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Abstract We calculate the decay width of the �+
c → �+γ

using light-cone sum rules. For the initial quark radiation
an effective Hamiltonian is constructed, where the internal
quark line shrinks to a point. The final quark radiation is stud-
ied within the full theory. The leading twist light-cone dis-
tribution amplitudes of the �+ serve as the non-perturbative
input for the sum rules calculation, and the perturbative ker-
nel is calculated at leading order. The branching fraction we
obtain is B(�+

c → �+γ ) = 1.03 ± 0.36 × 10−4, which is
below the recent upper limits < 2.6×10−4 and < 4.4×10−4

given by the Belle collaboration and the BESIII collabora-
tion, respectively.

1 Introduction

Weak radiative decays of charmed hadrons are an ideal plat-
form for investigating the interplay of the strong and the weak
interactions. Unlike the flavor-changing neutral-current tran-
sition of bottom hadrons, the penguin contribution in such
charm decays is highly suppressed. As a result, the weak
radiative decay of charmed hadrons are Cabibbo-favored and
dominated by long-distance non-perturbative effects, where
the decay is induced by internal W-exchange bremsstrahlung
processes such as cd → usγ . Studying the weak radia-
tive decays of charmed hadrons both from the experimental
and the theoretical side can help us to understand the strong
dynamics inside hadrons.

Over the past few decades, there are several measurements
of the weak radiative decays of charmed meson [1–3], and
the corresponding theoretical researches [4–16]. However,
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the experimental researches in the charmed baryon sector
are rare. In 2022, the Belle collaboration announced the first
search for the weak radiative decays �+

c → �+γ and �0
c →

�0γ [17], where the upper limits for their absolute branching
fractions are given as:

BBelle(�
+
c → �+γ ) < 2.6 × 10−4, BBelle(�

0
c → �0γ )

< 1.7 × 10−4. (1)

After that, the BESIII collaboration announced the latest
measurement on the upper limits for the branching fractions
of �+

c → �+γ decay [18]:

BBESIII(�
+
c → �+γ ) < 4.4 × 10−4. (2)

On the theoretical side, the corresponding branching frac-
tions have been predicted by various theoretical approaches,
which include a modified nonrelativistic quark model [19],
the constituent quark model [20] and the effective Hamilto-
nian approach combined with the pole model [21]. The theo-
retical predictions of the branching fractions of �+

c → �+γ

and �0
c → �0γ are in the range (4.5 − 29.1) × 10−5 and

(3.0 − 19.5) × 10−5, respectively. Most of these predictions
are consistent with the experimental constraints given above,
while the one from the constituent quark model are slightly
larger than the upper limits in Eq. (1).

Nowadays, except the model-based theoretical approaches
mentioned above, there is no model-independent calculation
for the weak radiative decays of charmed baryons. In this
work, we will fill this gap and calculate the decay width of the
�+

c → �+γ with the use of light-cone sum rules (LCSR). In
terms of the initial quark radiation, following Refs. [20,21],
we construct an effective Hamiltonian to simplify the cal-
culation. Since the radiating quark comes from the heavy
baryon �+

c , its velocity can be assumed to be parallel to the
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velocity of the �+
c . This enables us to shrink the internal off-

shell quark line to a point so that the decay amplitude can
be effectively induced by a local Hamiltonian of cd → usγ .
In terms of the final quark radiation, since the final state �+
is a light baryon, thus we cannot make the same assumption
on its composite quark velocities. Therefore we have to treat
the final quark radiation in the full theory. The leading twist
light-cone distribution amplitudes (LCDAs) of the �+ will
serve as the non-perturbative input for the sum rules calcu-
lation. These LCDAs are taken from the latest Lattice QCD
calculation with N f = 2 + 1 [22]. Furthermore, the pertur-
bative kernel will be calculated at leading order. It should
be mentioned that these LCDAs are defined according to the
light-cone expansion, which are most reliable when the quark
masses vanish. Therefore the LCDAs of �0 are not as good
as those of �+ which has less massive s quarks, and we will
not consider �0

