ansatz in a

cosmological setting based on the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric, and align the analysis
with the assumptions of the standard model as far as possi-
ble. Hence we require in addition that ∇̄ν T

(μν) = 0 holds,
and thus by consistency also ∇̄ν �μν = 0. This restriction
allows to employ the scaling behaviour of the individual
energy densities as known from standard cosmology. The
second equation, ∇̄ν �μν = 0, must be verified case by case,
though. Fortunately this turns out to be rather easy here.

4 Modified Friedmann equations

As discussed in the previous section we choose a totally anti-
symmetric ansatz for torsion,

Sαμν = εαμνσ s
σ , (22)
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where εαμνσ is the Levi-Civita tensor and sμ= (s0(t), 0, 0,

0) a temporal axial four-vector. This ansatz has already been
successfully used in [22]. Since our underlying theoretical
framework poses no restrictions on the form of the torsion
tensor, the only caveat is that we require (22) to be consis-
tent with the cosmological principle, i.e., a spatially homoge-
neous and isotropic Universe. In fact, the allowed values for
the torsion tensor, given a FLRW-metric, have already been
worked out in full generality by [23] and have been employed
prominently by [24–26]. Our choice (22) is now seen to be
in correspondence with the cosmological principle as it is a
subset of the generally allowed values for the torsion ten-
sor in a FLRW-Universe [23]. Moreover, this choice ensures
that the auto-parallel and geodetic trajectories of test point
particles in curved geometry coincide. The FLRW-metric in
spherical coordinates is

ds2 = −dt2 + a2(t)

(
dr2

1 − kr2 + r2d�2
)

, (23)

where d�2 = dθ2 + sin2(θ)dφ2. As usual, a(t) is the scale
factor and k denotes the spatial curvature. Matter is modelled
by a set of non-interacting perfect fluids with the energy–
momentum tensor

Tμν = (ρ + p) uμuν + pgμν. (24)

The total energy density ρ and pressure p are the sums of
the individual constituents, which in this case are radiation
and matter (baryonic and non-baryonic). The vector field
uμ = (1, 0, 0, 0)ᵀ denotes the 4-velocity of the fluid. Since
Kαμν ≡ Sαμν for a totally anti-symmetric torsion tensor, we
are now in the position to express the connection (10) and
thus the components of the CCGG field equations explicitly.

Equation (15) reduces to only two independent compo-
nents which give modified versions of the standard Fried-
mann equations:

3g1

[
k2

a4 + 2k

a2

(
H2 − s2

0

)
− H2

(
2Ḣ + 5s2

0

)

− Ḣ2 + 2Hs0ṡ0 + ṡ2
0 + s4

0

]
+ ρm + ρr

+ −3H2 + �0 + 3s2
0 (1 − 8πGg3)

8πG
− 3k

8πGa2 = 0

(25)

and

g1

[
k2

a4 + 2k

a2

(
H2 − s2

0

)
− H2

(
2Ḣ + 5s2

0

)

− Ḣ2 + 2Hs0ṡ0 + ṡ2
0 + s4

0

]
+ pr

+ 3H2 + 2Ḣ − �0 − s2
0 (1 − 8πGg3)

8πG

+ k

8πGa2 = 0. (26)

Here we used ρ = ρr + ρm and assumed the usual equation
of state pi = wi ρi with wm = 0 for matter and wr = 1/3
for radiation. The Hubble function is defined as H := ȧ/a.

The trace of (15) is found to be

ρm + −3Ḣ − 6H2 + 2�0 + 3s2
0 (1 − 8πGg3)

4πG

− 3k

4πGa2 = 0. (27)

Note that there is no g1 term appearing in (27), i.e., there is
no contribution from the quadratic “radiation like” Riemann
term since Qμ

μ = 0.

5 Einstein–Cartan Limit

Let us first consider the limit g1 → 0. This corresponds to a
modification of standard GR based solely on the introduction
of a non-vanishing torsion tensor. In other words, this case
corresponds to Einstein–Cartan theory with a special ansatz
for Sαμν . However, our ansatz for torsion differs from the
one used, e.g., in [27]. Therefore we expect to find a different
behaviour in this regime.

