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Abstract By linearly parameterizing the QCD Landau free
energy near the critical point in the baryon chemical potential
and temperature plane, we study the fluctuations of the QCD
chiral order parameter field (the o field) in the equilibrium
case and dynamical phase transition, respectively. By setting
the system size to the typical size of the QGP fireball (= 103
fm3), we show that in the equilibrium case, the discontinuity
of the order parameter in the first order phase transition region
is replaced by smooth crossover, and the corresponding fluc-
tuations are broadened. Meanwhile, the quartic cumulant x4
of the o field is generally negative near the phase transition
line. We further derive the dynamical evolution of the QCD
Landau free energy in the Fokker—Plank framework, based
on which we deduce the dynamical cumulants of the o field.
Assuming the temperature decreases as a known function
of time, we numerically evaluate the dynamical cumulants
and confirm that the cumulants present clear memory effects.
Moreover, the memory effects on the first order phase tran-
sition side is stronger than that on the crossover side, and
the dynamical cumulants at the hypothetical freeze-out line
present rich non-monotonic structures.

1 Introduction

The QCD phase structure has been of intensive theoreti-
cal and experimental interest for decades [1-6]. In vari-
ous extreme conditions, theoretical studies predict differ-
ent phases of the QCD matter, such as quark-gluon plasma
(QGP), hadronic resonance gas (HRG), and color supercon-
ductor. Of great interest is the chiral phase transition (x PT)
between the hot QGP phase and the HRG phase [7-9]. For
small baryon chemical potential w, lattice simulations show
that the transition is a broad crossover [10-13]. For large u,
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the sign problem of lattice QCD prevents full ab initio simu-
lations. The phenomenological models such as the Nambu—
Jona-Lasinio model [14-17] and quark-meson model [18—
20], and non-perturbative methods like Functional Renor-
malization Group method [21] and Dyson—-Schwinger equa-
tion [22,23] provide relatively complete description on the
x PT, predicting crossover at small p, first order phase tran-
sition at large u, and the existence of a QCD critical point.

On the other hand, owing to the strong coupling between
the chiral o field and quarks in QCD-inspired models, the
high-order cumulants of net-proton production are expected
to be sensitive to the increase of fluctuations of the o field
near the critical point [24,25]. The related observables are
being measured by the STAR collaboration at the Relativis-
tic Heavy Ion Collider (RHIC) [26-28]. The latest experi-
mental data of ko2 for the net-proton production presents
a non-monotonic variation as a function of collision energy
for the region /syy = 7.7-200 GeV in the Au + Au central
collisions [28], which partially agrees with theoretical expec-
tations [24]. However, as shown in Ref. [29], by introducing a
freeze-out scheme to the hydrodynamics, the model calcula-
tions of the equilibrium critical fluctuations of the net protons
still failed to qualitatively explain the full experimental data.
It presented the limitation of thermal equilibrium assumption
and suggested that the critical dynamics should be taken into
account for the description of dynamical y PT in heavy ion
collision.

In recent years, to study the dynamics of non-equilibrium
fluctuations, including the dynamical evolution of the order
parameter field and the diffusion of the conserved charges,
different dynamical models have been developed [30-36].
The dynamical critical fluctuations consistently present clear
memory effects and critical slowing down effects. As aresult,
both the sign and the magnitude of the high order cumu-
lants can be different from the equilibrium ones, and the
kurtosis shows non-monotonic behaviors. To be closer to the
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experimental process in RHIC, the coupled dynamical evolu-
tion of the critical modes and the hydrodynamic background
are further developed, like that has been done in the chi-
ral hydrodynamics [37—41] and hydro+ [42-45]. Moreover,
other kinds of factors such as the spatially nonuniform tem-
perature (and chemical potential) effects on the fluctuations
of the order parameter [46], the non-critical fluctuations [47],
and the proper freeze-out scheme [29,48] will also influence
the theoretical predictions significantly.