c → �0γ in this work.
This paper is organized as follows. In Sect. 2, we construct

an effective Hamiltonian for the initial quark radiation in the
�+

c → �+γ decay and express the decay amplitude by sev-
eral calculable matrix elements. In Sect. 3, we define suitable
correlation functions to calculate the decay amplitude at the
hadron level. In Sect. 4, we perform the QCD level calcula-
tion for the correlation function defined above with the use
of �+ LCDAs. Section 5 contains the numerical results on
the decay amplitudes and branching fraction. We will also
compare them with those from literature. Section 6 is a brief
summary of this work.

2 Decay amplitudes for initial and final radiation

The weak effective Hamiltonian contributing to the �+
c →

�+γ decay reads

Heff = GF√
2
VcdV

∗
ud (C1O1 + C2O2) ,

O1 = s̄γ μ(1 − γ5)c ūγμ(1 − γ5)d,

O2 = ūγ μ(1 − γ5)c s̄γμ(1 − γ5)d, (3)

where the C1,2 are the Wilson coefficients. Figure 1 shows
the W-exchange bremsstrahlung processes cd → usγ . In
the case of initial radiation where the photon is emitted by
the c or d quark as shown in Fig. 1, following the approach
given in Ref. [21] we can construct an effective Hamiltonian
to simplify the calculation. Here, we take the c quark radia-
tion in the O1 contribution, namely Fig. 1a as an example to
illustrate the procedure.

The amplitude of Fig. 1a reads

AO1
Initial,c = i

GF√
2
VcsV

∗
udε

∗μ(k)s̄(ps)γ
ν(1 − γ5)

× /pc − /k + m̄c

(pc − k)2 − m̄2
c
γμc(pc)ū(pu)γν(1 − γ5)d(pd), (4)

where pc,s,u,d are the on-shell quark momenta, m̄c,d are the
constituent quark masses in the �c and k satisfies k2 = 0
and k ·ε = 0. Since the initial c, d quarks are confined in the
heavy baryon �c, we can assume that c, d and �c have the
same velocity, in other words pc,d = (m̄c,d/m�c )p�c . Thus
the denominator of Eq. (4) becomes

(pc − k)2 − m2
c = m̄c

m�c

(m2
� − m2

�c
), (5)

which implies that effectively the internal off-shell quark line
shrinks to a point. Further, the numerator of Eq. (4) can be
simplified by using the equation of motion of the c quark.
For the case of d quark radiation the derivation is almost
the same. Finally, the amplitude in Eq. (4) can be effectively
generated by the following Hamiltonian

HO1
eff = GF√

2
VcsV

∗
ud C1

∑

q

[
Aμ J

μ

O1,q
− i

2
FμνK

μν

O1,q

]
, (6)

where q = c, d and JO1,q , KO1,q are the effective four-quark
currents

Jμ

O1,c
= 2i Qcλc s̄γ

ν(1 − γ5)∂
μc ūγν(1 − γ5)d,

Kμν

O1,c
= i Qcλc s̄γ

α(1 − γ5)σ
μνc ūγα(1 − γ5)d,

Jμ

O1,d
= 2i Qdλd s̄γ ν(1 − γ5)c ūγν(1 − γ5)∂

μd,

Kμν

O1,d
= i Qdλd s̄γ α(1 − γ5)c ūγα(1 − γ5)σ

μνd . (7)

Here, Qq is the electric charge and λq = m�c
m̄q (m2

�c
−m2

�)
. For

the case of O2 the corresponding operators can be obtained
by just exchanging the u, s fields. Now the initial radiation
amplitude induced by O1,2 can be expressed as:

AOi
Initial = −i

GF√
2
VcsV

∗
ud Ci ε∗

μ(k)