The Friedmann Eqs. (25) and (26) reduce to

H2 = 8πG

3
ρ + �0

3
− k

a2 + s2
0 (1 − 8πGg3) (28)

and

ä

a
= −4πG

3
(ρ + 3pr ) + �0

3
. (29)

Furthermore, (25) and (26) in the limit of g1 → 0 reveal that
the remaining contribution of the torsion may be absorbed
into the energy-momentum tensor of a perfect fluid with
energy density

ρs = 3s2
0 (1 − 8πGg3)

8πG
(30)

and pressure

ps = − s2
0 (1 − 8πGg3)

8πG
. (31)

Thus torsion admits the equation of state with ws = −1/3,
same as for the spatial curvature k. Since we were able to
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define an appropriate energy density and pressure for the tor-
sion terms, conservation of the torsion contribution is auto-
matically ensured via the standard energy–momentum con-
servation ∇̄ν T

(μν) = 0. Hence we know that the energy den-
sity associated to s0 scales as ρs ∝ a−2 and thus s0 ∝ a−1.

The l.h.s. of the CCGG equations in this case just reduces
to the Einstein tensor (based solely on the Levi–Civita con-
nection) together with the cosmological constant term and
hence satisfies ∇̄ν

(
Gμν + gμν�0

) = 0 due to the Bianchi
identities and metricity. This therefore ensures that

∇̄ν �μν = 0 (32)

is consistently satisfied.
As s0 enters into the connection (10) linearly, it has to

admit real values. By setting s0
√

1 − 8πGg3 = b/a for some
b with [b] = L−1, equation (28) becomes

H2 = 8πG

3
ρ + �0

3
− k − b2

a2 . (33)

Obviously, the contribution of torsion counteracts the spatial
curvature [18,19]. Therefore it is possible to misinterpret in
the standard �CDM model the geometry type as open, albeit
k ≥ 0, as long as k − b2 < 0, or flat with k = b2 > 0. A
closed Universe still appears only with a positive k, however
with the slightly stronger constraint k > b2.

With density parameters defined by

�r = 8πG

3H2 ρr

�m = 8πG

3H2 ρm

�� = �0

3H2

�k = − k

a2H2

�s = s2
0 (1 − 8πGg3)

H2 , (34)

Equation (28) is equivalent to

1 = �r + �m + �� + �k + �s . (35)

Thus, torsion dominates if s2
0 (1 − 8πGg3) → H2 and van-

ishes trivially for s0 → 0 or g3 → 1/(8πG).
Let us choose a(t = t0) = 1, where t0 denotes today. The

Hubble constant is denoted by H0 := H(1). Then

H2

H2
0

= �r,0 a
−4 +�m,0 a

−3 +��,0 +�k,0 a
−2 +�s,0 a

−2,

(36)

Fig. 1 Qualitative plot of the density parameters as a function of the
scale factor with logarithmic scale ina. The chosen values for the density
parameters today are �r,0 = 5 × 10−5, �m,0 = 0.3, ��,0 = 0.7 and
�k,0 = −0.5. The inferred value for the torsion density parameter today
is therefore �s,0 = −(�k,0 + �r,0) = 0.49995

where �i,0 is the i-th density parameter evaluated at t = t0.
Using

�i = �i,0
H2

0

H2 a
−ni (37)

with nr = 4, nm = 3, n� = 0 and nk = ns = 2, we
may then compute the behaviour of the density parameters
as a function of the scale factor for given values of �i,0.
In Fig. 1 these behaviours are shown for �r,0 = 5 × 10−5,
�m,0 = 0.3, ��,0 = 0.7 and (for illustrative purposes)
�k,0 = −0.5. As expected, the contribution of the torsion
counteracts the contribution of the spatial curvature and radi-
ation today, i.e. �k,0 + �r,0 = −�s,0 in this case.

6 Evolution of the universe

Let us now consider the general case g1 �= 0 and focus on
investigating the asymptotic behaviour of the Friedmann Eqs.
(25) and (27) (which is equivalent to considering (25) and
(26)).