As amain component of the critical dynamics, parameter-
ization of the QCD equation of state through the Ising map-
ping is usually applied to get insight into the universal behav-
iors in the critical region [49-52]. However, due to the discon-
tinuities of QCD equation of state on the first order phase tran-
sition side, the critical dynamics remains unclear and requires
more exploration. In this paper, we focus on the dynamics
of critical fluctuations in the x PT region (including the first
order phase transition and crossover) rather than building
the complete dynamical modeling. We provide an alterna-
tive way to parameterize the QCD Landau free energy in
different phase transition scenarios (which also serves as the
basis of our discussion on the spatially nonuniform tempera-
ture effects in Ising-like models [46]), evaluate the finite size
effects of the QCD matter on the order parameter and fluctua-
tions, and develop a distinct set of dynamical equations based
on the Fokker—Plank equation to study the dynamical free
energy and the dynamical cumulants. The article is structured
as following. In Sect. 2, we linearly parameterize the Landau
free energy in the (i, T) plane, where both the crossover and
the first order phase transition side are described. In Sect. 3,
we set up the parameters in the free energy and present the
results of the equilibrium cumulants in the system of differ-
ent volumes. In Sect. 4, we deduce the dynamical free energy
based on the Fokker—Plank equation. In Sect.5, we numer-
ically calculate the non-equilibrium cumulants at different
scenarios and on a hypothetical freeze-out line with a fixed
volume V = 103fm3. Finally, in Sect. 6, we summarize the
main results of this paper and give a discussion.

2 Parameterization of the free energy

Because the critical behaviors of the o field fall into the same
universality class as the 3D Ising model [53], in principle,
one can parameterize the QCD equation of state by directly
mapping the QCD parameters (u, T) to the Ising variables
(r, h),asisdonein Refs. [54-57]. Combined with the dynam-
ical models, there are various interesting dynamical effects
presented, like memory effects and universal off-equilibrium
scaling behaviors [31,36,55,58]. However, the early studies
focus their discussions of critical dynamics on the crossover
side, due to the discontinuities of the equations of state in the
first order phase transition region. In this section, we develop
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an alternative method to directly parameterize the QCD free
energy, in which the two phase transition scenarios are uni-
fied in a same framework.

According to the Landau theory of phase transition, the
free energy in the critical region is supposed to be analytic
and obeys the symmetry of the Hamiltonian. Then, the Lan-
dau free energy density of the x PT[59,60] can be generally
written in terms of the o field as

ar(u, T) 5 a3(u,T) 53 oa(u,T) 4
> o+ 3 o+ 2 o,
(1

2[o] =ai(u, T)o+

which is Taylor expanded as a function of o up to the fourth
order. The constant term is omitted because it is irrelevant to
the structure of the QCD phase diagram. Note that a zero-
momentum mode approximation of the o field is assumed
in above, because we focus on the phase transition region in
the vicinity of the critical point, where the long-wavelength
modes are dominant. The distribution of the critical field is
described by the probability distribution function P[o]
exp{—82[c]V/T}[24], where V is the volume of the system.
In the chiral limit, «; = a3 = 0, while for the physical world,
a finite 1o term is introduced to handle the explicit chiral
symmetry breaking of the quark masses [61]. The cubic term,
a303 , emerges after the renormalization contributed from the
high-momentum modes of the o field. The coefficient of the
quartic term, a4, is supposed to be positive, in order to sustain
the stability of the system.

In the thermodynamic limit (V' — 00), the phase structure
is fully determined by the global minimum of the free energy
(1). It is convenient to present the information of the x PT by
performing a translation transformation for the o field in the
free energy, i.e, 0 = ¢ + o, where

a3, T)

el ) = = 1)

@)
Consequently, the cubic termin Eq. (1) can be eliminated, and
we obtain the translated free energy density (after getting rid
of a constant term)

3 1 o )
QUG =1 (1, T)G + 12 (1, T)6%+ 27 Gt T)6%,
3)

which has exactly the same form as the free energy density
of the Ising model. The redefined coefficients, n;, can be
expressed as functions of the original coefficients «; and the
shift o, by

m = a1 + ax0e — 20402, 4)
M=oy — 305403, (5)
N4 = 0. (6)
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Fig. 1 A sketch of the QCD phase diagram. The colored 4 zones (I-
1V) are sorted according to the sign of 1| and ;. The dash-dotted lines
determined by A = (2% )24+ (3% )3 =0, are the boundary of the region
where two local minima coexist in the free energy

Now the ¢ field has become an effective order parameter,
which behaves just like the spin density in the Ising model.