[
〈�(p)|Jμ

Oi
(0)|�c(q)〉

+ 〈�(p)|kαK
αμ

Oi
(0)|�c(q)〉

]
, (8)

where i = 1, 2, Jμ

Oi
= Jμ

Oi,c
+ Jμ

Od
and Kμν

Oi
= Kμν

Oi,c
+Kμν

Od
.

k = q − p is the on-shell photon momentum. It should
be mentioned that in principle, the heavy quark expansion
used in charm baryon decays is not as accurate as the beauty
baryon decays. In a charm baryon the velocities of the three
constituent quarks are not parallel with each other. The rela-
tive motion between them are described by the Fermi momen-
tum which is of order �QCD. Thus the off-shellness of the
intermediate quark is also of order �QCD [21]. However,
this off-shellness can be effectively described by using the
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Fig. 1 W-exchange
bremsstrahlung processes
cd → usγ induced by O1,
where the double crossed dots
denote O1,2. The diagrams for
O2 are similar, just exchanging
u and s

constituent quark mass instead of the current quark mass
when constructing the effective Hamiltonian. Here we have
used the constituent mass for the initial charm and down
quarks, which can reduce the uncertainty from the heavy
quark expansion of charm quark.

For the final quark radiation this effective Hamiltonian
approach is not suitable. The reason is that in our case the
final baryon �+ contains no heavy quark, and thus we can-
not equate its velocity with its constituent quarks, namely
the momentum relation pu,s = (m̄u,s/m�)p� cannot be
used any more. The amplitude for the final quark radiation is
calculated in the full theory. It can be written as

AOi
Final = −i

GF√
2
VcsV

∗
ud Ci ε∗

μ(k)

×
∫

d4x 〈�(p)|T { jμ(0)Oi (x)}|�c(q)〉, (9)

where jμ = i Quūγ μu + i Qs s̄γ μs is the quark electro-
magnetic current. According to the Ward-identity, the matrix
elements appearing in Eqs. (8) and (9) can be parameterized
as

〈�(p)|J μ

Oi
(0)|�c(q)〉 = i ε∗μ(k)ū�

×
(
a+
i,J + b+

i,J γ5

)
σμν kν

m�c

u�c(q), (10)

where J μ

Oi
= Jμ

Oi
+ kαK

αμ

Oi
for the initial radiation and

J μ

Oi
= ∫

d4xT { jμOi (x)} for the final radiation. The ampli-

tudes a+
i,J , b+

i,J will be calculated using LCSR in the next
section.

3 Hadron level calculation in LCSR

Now we present the calculation of �+
c → �+γ decay width

within the LCSR approach. To obtain the matrix elements
given in Eq. (10), one has to define a suitable correlation
function and calculate it both at the hadron and the QCD
level. Matching these two levels by the quark–hadron duality

enables us to extract the decay amplitudes. Here we define a
two-point correlation function as:

�Oi ,J (p, q) = pμ

∫
d4x e−iq·x 〈�(p)|T {JOi

μ (0) J̄�c (x)}|0〉,
(11)

where J̄�c is a current creating the �c baryon and its explicit
form will be given later. Here, we have contracted the correla-
tion function with a momentum vector pμ. Without this con-
traction, the correlation function will have 12 independent
structures γμ, γμγ5, γμ/q, γμ/qγ5, pμ, pμγ5, pμ/q, pμ/qγ5,

qμ, qμγ5, qμ/q, qμ/qγ5, 1, γ5, /q , and /qγ5. However, in
Eq. (10) there are only two independent amplitudes. Thus
it will become ambiguous which two of the 12 structures
should be chosen to extract the two amplitudes. Contracting
the momentum vector pμ reduces the number of indepen-
dent structures to four, namely 1, γ5, /q, /qγ5, which is still too
much. This mismatch can be solved by doubling the number
of amplitudes, as will be explained next.