6.1 Radiation dominated epoch

In the radiation dominated epoch (RDE) we choose the ansatz
a = βtα with some constants α and β, where [β] = L−α .
Then H = αt−1 and Ḣ = −αt−2. Assuming that the energy
content of the Universe is dominated by radiation and rel-
ativistic particles, we may neglect the cosmological con-
stant and matter energy density. For simplicity we further
assume the spatial curvature to vanish, and leave the case
with k �= 0 to a forthcoming numerical study (J. Kirsch et
al.). This allows us to find an analytic solution of Eq. (27):

s0 = ±
√

α (2α − 1)

1 − 8πGg3

1

t
. (38)
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We directly infer the special cases α = 0 and α = 1/2, which
both yield a vanishing torsion contribution. As it turns out,
the remaining consistent solutions for s0 will be such that
α (2α − 1) ≥ 0. Hence we need to impose g3 < 1/(8πG) in
order to obtain physical solutions. Aforementioned approx-
imations together with (38) and ρr = ρr,0a−4 transform the
first Friedmann Eq. (25) into

ρr,0

β4t4α
+ C1(α)

t2 − g1
C2(α)

t4 = 0. (39)

The coefficient

C1(α) := 3α (α − 1)

8πG
(40)

contains the explicit contributions from the Einstein tensor
and the quadratic torsion tensor Wμν , whereas

C2(α) := 3α (2α − 1)

(1 − 8πGg3)2

[
(α + 1)(3α − 1)

− 8πGg3(5α2 − 1) − 64π2G2g2
3α

]
, (41)

comprises the contributions from the quadratic Riemann–
Cartan term. Naturally, C2 implicitly carries the former con-
tributions via (38).

Equation (39) has to hold as a polynomial equation for
small t with t �= 0 and thus the respective coefficients of all
monomials have to be zero. Due to the appearance of α in
the exponent we have to distinguish between different cases.
The cases are α = 1, α = 1/2 and all other real values, i.e.,
α /∈ {1, 1/2}. However, for α /∈ {1, 1/2} we know from (39)
that C1(α) = 0 and C2(α) = 0 have to hold, which is only
true for α = 0. This implies ρr,0 = 0, which contradicts our
assumption and hence we are left with

α ∈
{

1,
1

2

}
. (42)

For α = 1/2 we find s0 = 0 and C2(1/2) = 0. Furthermore
we need to have

ρr,0

β4 + C1

(
1

2

)
!= 0. (43)

But C1(1/2) = −3/32πG and thus β4 = 32πGρr,0/3.
Since only non-negative, real solutions for the scale factor
are admissible we find

a = 4

√
32πG

3
ρr,0

√
t . (44)

Note that this result corresponds exactly to the scale factor
in the RDE of standard cosmology. This is to be expected,

since for α = 1/2 the contribution of the quadratic Riemann–
Cartan term and the torsion vanishes and hence we find our-
selves in the regime of Einstein’s GR.

For the last case α = 1 we have

s0 = ± 1√
1 − 8πGg3

1

t
(45)

and C1(1) = 0. Thus we are left with

ρr,0

β4 − g1C2 (1)
!= 0. (46)

With

C2(1) = 12 − 96πGg3 (1 + 2πGg3)

(1 − 8πGg3)2 (47)

we get β4 = ρr,0/(g1C2(1)) and therefore

a = 4

√
ρr,0

g1C2(1)
t, (48)

which requires g1C2(1) > 0 and g3 �= (−1 ± √
2)/(4πG).

This solution yields an interesting time dependence of the
scale factor resulting in particular from the presence of the
quadratic Riemann–Cartan term and the torsion. The linear
time dependence is in correspondence with that of a Milne
Universe. However, it is achieved in a very different manner.
Namely, in contrast to a Milne Universe we did assume k = 0
and ρr,0 �= 0. In addition we have a torsion contribution that
decreases as the Universe expands.

