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Abstract We revisit the analogy between a minimally cou-
pled scalar field in general relativity and a perfect fluid, cor-
recting previous identifications of effective temperature and
chemical potential. This provides a useful complementary
picture for the first-order thermodynamics of scalar-tensor
gravity, paving the way for the Einstein frame formulation
(which eluded previous attempts) and raises interesting ques-
tions to further develop the analogy.

1 Introduction

Minimally coupled scalar fields are ubiquitous in theoreti-
cal physics and especially in cosmology. One of the sim-
plest examples is quintessence, a proposal of dynamical
dark energy represented by a scalar field, that aims to avoid
the fine-tuning issues of a cosmological constant and could
explain the current accelerated expansion of the universe in
the context of general relativity (GR) [1,2]. Also more elabo-
rated scalar field models with non-canonical kinetic term are
considered for dark energy, e.g., in the so-called k-essence
[3–5]. Other exotic models of scalar-field based quintessence
include, e.g., the string-inspired tachyon condensate [6–10].

The equivalence between a scalar field minimally coupled
to the curvature endowed with timelike gradient and a per-
fect fluid is now well-established and has been the subject
of a substantial literature ([11–18] and references therein).
The generalization of this equivalence to imperfect fluids has
proven to be even more fruitful, especially for applications to
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dark energy (and more general dark sector) models. One of
the most intriguing developments involving imperfect fluids
is the class of scalar-tensor theories that contain an essential
mixing of scalar and tensor kinetic terms known as Kinetic
Gravity Braiding [19–22], leading to a rich dark energy phe-
nomenology. The imperfect fluid description in these works
is based on the notion of chemical potential [21], which we
are interested in here.

Naturally, since the main interest in the fluid description of
minimally coupled scalar fields arises in cosmology, the the-
ory of cosmological perturbations generated by scalar field
matter is addressed in numerous works (e.g., [23–28] and
references therein). Moreover, the effective field theory of
relativistic media, including fluids, solids and exotic hypo-
thetical media, has been developed in [29–35].

The fluid description of minimally coupled scalar fields
crucially relies on the scalar field gradient being timelike, in
order to be able to meaningfully define a fluid four-velocity.
The analysis of scalars with non-timelike gradients has also
been attempted [13,18], but is still in its infancy.

In this work, we revisit the analogy between perfect
fluid and minimally coupled scalar field which, albeit well-
known, still leaves room for interesting developments. More
specifically, a thermodynamical description of this fluid was
recently presented [17], introducing the notions of temper-
ature and chemical potential for the fluid. However, these
results pose problems that we aim to solve. Addressing these
issues also makes it possible to understand the analogy in
a broader picture, by connecting it with the more general
thermodynamical description of imperfect fluids in the con-
text of scalar-tensor gravity [36–39]. This link additionally
allows one to shed light on the Einstein frame formulation
of first-order thermodynamics, which has so far remained
elusive.
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We first review some generalities to set the stage for our
analysis. The action of gravity with a minimally coupled
scalar field is

S =
∫

d4x
√−g

[
R

2κ
+ L (φ, X)

]
+ S(m) , (1)

where1 g is the determinant of the metric tensor gab, R is the
Ricci scalar, κ = 8πG, G is Newton’s constant,

X ≡ −1

2
∇cφ∇cφ , (2)

L (φ, X) is the scalar field Lagrangian density, and S(m)

describes matter other than the scalar field.
In the rest of this paper we assume that the scalar field

has timelike gradient, X > 0, and that this is future-oriented
[41]. As is well-known (e.g., [12,13,42–46]), one can then
establish an analogy between the scalar and a perfect fluid
by taking the normalized gradient of φ as the fluid’s four-
velocity,

ua ≡ ∇aφ√
2X

. (3)

Several works have derived the fluid-mechanical quanti-
ties corresponding to the minimally coupled scalar field [11–
13,16–22] and its thermodynamics has been studied recently
in [17]. The effective φ-fluid is a perfect fluid characterized
by its four-velocity ua , effective energy density ρ, pressure
P , number density n, entropy density s, temperature T , and
chemical potential μ. The current state of knowledge of the
scalar field-fluid correspondence is summarized by Eq. (3)
and by the following dictionary appearing in Table 1 of [17]:

ρ = 2XLX − L , (4)

P = L , (5)

n = √
2X LX , (6)

s

n
= φ , (7)

T = −Lφ√
2X LX

, (8)

μ = 2XLX + φLφ√
2X LX

= √
2X − φT , (9)

whereLφ ≡ ∂L /∂φ andLX ≡ ∂L /∂X . AssumingLX >

0, i.e., that the field φ is not a phantom, the particle number
density n is non-negative. Further assuming the canonical
Lagrangian density L = X − V , also the energy density ρ

is non-negative.

1 We follow the notation of Ref. [40]. The metric signature is (−+++)

and units are used in which Newton’s constant G and the speed of light
c are unity.

Using Eqs. (3), (4), and (5), the stress-energy tensor of the
scalar field

T (φ)
ab = LX∇aφ∇bφ + L gab , (10)

which is conserved (∇bT (φ)
ab = 0), is rewritten in the perfect

fluid form

T (φ)
ab = (ρ + P) uaub + Pgab = ρuaub + Phab , (11)

where hab ≡ gab + uaub is the Riemannian metric on the
3-space orthogonal to ua , satisfying

habu
a = habu

b = 0 (12)

(hab is the projection operator onto this 3-space).
The equation of motion for φ

∇a

(
LX∇aφ

)
= −Lφ (13)

is written as

∇a

(
nua

)
≡ ∇aN

a = −Lφ , (14)

which reduces to the familiar Klein-Gordon equation �φ =
Vφ if L (φ, X) = X − V (φ), where V (φ) is the scalar field
potential.

If L = L (X), the scalar field theory is invariant under
the shift symmetry φ → φ + C (where C is a constant) and
there is a conserved Noether current

Na = LX∇aφ = nua (15)

satisfying

∇aN
a = 0 . (16)

Na is the analogue of the particle number current density.
The particle number density in the comoving frame is the
corresponding Noether charge

n = −N 0 = −ucNc = − ∇aφ√
2X

LX∇aφ = √
2X LX ,

(17)

consistently with Eq. (6). If Lφ �= 0 (for example, if there is
a potential V (φ)), the analogue

Na = nua (18)
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of the particle current density is not conserved,2 ∇aNa =
−Lφ �= 0. Being derived from a scalar field, the φ-fluid is,
of course, irrotational (the kinematic quantities associated
with the fluid four-velocity are computed in [44]).

Most of this analogy has been derived and validated in
several situations and appears to be a special case of the
more general equivalence between a scalar field coupled non-
minimally to the Ricci scalar R and an effective imperfect
fluid exhibiting heat conduction, bulk and shear viscosity,
and anisotropic stresses [42–46]. The stress-energy tensor of
the effective dissipative fluid in this more general case has
the form

T (dissipative)
ab = ρuaub + Phab + qaub + qbua + πab , (19)

where

P = Pnon−viscous + Pviscous (20)

is the sum of a non-viscous and of a viscous pressure (the
latter is associated with bulk viscosity), qa is a purely spatial
(i.e., qcuc = 0) heat flux density, and πab (with πa

a = 0,
πabua = πabub = 0) denotes the anisotropic stresses. If the
scalar field φ is minimally coupled to R, all the imperfect
fluid terms vanish and Eq. (19) reduces to the perfect fluid
form (11). This analogy has been often studied in the context
of FLRW cosmology and of the special theory of confor-
mally/nonminimally coupled scalar fields, but has seldom
been considered for general “first-generation” scalar-tensor
gravity [43,44]. More recently, it has been extended to Horn-
deski gravity [45,46].