At the hadron level, this correlation function is calculated
by inserting a complete set of states between the two cur-
rents. The lowest single particle state should be explicitly
kept while the higher excited states will be attributed to the
continuous spectrum. To match the four independent struc-
tures of the correlation function with the number of decay
amplitudes, we have to introduce two extra amplitudes from
the decay of the negative parity state �c(1/2−). Similarly to
Eq. (10), the corresponding amplitudes are

i ε∗μ(k)ū�

(
a−
i,J + b−

i,J γ5

)
σμν

kν

m�c

(iγ5)u�c (q). (12)

Now we have four amplitudes a±
i,J , b±

i,J mapping to the four
structures 1, γ5, /q, /qγ5. Keeping both the two lowest states
�c(1/2±) and attributing higher excited states to the con-
tinuous spectrum, we express the hadron level correlation
function of Eq. (11) as

�Oi ,J (p, q)H = λ+
m2

�c+ − q2
ū�(a+

i,J + b+
i,J γ5)σμν

× (/q + m�c+)
pμkν

m�c+

+ λ−
m2

�c− − q2
ū�(a−

i,J + b−
i,J γ5)
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× σμν(/q − m�c−)
pμkν

m�c−

+
∫ ∞

sth

ds
ρOi ,J (s, p)

s − q2 . (13)

The last term is the continuous spectrum contribution includ-
ing all the states above the �c(1/2−). sth is the threshold
parameter of this continuous spectrum and should be larger
than m2

�c−. λ± are the decay constants of the �c(1/2±)

which are defined as

〈�c(1/2+)(q)| J̄�c (0)|0〉 = ū�c (q)λ+,

〈�c(1/2−)(q)| J̄�c (0)|0〉 = ū�c (q)(iγ5)λ−. (14)

The same correlation function should also be calculated
at the QCD level, which can be expressed as a dispersion
integral:

�Oi ,J (p, q)QCD = 1

2π i

∫ ∞

m2
c

ds
Disc �Oi ,J (p, s)QCD

s − q2 .

(15)

The discontinuity part can be parameterized as:

Disc �Oi ,J (s, p)QCD = F (1)

Oi ,J /qγ5 + F (2)

Oi ,J /q

+ F (3)

Oi ,J γ5 + F (4)

Oi ,J . (16)

In principle, the correlation function calculated at the hadron
and the QCD level should be equivalent. According to the
quark-hadron duality, the continuous spectrum contribution
in Eq. (13) is canceled by the corresponding QCD level dis-
persion integral in the region sth < s < ∞. Furthermore,
since the QCD level calculation can only be explicitly per-
formed using a light-cone expansion (LCE), one has to per-
form a Borel transformation of the correlation function at
both levels to improve the LCE convergence. Finally one
can extract the amplitudes as

a+
i,J = 1

π

∫ sth

m2
c

ds e
m2

�c+−s

T2
m�c+

[
m�c−F(2)

Oi ,J + F(4)
Oi ,J

]

λ+(m�c+ + m�c−)(m�c+ − m�)2 ,

b+
i,J = 1

π

∫ sth

m2
c

ds e
m2

�c+−s

T2
m�c+

[
F(3)
Oi ,J − m�c−F(1)

Oi ,J
]

λ+(m�c+ + m�c−)(m�c+ + m�)2 ,

(17)

where T2 is the Borel parameter which will be determined
during the numerical calculation. Here, a−

i,J , b−
i,J are not

shown since we only care about the decay amplitudes of the
�c(1/2+). The coefficients F (n)

Oi ,J will be explicitly calcu-

lated by the LCE at the QCD level.

4 QCD level calculation in LCSR

In this section, we will use light-cone expansion to calculate
the correlation function defined in Eq. (11), and extract the
coefficients F (n)

Oi ,J . Now the correlation function reads

�Oi ,J (p, q)QCD = pμ
∫

d4x e−iq·x 〈�(p)|T {JOi
μ (0) J̄�c (x)}|0〉,

with J̄�Q = −εabc Q̄c(d̄bCγ5ū
T
a ), (18)

where a, b, c are color indices. Here, q2 � 0 is taken in the
deep Euclidean region to realize the light-cone expansion.
Let us take i = 1 and J = J as an example to illustrate the
detailed calculation for the c quark radiation.