To understand how the different ingredients of the CCGG
equations contribute to the total energy density, we define the
density parameter

�geo = 8πGg1

H2

[
−H2(2Ḣ + 5s2

0 ) − Ḣ2

+ 2s0ṡ0H + ṡ0
2 + s4

0

]
. (49)

The parameters �r and �s that are relevant in this scenario
are defined exactly in the same manner as in the Einstein–
Cartan limit (34). They incorporate the energy density of radi-
ation and the energy density of torsional contributions from
Gμν and Wμν . The novel �geo on the other hand describes
the energy density of the Kretschmann term Qμν . The first
Friedmann Eq. (25), in this RDE epoch, thus reduces to

1 = �r + �s + �geo. (50)

We further have

�r = �r,0a
−4 H

2
0

H2
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�s = �s,0a
−2 H

2
0

H2 (51)

with

H2
0

H2 = a2H0

√
8πGg1C2(1)

3�r,0
(52)

for the case a ∝ t .
Now notice that our assumptions for the RDE are only

valid in the very early Universe. Nevertheless we still extrap-
olate the solution until the present time by referencing today’s
values of the density parameters (51) and the Hubble constant
H0. This is obviously not consistent. We should rather nor-
malise a = 1 at a time in the very early Universe, and refer-
ence the density parameters to that same time. Unfortunately
we neither know the exact value of the Hubble parameter at
times in the very early Universe, nor do we know the radiation
density. Thus, to limit the amount of unknown parameters,
we stick to the procedure above. The result will not provide
us with true numerical values, but give us merely a qualita-
tive idea of the contributions of the different ingredients in
the RDE.

Evaluating now (52) at today yields for a consistency rela-
tion between different, still undetermined parameters:

g1 = 3�r,0

8πGH2
0 C2(1)

. (53)

In particular, given �r,0 and H0, the value of g1 is fixed if we
provide a specific value for g3. For H0 = 70 km s−1Mpc−1,
�r,0 = 5 × 10−5, �s,0 = 0.5 and g3 = 0.34M2

p , where

Mp := 1/
√

8πG = 2.44 × 18 GeV is the reduced Planck
mass, the density parameters are shown in Fig. 2. Beside the
negligible impact of �s in the early times, we see in particular
the important contribution from the Kretschmann term �geo

that counters the radiation energy density. The contributions
of �geo increase with decreasing time/scale factor. This is
expected since the Kretschmann term is believed to yield
high contributions in high density environments.

From (25) and (26) it is evident that since the Kretschmann
term is trace-free, then, if considered as a perfect fluid, it
admits an equation of state parameter w = 1/3, same as
that of radiation. Based on the qualitative discussion above
we argue that at sufficiently early times, �geo must admit
negative values and thus behave like negative radiation, i.e.,
radiation with negative energy density. Friedmann cosmolo-
gies with such negative energy densities have been inves-
tigated for instance in [28,29]. At a certain point in time,
depending on the exact value of �s , �geo might have to
switch its sign and become positive in order to satisfy the
Friedmann equation. In general we thus conclude that the

Fig. 2 Behaviour of the density parameters as a function of the scale
factor with logarithmic scale in a. The values of the density parameters
today were chosen to be �r,0 = 5 × 10−5 and �s,0 = 0.5. Furthermore,
g3 = 0.34M2

p was taken, meaning g1 = 2.3 × 10115 via (53)

trace-free Kretschmann term is ghost-like, and its dynamics
can provide both, positive or negative energy density.

Let us lastly investigate whether the consistency with
energy-momentum conservation, i.e., Eq. (32) is fulfilled.
It is straightforward to see that with the given assumptions,
∇̄ν �μν = 0 reduces, for μ = 0, to

3α(α − 1)(2α − 1)

×
{
(1 − 8πGg3)

2t2 − 16πGg1

[
(α + 1)(3α − 1)

+ 8πGg3

(
1 − 5α2 − 8πGg3α

)]}
= 0. (54)

The other three equations for μ ∈ {1, 2, 3} are trivial as in the
Einstein–Cartan limit. Indeed we see that (42) satisfies this
consistency check. Equation (54) reveals two more possible
values for α, namely, the roots of the expression inside the
square bracket. However, these roots are time dependent and
hence contradict our assumption of α being a constant.