With the translated free energy, we can divide the phase
spaces in the p-T plane into four zones, according barely to
the sign of n; and 1. As shown in Fig. 1, the phase transition
line is determined by n; = 0, and the order of the phase
transition is determined by the sign of 7;. At the right part of
the diagram (zone II and IV), 2 < 0, the phase transition is
first order, as there is a coexistence region around the phase
transition line, in which two local minima of the free energy
coexist. The coexistence region is separated out by the dash-
dotted lines, which are determined by A = (2%)2 + (3%)3 <
0. The physical vacuum locates at the lower minimum of
the free energy. This is the typical feature of the first order
phase transition. For the other parts of the u-7 plane where
A > 0, only one minimum exists, and the system undergoes a
continuous phase transition (crossover) as 1 crosses its zero
point. The sign of n; determines the location of the global
minimum. In general, in the upper regions (zone I and II),
with n; > 0, the global minimum is ato < 0 (i.e. 0 < o.);
while in the lower regions (zone III and IV), with n; < 0,
the global minimum is at 6 > 0 (i.e. 0 > o). At the critical
point (., T¢), both 11 and 1, vanish.

To parameterize the coefficients in §2[& ] linearly, it is con-
venient to define two unit vectors b = (cos 6y, sin ;) and
b’ = (cos 6y, sin ) in the u-T plane. The vector b is par-
allel to the tangent of the phase transition curve at the critical
point; The vector b’ is along the boundary of region I and
II in Fig. 1. Note that b and b" are not necessarily orthogo-
nal. The angle between them are determined by the realistic
QCD equation of state around the critical point, which is still
under study. By projecting the vector (& — ., T — T;) onto
the perpendicular vector of b and that of b’, respectively, the
coefficients are linearly parameterized as:

mu, T) = dil(n — pe) sinp — (T — Te) cos Op], 7
m(u, T) = dal— (u — pe) sinby + (T — T;) cos O], (8)
na(pu, T) = ds. C)

With these projections, the sign of n; and 1, at different parts
(I-IV) can be correctly expressed by simply constraining all
the constants to d; > 0 (i = 1, 2, 4), i.e., in the right side of
the vector b, 1 > 0, and in the left side of b’, 7, > 0. Note
that the magnitude of d; are again determined by the QCD
equation of state, which currently remains unknown. In the
following, for simplicity and illustration, we treat them as
input parameters, and make qualitative calculations and dis-
cussions. Along the phase transition curve, 11(u, T) = 0,
the correlation length is £ = n, 12 on the crossover side
and £ = (—212)~'/? on the first order phase transition side,
which diverges at the critical point where 7, = 0[4]. In the
critical region, we assume that the change of o, on the phase
transition line is small and treat the variable o.(u, T) as a
constant, o. (i, T) = oc(i¢, T¢), in the zero-order approxi-
mation of variables u — u. and T — T,. Then, the translated
free energy density (3) is fully parameterized by u., T, oc,
dy, dy, ds, 0p, and 0. By using the relations Egs.(2) and
(4)—(6), the original free energy $2[c] (Eq. (1)) can also be
expressed in the parameterized form.

Through the transformation from Eq. (1) to Eq. (3) and the
parameterization Egs. (7)—(9), we have built the connection
between the QCD free energy and the Ising free energy at
the mean-field level. Indeed, Eqgs.(7) and (8) describe the
dependence of n; and 1, on the QCD variables (i, T) in
the linear approximation, and the coefficients 11 and 77 in
the translated free energy (Eq. (3)) are directly related to the
reduced magnetic field and temperature 4 and r in the Ising
model, respectively. Note that the current parameterization
of the QCD free energy is only up to the linear order, which
works in the region close to the critical point. When treating
a larger region in the u-7T plane, higher order expansions
of w — e, and T — T, should be taken into account. It is
worth stressing that this parameterization can also be applied
to the (hadronic) gas-liquid phase transition [62,63] or to
other similar scenarios, as long as they belong to the same
universality class. With this parametric free energy, we can
easily develop approaches to study the equilibrium and non-
equilibrium cumulants in different phase transition scenarios,
as will be shown in the following sections.

3 Parameter setup and equilibrium cumulants
In this section, we calculate the equilibrium cumulants based

on the above parametric Landau free energy. The cumulants
of the o field are defined as

Kl = 1, (10)
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K2 = pa — 1, (1D
K3 = 13 — 3papn + 201, (12)
Ka = g — 4puspn — 30 + 12u0p00% — 6%, (13)

where the moments w, are

= (o) = /daa”P[a]//daP[a], (14)
and the probability distribution function for the o field is
Plo] xexp{—£2[c]V/T}. (15)

The numerical calculation of the cumualnts are imple-
mented with the following setup of parameters: (i, I) =
(240, 170) MeV, o, = 50 MeV, d; = 3 x 10* MeV?,
dry = 400 MeV, dy = 15, sinfy = —cosf, = 0.99, and
cos @y = sin@, = 0.141. Here, b L b’ is set for simplicity.
The choice of these parameters are constrained by compar-
ing with the effective potential and cumulants from the linear
sigma model with constituent quarks in [37], with which the
equilibrium values of the cumulants in the phase transition
region are approximately of the order «,, ~ 10" MeV".