At leading order the corresponding correlation function
becomes

�c
Oi ,J (p, q)QCD = −2i Qcλcεabc pμ

×
∫

d4x e−iq·x [γ ν(1 − γ5)∂
μ
wSc(w, x)]ig

× [γν(1 − γ5)Sd (0, x)Cγ5]kn〈�(p)|s̄ic(0)ūkb(0)ūna(x)|0〉,
(19)

where Sq(x, y) is the free propagator of the quark q. Fig-
ure 2a shows the corresponding Feynman diagram, where
the black dot at coordinate x denotes the �c current and the
white crossed dot at coordinate 0 denotes the effective current
Jμ

O1,c
.

The last matrix element in Eq. (19) is represented by
the grey ellipse in Fig. 2, which can be parameterized by
the LCDAs of the �+. The three leading twist LCDAs are
defined as [22–26]

〈�(p)|s̄ic(0)ūkb(0)ūna(x)|0〉 = −1

4
εabc

×
∫

du1du2du3δ(1 − u1 − u2 − u3) e
iu1 p·x

×
{
[ū Bγ5]i [C /̃n]knV B(u1, u2, u3)

+ [ū B]i [Cγ5 /̃n]kn AB(u1, u2, u3)

+ i ñαgβρ
⊥ [Cσβα]kn[ū Bγργ5]i T B(u1, u2, u3)

}
, (20)

where g⊥
μν = gμν − (ñμnν + ñνnμ)/(ñ · n) with ñμ =

pμ − (m2
�/2p · n)nμ and n is a light-cone vector. ū B =

ū�/n/p/2m� with u� the Dirac spinor of the �+ baryon. The
coordinate x of the quark field is parallel to n, x = (x ·
p/m�)n, where we have used p = m�v, v = (n+ n̄)/2 and
n · n̄ = 2. In the chiral limitmu = md = 0 the contribution of
V B and AB to the correlation function vanishes. The explicit
form of T B of the �+ baryon now reads

T B(u1, u2, u3) = 120u1u2u3

(
π B

00P00 + π B
11P11 + . . .

)
,

(21)
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Fig. 2 Diagrams for the QCD level correlation function in Eq. (18).
a Is the initial quark radiation where the white crossed dot denotes the
effective four-quark currents in Eq. (7). b is the final s quark radia-

tion where the white crossed dot denotes the current jμ. The black dot
denotes the �c current. The grey ellipse represents the LCDAs of the
�+

where the Pi j are polynomials, P00 = 1, P11 =
7 (u1 − 2u3 + u2) [22]. π B

00 and π B
11 are the shape parameters

which encode all non-perturbative information of the baryon.
The numerical value of these parameters will be taken from
the Lattice calculation [22]. The ellipsis denotes terms of
higher power polynomials, which are suppressed and omit-
ted here. Nowadays the Lattice calculation has only provided
the leading twist LCDAs for the octet baryons. Thus in this
work we will only perform the calculation up to the leading
twist.

Using the �+ LCDAs given above, we can express the
correlation function in Fig. 2a as

�c
Oi ,J (p, q)QCD = −3i Qcλc

× 1

2m�

∫
du1du2

∫
d4x

∫
d4k1

(2π)4

d4k2

(2π)4 e−i(q−k1−k2−u1 p)·x

× T B(u1, u2, 1 − u1 − u2)
1

k2
1 − m2

c

1

k2
2

p · k1

×
[
pαgρβ +

(
1

2
m�gρα − 1

m�

pρ pα

)
nβ + 1

2
pαnβnρ

]
nκ

× ū�γκ /pγργ5γ
ν(1 − γ5)(/k1 + mc) tr[γν(1 − γ5)/k2σαβ ]. (22)