6.2 Dark energy dominated epoch

Here we wish to address the late time accelerated expansion
of the Universe and its relation to torsion and the quadratic
Riemann–Cartan term. Note that torsion alone is not able to
account for an accelerated expansion in the Einstein–Cartan
limit. This is most easily seen in the second Friedmann equa-
tion (29) where no torsion term appears and thus cannot alter
ä in a torsion dominated epoch. On the other hand, as we will
see, the full CCGG theory allows for such a scenario. Thus
the quadratic Riemann–Cartan term is vital for the following
steps.

6.2.1 General setup

An accelerated expansion is achieved if

ä > 0 and ȧ > 0. (55)
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Now let us assume that torsion is dominant in such an epoch,
possibly interacting with the cosmological constant. Then
(27) becomes

−3Ḣ − 6H2 + 2�0 + 3s2
0 (1 − 8πGg3) = 0. (56)

Hence ä > 0 means that we need

s2
0 (1 − 8πGg3) > H2 − 2

3
�0. (57)

From (56), for g3 �= 1/(8πG), we also find that

s2
0 = 1

(1 − 8πGg3)

(
Ḣ + 2H2 − 2

3
�0

)
, (58)

which, plugged into the first Friedmann equation (25) results
in a differential equation for H :

−3Ḣ + (�0 − 3H2)(1 + 8πGg3)

8πG(1 − 8πGg3)

− g3
(2�0 − 6H2 − 3Ḣ)

1 − 8πGg3
− 3g1

{
H4 − (H2 + Ḣ)2

+ 1

1 − 8πGg3

[
H(4H Ḣ + Ḧ) − 5H2

×
(

2H2 + Ḣ − 2

3
�0

) ]
+ (2H2 + Ḣ − 2�0/3)2

(1 − 8πGg3)2

+ (4H Ḣ + Ḧ)2

4(1 − 8πGg3)(2H2 + Ḣ − 2�0/3)

}
= 0. (59)

Obviously now we are not allowed to have

Ḣ + 2H2 − 2

3
�0 = 0. (60)

This is however equivalent to s0 = 0 by (58) and hence would
be a contradiction to our assumption.

In theory, the solution of (59) governs the time evolution
of the scale factor and via (58) also the time evolution of the
torsion s0. But it is not easy to solve (59) in general. Hence
let us consider a specific example.

6.2.2 Exponential expansion

One special case for accelerated expansion is the exponen-
tial ansatz a ∝ exp(Ct) for some C > 0 with [C] = L−1.
We then have that H = C and Ḣ = 0. This is most com-
monly used in �CDM cosmology in conjunction with the
cosmological constant as the sole source of dark energy.

In this approximation, Eq. (27) becomes

−6H2 + 2�0 + 3s2
0 (1 − 8πGg3) = 0 (61)

at late times. This is solved for s0 as

s0 = ±
√

2

1 − 8πGg3

(
H2 − 1

3
�0

)
. (62)

By a similar analysis as before, using that H and s0 are con-
stant, Eq. (25) is reduced to

3g1(−5H2s2
0 + s4

0) + −3H2 + �0

8πG

+ 3s2
0 (1 − 8πGg3)

8πG
= 0. (63)

With (62) we then get
(
H2 − 1

3
�0

) [
− g1

(
6H2 + 4

3
�0

)
+ 1

8πG

−2g3

(
1 − 4πGg3 − 40πGH2g1

) ]
= 0. (64)

This equation is solved by either H2 = �0/3 or

H2 = 16πG [−2g1�0 + 3g3(4πGg3 − 1)] + 3

48πGg1(3 − 40πGg3)
(65)

with g3 �= 3/(40πG). If H2 = �0/3, then it follows from
(62) that s0 = 0, which contradicts our assumption. The only
remaining case is (65), giving

s0 = ±1

2

√
8πG(10�0g1 + 3g3) − 3

6πGg1(40πGg3 − 3)
. (66)