Note that the discussion and parameterizations of the free
energy density (1) in above is in the thermodynamic limit. In
reality, especially in the experimental environment, the size
of the QGP fireball in the heavy ion collision is finite (the
typical volume of the fireball is approximately V = 103 fm?).
The finite size has a direct influence on the renormalization
process. Consequently, the coefficients «; in Eq. (1) depend
on the volume, and further, the parameters w., T¢, oc, di,
dy, da, Op, and 6) are also volume-dependent. There is a
standard process for the renormalization of the coefficients of
the free energy [64]. However, even through the volume will
change the magnitude of the parameters, the parameterized
form of the Landau free energy density will not be changed.
Therefore, in this article, we will not discuss the finite size
corrections to the free energy density itself but simply utilize
the same parameter set for different volumes to study the
behaviors of the cumulants.

Even without considering the influence on the free energy
density from the renormalization of size, we still have to
face the finite-volume effects on the fluctuations of the o
field as shown in the probability function (15). In Fig.2a,
we present the first two order cumulants of the o field with
respect to temperature for different volumes. The chemical
potential is fixed at © = 250 MeV so the system undergoes
a first order phase transition as the change of temperature.
For a large enough volume (say 10°fm?), the expectation
value k; = (o) is discontinuous because the barrier of the
free energy (A$2V) can not be overcome by the thermo-
dynamic fluctuations, i.e., A2V > T. The o field locates
only near the global minimum point and the variance «» is
also suppressed by the volume. Specifically, on the phase
transition line n; = 0, the correlation length of the o field
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Fig. 2 a The cumulants «; and «3 of the o field as functions of the
temperature with different fixed volumes in the first order phase tran-
sition regime. The chemical potential is fixed at © = 250 MeV. b The
k2, k3 and k4 as functions of volume in the crossover regime. The solid
lines are given by Eqs. (11)—(13). The dotted lines represent fluctua-
tions determined by the Gaussian approximation, ¥ = T&2/V, and
the perturbative results «3 and x4 [31]

is £ = (—212)""/? and the barrier is ARV = 3V /4na.
Thus, the discontinuity of the first order phase transition
becomes evident when V > 16T n4£*. For a smaller sys-
tem volume, the value of 7/ V in the probability distribution
function P[o] grows. As a result, in the first order phase
transition region, the o field is allowed to be at both of the
local minimum points of the free energy with considerable
probability, which leads to the enhancements of variance «».
Meanwhile, the expectation value «1 deviates from the global
minimum of the free energy, and its discontinuity is rounded.
Similar finite-size rounding effects of a first order phase tran-
sition can also be found in Refs. [65-67]. This hints that for a
small system, the perturbation theory around the global min-
imum does not work well anymore, and the equation of states
obtained in the thermodynamic limit [24,31] are not suitable
for the system with small size.

In Fig.2b, we also plot k>-k4 as functions of the volume
of the system for (7, n) locating in the crossover regime,
and make comparisons with the Gaussian fluctuations x, =
T&2/V and the perturbative non-Gaussian cumulants &3 =
~243(T/V)* €% and &g = 6 (T/ V)’ [2(:36) — 1416° [31].
For large volume, the variance k> is consistent with 7. But
as the decreasing of the volume, the non-Gaussian correc-
tions are enhanced as the widening of the variance, and
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Fig. 3 The equilibrium cumulants x; — x4 in the n;-n2 plane for
V = 103 fm>. The colors red and blue refer to negative and posi-
tive sign of the cumulants, respectively, and darker colors correspond
to larger magnitudes of the cumulants. 7, < 0 corresponds to the first
order phase transition region and 7, > 0 corresponds to the crossover
region. 71 = O refers to the phase transition line. In the subfigure 4,
the dotted blue lines mark the boundary where x4 changes the sign;
while as a comparison, the dashed purple lines are the boundary in
the thermodynamic limit case. The bottom-right subfigure shows the
setup of the dynamical evolution in Sect.5, and visualize the memory
effects with different relaxation rates. The grey lines are the contours
of  and T in the 11-1 plane. The dynamical evolution are set to be
along fixed chemical potentials, while the blue and red solid line are the
starting and hypothetical freeze-out line for the dynamical evolution.
The evolution direction is marked by arrows. The dashed red (green,
blue) line, on which the equilibrium «; on equals to the dynamical «
on the solid red line (hypothetical freeze-out line) with relaxation rate
Trel = 0.05(0.1, 0.2 fm), represents the effective freeze-out line due to
the memory effects of dynamics