Here, we have defined T̃ B(u1, u2) = T B(u1, u2, 1 − u1 −
u2). Note that since n = (m�/x · p)x , we can use the fol-
lowing trick to remove the x in the denominator:

∫
du1du2

∫
d4x e−i(q−k1−k2−u1 p)·x T̃ B (u1, u2)nκ · · ·

= m�
∂

∂qκ

∫
du1du2

∫
d4x e−i(q−k1−k2−u1 p)·x T̃ B

(1)(u1, u2) · · · ,

(23)

where the ellipses represents all the terms independent of
u1, u2, and

T̃ B
(i)(u1, u2) =

∫ u1

0
dt T̃ B

(i−1)(t, u2)

with T̃ B
(0)(t, u2) = T̃ B(t, u2). (24)

From Eq. (23), it follows that for each nκ one can equivalently
replace it with an operator n̂κ = m� ∂/∂qκ and simultane-
ously replace T̃ B with T̃ B

(1). Therefore, the correlation func-
tion takes the form

�c
Oi ,J (p, q)QCD = −3i Qcλc

1

2m�

×
∫

du1du2 N [n̂, T B
(i)]αβρκ

∫
d4k1

(2π)4

d4k2

(2π)4

× (2π)4δ4(q − u1 p − k1 − k2)
1

k2
1 − m2

c

1

k2
2

p · k1

× ū�γκ /pγργ5γ
ν(1 − γ5)(/k1 + mc) tr[γν(1 − γ5)/k2σαβ ],

(25)

where the operator N is defined as

N [n̂, T B
(i)]αβρκ = n̂κ

[
pαgρβ T̃ B

(1)(u1, u2)

+
(

1

2
m�gρα − 1

m�

pρ pα

)
n̂β T̃ B

(2)(u1, u2)

+1

2
pα n̂β n̂ρ T̃ B

(3)(u1, u2)

]
. (26)

Now we have to express the QCD level correlation func-
tion as a dispersive integral. The discontinuity part can be

123
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extracted from the cutting rules:

Disc �c
Oi ,J (p, q)QCD = −3i Qcλc

(2π)2

2m�

N [n̂, T B
(i)]αβρκ

×
∫

du1du2

∫
d�2[(q − u1 p)

2] p · k1

× ū�γκ /pγργ5γ
ν(1 − γ5)(/k1 + mc) tr[γν(1 − γ5)/k2σαβ ],

(27)

where

d�2[(q − u1 p)
2]

=
∫

d3k1

(2π)3

1

2Ek1

d3k1

(2π)3

1

2Ek1

δ4(q − u1 p − k1 − k2)

(28)

is the two-body phase space integration, which corresponds
to cutting off the c, d quark loop in Fig. 2a. Further,
�c

O2,J (p, q)QCD = −�c
O1,J (p, q)QCD so that we only

have to calculate the amplitudes induced by O1. The inte-
gration in Eq. (27) is involved but straightforward, so we
will not present further calculational details here.

For the case of the final quark radiation, the correspond-
ing diagram is shown in Fig. 2b, where we take the s quark
radiation as an example. The calculation for this diagram is
similar to Fig. 2a and the only difference is that now we have
an extra s quark propagator:

1

(q − (u1 + u2)p)2 = 1

u3(s − (u1 + u2)m2
�)

. (29)

It should be mentioned that for the final quark radiation
JOi

μ (0) is an composite operator of jq ′μ and Oi , so that
the hadron level correlation function in Eq. (11) is actually
induced by three operators. However, since we only insert a
complete set of states between JOi

μ (0) and J̄�c (x), the com-

posite operator JOi
μ (0) is not disconnected. Therefore, at the

QCD level when extracting the discontinuity part, we only
have to cut off the c, d quark loop in Fig. 2b and keep the s
quark propagator unchanged.