This case also ensures that the conservation equation (32) is
satisfied. Applying all previously stated approximations in
this limit and using (62), Eq. (32) becomes

H
(
�0 − 3H2

) [
3 − 16πg1G

(
2�0 + 9H2

)

−48πGg3(1 − 4πGg3 − 40πGH2g1)
]

= 0. (67)

The l.h.s. of this equation indeed vanishes for H2 as in (65).
Since the Universe already entered a phase of accelerated

expansion, the value for the Hubble parameter can be set
equal to the Hubble constant H0 ≈ 70 Km s−1Mpc−1 [30].
For a given g3, Eq. (65) then reveals a simple inverse pro-
portionality between the parameter g1 and the cosmological
constant �0

g1 = −3(1 − 8πGg3)
2

16πG [−2�0 + 3H2
0 (40πGg3 − 3)] . (68)
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Likewise are the behaviours of g2 and g4 as a function of �0

obtained from Eq. (12):

g2 = −2�0 + 3H2
0 (40πGg3 − 3)

3(1 − 8πGg3)2 (69)

g4 = −1

8πG

[
−�0 + 3H2

0 (3 − 40πGg3) + 2�0

(1 − 8πGg3)2

]
. (70)

Let us consider the special circumstance where the expan-
sion of the Universe is solely driven by torsion. In other
words, we set �0 = 0 as is suggested by the “Zero-Energy-
Universe” conjecture discussed in [31]. In that case the com-
bination of the coupling constants g1 and g2 cancels the vac-
uum energy of matter, g4. The trace Eq. (62) then yields

s0 = ±
√

2

1 − 8πGg3
H0, (71)

whereas (65) reduces to

H2
0 = 48πGg3(4πGg3 − 1) + 3

48πGg1(3 − 40πGg3)
, (72)

which further means

s0 = ±1

2

√
1 − 8πGg3

2πGg1(3 − 40πGg3)
. (73)

Equations (72) and (73) again emphasize the relevance of the
quadratic Riemann–Cartan term via the appearance of g1.

The parameter g3 only ever appears multiplied by multi-
ples of M−2

p and is subsequently added to constants of order
unity. The torsional contribution coming from the tensor (8)
is thus only relevant if g3 � M2

p. For |g3| � M2
p the param-

eters g1, g2 and g4 admit a very simple form. From (68) we
get

g1 = 1

48πGH2
0

= M2
p

6H2
0

. (74)

We hence find the expected value of g1 to be

g1 ≈ 4.45 × 10119. (75)

For the parameters g2 and g4 we find

g2 = −1

16πGg1
= −3H2

0

g4 = −3

128π2G2g1
= −9M2

pH
2
0 (76)

and therefore with (75) we obtain

g2 ≈ −6.69 × 10−84GeV 2

Fig. 3 Dependence of the parameter g1 on the vacuum energy g4 for
the late times exponential expansion with �0 = 0. The red region
indicates the forbidden values for g4. The dotted line marks the naive
cutoff at Planck scales, for which g1 = −3/2

g4 ≈ −1.19 × 10−46GeV 4. (77)

As the parameter g2 is related to the Riemann curvature
tensor of the maximally symmetric spacetime via R̂ηαξβ =
−g2(gηξ gαβ − gηβ gαξ ) [19], a positive (negative) g2 there-
fore implies an AdS (dS) geometry of the ground state of
spacetime. Hence for |g3| � M2

p the ground state of space-
time admits a dS geometry.

With the assumptions and restrictions applied here, an
exponential expansion in a torsion dominated epoch is thus
seen to be possible even if �0 = 0. Requesting in addi-
tion |g3| � M2

p and consistency with the observed Hubble
constant H0 yields for the parameters gi the specific values
given in Eqs. (75) and (77). (Notice that the vacuum energy
inferred is in the meV4 range, which is the order of magnitude
discussed in [32].)