lead to a significant deviation of xp from «x». The Gaus-
sian approximation is valid when the non-Gaussian contribu-
tions are small. Expanding Eq. (3) around the extreme point
om where 0582 = 0, the third and forth order coupling
constants of the fluctuation §6 defined as in Refs.[24,31]
become A3 = 3146, and A4 = n4. The corresponding con-
ditions for the validity of the Gaussian approximation are
13(86)3V/3T « 1 and A4(86)*V /4T <« 1. The typical
magnitude of §o is of the order of /¥3. Thus, the conditions
become V 3> (146,,)2E°T and V > n4&%T /4. Specially
on the phase transition line n; = 0, we have 6, = 0 and
the first condition is satisfied automatically. In the condition
of large volume, the higher order cumulants k3 and k4 also
become consistent with the perturbative results as shown in
the figure.

In the following calculations, we fix the system volume to
the typical size of the QGP fireball, V = 103 fm?. In Fig.3,

we present the density plots of the equilibrium cumulants
k7 — k4 in the n1 - n2 plane. The magnitude of «2, k3, and
k4 in the first order phase transition region (12 < 0) are gen-
erally larger than that in the crossover region (12 > 0) for a
given small n;. Similar to Ref. [24], k3 changes its sign after
crossing the phase transition line. On the other hand, unlike
the results in Ref.[24], k4 is generally negative (red color
region) near the phase transition line (n; = 0), for both the
crossover side and the first order phase transition side. The
change of sign for k4 happens at the dotted blue lines, inside
which the red color region is much larger than the region
rounded up by the dashed purple lines (refers to the sign-
change line of k4 in the thermodynamic limit). As explained
in the above paragraphs, the broadening of the negative x4
region on the first order phase transition side is due to the
rounding effects, since the two-peak shape of P[o] (for the
double-well of £2[o] with small volume) has less kurtosis
than the Gaussian distribution [57]. While in the thermody-
namic limit for the first order phase transition region, even
through the free energy §2[o] also has the double-well shape,
one peak of P[o] is strongly enhanced by the large volume
comparing to the other one, thus P[o] shapes like a one-peak
distribution and only the region near the global minimum of
2[o] is distributed. As a result, x4 is negative only in the
crossover region in the thermodynamic limit [57], striking
contrast to the results in systems of small size.

4 Dynamical equations for the free energy

In this section, we employ the Fokker—Plank equation to
study the dynamical behaviors of the parameterized QCD
free energy. The Fokker—Plank equation for the dynamical
probability distribution (denoted by P[o; t]) of the o field
is[31]

0 Plo;t] = ————05 {0 (2[0; 1] — $20[0]) Plo; 1]},
g Teff
(16)
where Q[o; t] = — %lnP[o; t] is the dynamical free energy

density and §2¢ [o] is the equilibrium free energy density at
the point (wu(t), T'(t)) (see Eq.(1)). The parameter ¢ is the
effective relaxation rate. m, is the equilibrium mass of the o
field, which is defined as

,  d*lo]

T T do? 1n

’o‘:o‘o’

where o9 is the global minimum of £2yp[o]. The following
calculation assumes that the dependence of the relaxation rate

@ Springer
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Tegr On the equilibrium correlation length &.q (u, T') satisfies

Teff = Trel (%) s (18)

where £&q = m_ ! [31]. Here e and &p; are the initial
relaxation rate and the initial equilibrium correlation length,
respectively. The value z = 3 is given by the dynamical crit-
ical exponent of Model H [68,69].