5 Numerical results

We first give the input parameters. We use the MS masses
for the quarks, mc(μ) = 1.27 GeV and ms(μ) = 0.103 GeV
with μ = 1.27 GeV [27]. The masses of u, d quarks are
omitted. The composite masses of the c, d quarks are taken
as m̄c = 1.6 GeV and m̄d = 0.32 GeV [21]. The masses of
the baryons are m� = 1.19 GeV, m�c+ = 2.286 GeV and
m�c− = 2.6 GeV [27]. The decay constant of the �c(1/2+)

is taken as λ+ = 0.01 ± 0.001 [28]. From Eq. (17), it can be

seen that the amplitudes are proportional to the inverse of λ+
so that its uncertainty may affect the result a lot. Therefore,
we will include the uncertainty of λ+ when evaluating the
uncertainty of the decay amplitudes. The shape parameters
of the �+ LCDAs are taken from a lattice calculation with
N f = 2+1 and vanishing lattice spacing limit a → 0: π B

00 =
5.14 × 10−3 GeV2 and π B

11 = −0.09 × 10−3 GeV2 [22].
Further, the LCSR contains two kinds of extra parameters,

namely the threshold parameter sth and the Borel parameter
T2. The threshold parameter should in principle be process
independent and only related to the corresponding hadron
state. Here, sth is taken from a QCD sum rules study on the
decay constant of the �c [28]: sth = 2.852 GeV2. Generally,
the sum rules results are sensitive to the threshold parame-
ter, thus here we consider a small uncertainty ±0.5 GeV2

near this value to evaluate the uncertainty from the threshold
parameter on the decay amplitudes.

Generally, the Borel parameter T2 is chosen to satisfy three
requirements. First, T2 cannot be too large so that the contin-
uous spectrum contribution is suppressed. Second, T2 must
be large enough to ensure the light-cone expansion to con-
vergence. Finally, the result must be stable in a window of
T2. The first and the second requirement can determine the
upper and lower bound of the T2 window, respectively. Fig-
ure 3 shows the amplitudes a+

i,J and b+
i,J as functions of

T2. To determine the upper bound, we require that the pole
contribution must be larger than the continuous spectrum
contribution, namely:

∫ sth

m2
c

ds e−s/T 2
Disc �Oi ,J (p, s)QCD

∫ ∞

m2
c

ds e−s/T 2
Disc �Oi ,J (p, s)QCD

> 0.5. (30)

The numerator is the pole contribution, which represents
the integral on the right-hand side of Eq. (17). The denomina-
tor is the same integral but the upper limit of s is extended to
infinity, which contains both pole and continuous spectrum
contributions. Note that although the value for this fraction
is derived from experience, as long as the third requirement
for stability is satisfied, the result will be insensitive to this
fraction, and its uncertainty can be attributed to choosing the
window of T2.

On the other hand, in principle, the lower bound of the
T2 is determined by the ratio between the contribution from
the leading order and next-to-leading order QCD corrections
to the perturbative kernel. However, in this work only the
leading order contribution is considered so that this method
cannot be used. Following our previous work [29], to get the
window of T2, we can set the center value of T2 as its upper
bound, and find a range ±1 GeV2 around this center value.
The amplitudes and the corresponding errors from the uncer-
tainties of sth, T2 and λ+ are listed in Table 1. Note that the

123



Eur. Phys. J. C (2023) 83 :224 Page 7 of 9 224

Fig. 3 Decay amplitudes a+
J and b+

J (in unit 10−3 GeV2) as functions of the Borel parameter T 2. In each diagram, the blue band denotes the error
from the uncertainty of the threshold sth = 2.852 ± 0.5 GeV2. The upper and lower red bands denote the error from the uncertainty of λ+

center value of the T2 is already in a relatively stable region as
shown in Fig. 3, thus the procedure given above is sufficient
for determining the errors of the amplitudes. Generally, the
Borel parameters are close to the corresponding mass square
of hadrons. From Table 1, the T2 s for initial-state radiation
are close to m2

�c
which is as expected. However, the T2 s for

final-state radiation are much smaller. The reason is that in
Fig. 2b the extra propagator as shown in Eq. (29) provides
a lighter mass scale m� . Now the s dominates around m2

� ,
which reduces the optimal value of T2.