If |g3| � M2
p the contribution from (8) is relevant and

leaves us with an additional free parameter. Here it is possible
to express all parameters as functions of the vacuum energy
g4:

g1 = −3M4
p

2g4

g2 = g4

3M2
p

(78)

and

g3 = M2
p

⎡
⎣15M2

pH
2
0 ± MpH0

√
3(75M2

pH
2
0 + 8g4)

2g4
+ 1

⎤
⎦ .

(79)

In particular we thus need g4 ≥ −75M2
pH

2
0 /8 ∼ −10−46

GeV4 and g4 �= 0. The dependence of the parameter g1 on
the vacuum energy g4 is illustrated in Fig. 3. Depending on
the sign of g4, the case |g3| � M2

p also allows for an AdS
geometry of the ground state of spacetime.
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7 Conclusion

For a specific ansatz of the free gravitational De Donder–
Weyl Hamiltonian we investigated the corresponding CCGG
equations which extend Einstein’s field equations by a trace-
free Kretschmann term and torsion contributions. After
choosing a totally anti-symmetric, temporal ansatz for the
torsion tensor, it was possible to align our theory with
the Cosmological Principle and the energy density scaling
behaviours of standard �CDM cosmology.

In a FLRW-Universe with perfect fluids accounting for
the stress-energy density, the modified Friedmann equa-
tions were derived and given explicitly. Consistency has
been ensured by verifying the conservation of the energy–
momentum tensor of gravity on the l.h.s. of the CCGG equa-
tions. In the Einstein–Cartan limit, with the Kretschmann
term set to zero, the modifications due to torsion turned out
to be equivalent to spatial curvature contributions. We thus
argue that in such a case it would be possible to misinterpret
the observationally inferred value of the spatial curvature k
in presence of torsion. The geometry type of the Universe is
not solely bound to the value of k anymore but depends also
on the torsional parameter s0.

Finally, with the Kretschmann term invoked, the mod-
ified Friedmann equations were investigated in early and
late times, by making appropriate assumptions for the scale
factor dependence. In the RDE, we identified, in addition
to the standard cosmology solution, a further, novel linear
time dependence of the scale factor by virtue of the interplay
between radiation, the Kretschmann term and torsion. Such
a linear dependence has already appeared in Jordan–Brans–
Dicke cosmology [33] and has further been shown to be in
agreement with data in the so-called Power Law Universes
[34]. Linear Coasting cosmologies appear very alluring in
this regard as they do not suffer from the horizon problem nor
the flatness problem while complying with data from SNeIa,
gravitational lensing and high-redshift galaxies [35,36].

Moreover, we learned that in the late epoch torsion can
account for a phase of accelerated expansion even without
the presence of a cosmological constant. For a specific case,
namely exponential expansion, as expected in the dark energy
era, the values of the parameters g1, g2 and g4 were derived
from the observed value of the current late-time Hubble con-
stant in the case that |g3| � M2

p. For the vacuum energy of
matter, g4, we find a value in the meV4 range. We therefore
claim that our model is able to provide a geometrical expla-
nation for the late time accelerated expansion of the Universe
through torsion without resorting to the introduction of a cos-
mological constant.

For |g3| � M2
p we were additionally able to provide a

lower bound on the vacuum energy of matter. We have yet to
investigate the implications of this finding.

Work in this area is still in progress. A numerical evalu-
ation of the modified Friedmann equations as shown in this
paper will be presented in the near future. That numerical
analysis is not restricted to the simplified monomial ansatz
of the scale factor in the RDE which we used in this paper.
Indeed polynomial behaviour is seen for certain solutions
which allows for more freedom in the exploration of the
expansion history of the Universe. Early dark energy (EDE)
solutions appear as possible candidates in this regard [37–
39]. Ultimately, in order to check the consistency of our
ansatz with the full set of cosmological observations, we
envisage to carry out an MCMC analysis for the late data,
but also work out the perturbation theory in detail to include
the CMB data.

Ideas to be followed beyond that certainly include mod-
ifying the free gravitational Hamiltonian and the models of
the torsion tensor in compliance with the cosmological prin-
ciple [24,25]. Last but not least: discovering an independent
way of measuring the parameter g1 is one of the key pending
tasks for the future.
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