The time evolution equation of §2[c; ¢] is deduced from
Eq.(16), and we obtain

2 C1_
8 R[o:t] = [0 119, (m%) + T 05 (R2[0; 1] — Qol0])

1% m2 Tege
05 (2[0; 1] = $20[0]) 85 82[0; 1] (19)
m?;feff ’

By denoting 2[o;t] =), o (t)ai/i, the time evolution of
the coefficient «; () becomes,

dai (1) T\  iG+ DT [eip2(0) —af,]
= ()0 | In—
di Olz() t(nV)+ v m?jfeff
Lo (Dlej () = af,]
_ Z i—j+ 2j+ : j+1 , (20)
j:() mgfeff
where a(/.)( j = 1,...,4) are the coefficients for the equi-

librium free energy density £2p[o]. Note that different coef-
ficients of the o field couple with each other in the time-
evolution equations. As a result, the terms of o' with power
i > 4 emerge automatically after evolution, even though
they vanish at the initial setting. As before, by assuming the
contributions from higher power terms are negligible, the free
energy is cut off till the fourth order. By setting up the param-
eters of the dynamical system, we can numerically solve the
coupled equations in above, and study the dynamical behav-
iors of the physical quantities like the cumulants.

5 Non-equilibrium cumulants

As we have obtained the time evolution equation (20) of the
QCD free energy, we can study the corresponding dynami-
cal cumulants. For simplicity, in the following calculations,
we suppose that both the chemical potential and the volume
(Vv = 103 fm3) are fixed during the time evolution.! The
temperature is assumed to decrease as a function of time:

l“"l‘ref>_)L (21)

T(t) = Tini <
ref

I With our current setup of the parameters, the time evolution in the

critical region is very fast. Hence, the change of the volume during

the expansion is neglected. In realistic fireball system, the changing of

volume must be included.
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Fig. 4 The non-equilibrium cumulants with respect to the temperature,
for different relaxation rates. Here 1 = 250 MeV and V = 10° fm?
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Fig. 5 The non-equilibrium cumulants with respect to the chemical
potential on the freeze-out line, for different relaxation rates

where Tip; is the initial temperature, tef = 10 fm is a refer-
ence time and the exponent is set to be A = 0.45 [31].

In Fig.4, we plot the evolution of the cumulants for dif-
ferent relaxation rates, starting from an initial temperature
Tini = 185 MeV. The monotonicity of the equilibrium cumu-
lants are exactly memorized by the non-equilibrium cumu-
lants, and reproduced in the later evolution process. As the
increase of relaxation rate, the peaks and dips of the non-
equilibrium cumulants are suppressed, and the typical struc-
ture for each order of the cumulants appears in a later time.
Note that in the current finite size system, the memory effects
shown in Fig. 4 is similar for different chemical potentials for
both the crossover and the first order phase transition cases.

Next, we study the dynamical result of the o’s cumulants
at a hypothetical freeze-out line. The initial temperature and
the hypothetical freeze-out temperature are supposed to be
about 5.05 MeV above and 3.37 MeV below the phase transi-
tion temperature, respectively (i.e. n; = 1.5 x 10°> MeV? for
the initial state and n; = —1.0 x 105 MeV? for the final state,
marked as blue and red lines in the bottom-right subfigure in
Fig.3). In Fig.5 we present the non-equilibrium cumulants
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with respect to the chemical potential. With different relax-
ation rates, the non-equilibrium cumulants at large chemical
potentials (mainly on the first order side) significantly deviate
from the equilibrium cumulants, and develop rich structures.
Especially, for the blue line with 7, = 0.2 fm, k3 change
its sign, and x4 presents non-monotonic behaviors compared
to the equilibrium ones. These rich structures are suggestive
for the understanding of the STAR data[27].

The dynamical behaviors of the cumulants can be under-
stood from the equilibrium cumulants by considering the
memory effects. Let us define an effective freeze-out tem-
perature (for each chemical potential) where the equilibrium
expectation of the o field, k1, equals to the dynamical «; on
the freeze-out point. The effective freeze-out lines for differ-
ent relaxation rates are shown in the bottom-right subfigure of
Fig.3 (The dashed red, green and blue lines). From the equi-
librium cumulants x>—k4 on the effective freeze-out lines,
we can approximately read the sign of the non-equilibrium
cumulants in Fig. 5. Specifically, for x3, when the relaxation
rate is large, say tr] = 0.2 fm, the effective freeze-out line in
the crossover region is basically at the left side of the phase
transition line (n; < 0), while in the first order phase transi-
tion region, it is still at the right side of the phase transition
line (n; > 0), leading to a positive dynamical «3 (see k3 in
Fig.3). For «4, when 1] = 0.1 fm, the effective freeze-out
line falls into the negative x4 region; when 7] = 0.2 fm
(tre1 = 0.05 fm), the effective freeze-out line crosses the
right sign-change line of the x4 in the 11-1, plane (see k4 in
Fig.3). In general, the memory effects in the first order phase
transition region is more significant than that in the crossover
region (i.e. the cumulants record earlier information at larger
1), which is because in the first order phase transition region,
the barrier in the free energy strongly delays the dynamical
evolution of the o field.