Using the amplitudes given in Table 1, we can obtain the
decay width of the �+

c → �+γ from the formula

�
(
�+

c → �+γ
) = 1

8π m2
�c+

(
m2

�c+ − m2
�

m�c+

)3

× G2
F

2
|VcsVud |2(C1 − C2)

2
(
|a|2 + |b|2

)
(31)

with a = a+
Ini + a+

Fin and b = b+
Ini + b+

Fin. The Wilson
coefficients are taken as C1 = 1.22 and C2 = −0.43 at
μ = mc [30]. The CKM matrix elements are |Vcs | = 0.975
and |Vud | = 0.973 [27]. Using the �+

c lifetime τ(�+
c ) =

2.01 × 10−13 s [27], we can obtain the branching fraction

B(�+
c → �+γ ) = 1.03 ± 0.36 × 10−4, (32)

which is below the experimental upper limits given recently
by the Belle and BESIII Collaborations [17,18]:

BBelle(�
+
c → �+γ ) < 2.6 × 10−4,

BBESIII(�
+
c → �+γ ) < 4.4 × 10−4. (33)

Table 2 gives a comparison of the �+
c → �+γ branching

fraction from this work, the result from the Belle Collab-
oration, the modified nonrelativistic quark model (NRQM)
[19], the constituent quark model (CQM) [20] and the effec-
tive Hamiltonian approach (EHA) [21]. The branching frac-
tion from the CQM is slightly larger than the experimental
upper limit, while the branching fractions from other theo-
retical methods are nearly one order smaller than the upper
limit. Our result is between these theoretical predictions and
the experimental upper limit. Due to the limitation on the
data sample and resolution, an extremely small branching
fraction is difficult to be measured. However, the relatively

123



224 Page 8 of 9 Eur. Phys. J. C (2023) 83 :224

Table 1 Decay amplitudes a+
J and b+

J (in unit 10−3 GeV2) and the corresponding Borel parameters (GeV2) for the initial- and the final-state
radiation

a+
Ini T2 b+

Ini T2 a+
Fin T2 b+

Fin T2

−6.03 ± 1.22 5.5 ± 1.0 0.37 ± 0.11 4.7 ± 1.0 −1.56 ± 0.17 2.3 ± 0.5 0.13 ± 0.05 1.45 ± 0.5

Table 2 Comparison of the branching fraction B(�+
c → �+γ ) from

this work with those from the literature and the experiments

Method B(�+
c → �+γ )

This work 1.03 ± 0.36 × 10−4

NRQM [19] 3.2 × 10−5

CQM [20] 2.8 ± 0.6 × 10−4

EHA [21] 4.9 × 10−5

Belle [17] < 2.6 × 10−4

BESIII [18] < 4.4 × 10−4

larger branching fraction predicted in this work is more likely
to be tested by future experiments.

6 Conclusion

We have calculated the decay width of �+
c → �+γ using

light-cone sum rules. For the initial quark radiation we con-
structed an effective Hamiltonian to simplify the calculation,
where the internal quark line shrinks to a point. The final
quark radiation is studied utilizing the full theory. The lead-
ing twist light-cone distribution amplitudes of the �+ serve
as the non-perturbative input for the sum rule calculation,
and the perturbative kernel is calculated at leading order.
The branching fraction we obtain is B(�+

c → �+γ ) =
1.03 ± 0.36 × 10−4, which is between previous theoretical
predictions and the experimental upper limits. Considering
the data sample and resolution of the experiment, we believe
that our prediction can be tested in the near future.
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