6 Discussion

In summary, we parameterize the Landau free energy of the
xPT by mapping it to the Ising free energy. With the para-
metric free energy, we study the equilibrium cumulants in
a finite size system. The volume of the system significantly
influences the fluctuations of the o field. In the equilibrium
case, we find that for a typical QGP fireball size with volume
V = 103 fm?, the probability distribution of the o field is
broadened near the phase transition line, leading to enhance-
ments of the fluctuations and rounding of the discontinuities
on the first order phase transition side. Moreover, the fourth
order cumulant x4 of the o field is universally negative in
the phase transition region on both the crossover and the
first order phase transition side. Compared to the crossover
region, all cumulants in the first order phase transition region
are enhanced, due to the two-peak shape of ¢’s distribution

in the finite system (where the barrier of the free energy
density is of the order of T/ V). Utilizing the Fokker—Plank
equation, we derive the real-time evolution of the parametric
free energy, and further, by setting the cooling down pro-
cess of the system, we analyze the time evolution of non-
equilibrium cumulants at different phase transition scenarios
and non-equilibrium cumulants on the hypothetical freeze-
out line. We find that earlier information about the cumulants
are recorded in the first order phase transition region, com-
pared to the crossover region. Like the earlier studies, the
dynamical cumulants can be different from the equilibrium
ones from both the magnitude and the sign, and can be non-
monotonic on the hypothetical freeze-out line.

Note that in our study, we adopt the zero mode approxima-
tion which assumes the order parameter is uniform in space.
The nonzero modes can be further taken into account if one
employs the Ginzburg-Landau free energy. Moreover, due
to the flexibility of our parameterization, the parametric free
energy and its dynamical evolution can be easily combined
with a realistic dynamical model (like that in chiral hydrody-
namics [38—41] or Hydro+ [42]), to study the full dynamical
process with phase transition.

Now compare our method with the former studies on
the non-equilibrium cumulants in Refs. [31-34]. In Ref. [31],
they presented pioneering studies on the real-time evolu-
tion of non-Gaussian cumulants derived from the Fokker—
Plank equation. The QCD equation of state near the criti-
cal point in the thermodynamic limit is inspired from the
Ising model and the parameterization is realized by linearly
mapping QCD variables (u, T') to the Ising variables (r, h).
The resulted equation of state and the corresponding equilib-
rium cumulants could contain the quantum correction from
the fluctuations of the order parameter. However, the vol-
ume effects on the equation of state and cumulants are fully
omitted, which is valid when the correlation length is sig-
nificantly smaller than the size of the system. In this case,
the discontinuities of the equilibrium distribution function of
the o field hinder the simulation of critical dynamics with
the Fokker—Plank equation in the first order phase transition
region, which assumes the slight deviations of dynamical
probability distribution from the equilibrium one. As shown
in our study, when the size is small enough, the finite size
effects becomes significant especially in the first order phase
transition region. The rounding effects justifies the applica-
tion of the Fokker—Plank equation in the first order phase
transition region. In Refs. [32-34], the dynamical evolution
of cumulants on different phase transition scenarios were
studied based on event-by-event simulations of Langevin
equation. The effective potential of o is obtained by eval-
uating the linear sigma model. The evolution takes account
of the fluctuation effects (long wavelength modes) in the real
space. However, the shortcoming of this approach is the loca-
tion of the critical point is fixed by the model parameters of

@ Springer
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the linear sigma model, which is even far below the chem-
ical freeze-out line determined by the statistical model and
experimental data. Thus the dynamical equations of the crit-
ical fluctuations in Refs. [32,33] could not be combined with
the hydrodynamic equations, and describe the realistic exper-
imental process. In recent studies, the parameterization of
QCD equation of state with nonlinear corrections (consis-
tent with the lattice results) have been extended from the
critical region to a broader region in the p-T plane [50-52].
Similar further extension of the parameterization of the free
energy density will be important for studying the dynamic
evolution of critical fluctuations at RHIC.
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