The introduction of temperature T and chemical potential
μ in the correspondence between minimally coupled scalar
field and perfect fluid is quite recent (appearing only in [17]
to the best of our knowledge) and has not been tested as well
as the rest of the analogy. Indeed, the derivation of T and, as
a consequence, of μ in [17] exhibits an inconsistency (that
does not affect the other fluid quantities), that we correct here.
Before analysing the details (Sect. 2), it is already apparent
that T and μ given by Eqs. (8) and (9) suffer from three
problems.

1. The first issue (already noted in [17]) is that both T and
μ can be negative. This fact is surprising because, con-
trary to the nonminimally coupled scalars of scalar-tensor
gravity, the effective φ-fluid is otherwise well-behaved

2 In a dissipative fluid, the directions of the particle flow and of the
energy flow are different. As a consequence, Na coincides with nua in
the comoving (or Eckart) frame [48] which is adapted to follow the total
flux of particles, while Na = nua+va(L) in the Landau (or energy frame)
[49], where va(L) is the diffusive current density of particles caused by
gradients of the chemical potential μ. The Eckart and the Landau frames
coincide for a perfect fluid, which is the case we are interested in.

and satisfies the weak and null energy conditions, hence
one expects T and μ to be non-negative like ρ and n.

2. The most serious problem is that, according to Eq. (8),
there is a temperature gradient. Moreover, in general the
effective φ-fluid is non-geodesic, with non-zero acceler-
ation

u̇a ≡ uc∇cua = − 1

2X

(
∇a X + ∇cX∇cφ

2X
∇aφ

)
. (21)

Then, there must necessarily be a heat current with den-
sity [48]

qa = −K
(
hab∇bT + T u̇a

)
, (22)

where K is the (analogue of) the thermal conductivity.
This generalized Fourier law is one of the three consti-
tutive equations of Eckart’s first-order thermodynamics
[48] and a minimal assumption. The first term in the right-
hand side of Eq. (22) is nothing but the usual Fourier law,
while the second one is a purely relativistic “inertial” con-
tribution discovered by Eckart [48]. The heat conduction
described by qa makes a fluid dissipative and endows its
stress-energy tensor with the dissipative terms appearing
in Eq. (19). Then, how can the fluid equivalent of a min-
imally coupled φ be a perfect fluid described by (11)? A
heat current would necessarily show up in the comoving
(or Eckart) frame based on the four-velocity (3). The only
way for qa to vanish identically is if T = 0.

3. Although here we limit ourselves to scalar fields coupled
minimally to R, from the perspective of the broader non-
minimally coupled scalar field thermodynamics (which
is still under development but has certain firm points)
the fact that a minimally coupled scalar field fluid is
endowed with a non-zero temperature appears very odd.
In that context [36–39,46], the nonminimal coupling with
R is responsible for a nonvanishing fluid temperature,
therefore the fluid equivalent to a minimally coupled φ

and with Lagrangian depending only on φ and X should
always have zero temperature.

In the rest of this article we address these problems. We
begin by correcting the temperature (8), establishing the fact
that the fluid equivalent to a minimally coupled φ has always
zero temperature, resolving the first conundrum of scalar-
tensor thermodynamics. As a consequence, only the first
term in the chemical potential μ = √

2X − φT remains,
which makes this quantity positive-definite. The second and
third issue listed above are also solved because the heat flux
density qa then vanishes identically and the fluid becomes
non-dissipative.

After describing the thermodynamics of the fluid equiv-
alent to a minimally coupled φ, we are also able to com-
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ment on the thermodynamics of phantom scalar fields with
LX < 0, which have been the subject of an extensive litera-
ture, in conjunction with studies considering the possibility
of a very negative equation of state (w ≡ P/ρ < −1) for the
dark energy driving the present acceleration of the cosmic
expansion, e.g. [50–52]. Although the claims of a phantom
equation of state are disputed, the possibility of w < −1
is not excluded by present cosmological observations [53].
Phantoms are unstable from the classical, and even more
from the quantum, point of view but they are still accepted in
the cosmological literature as the expression of a truncated
action that will be cured if all terms are included. The litera-
ture on phantom field thermodynamics, now mostly a decade
old, has not been conclusive and we contribute to a clearer
picture.

Finally, we can extend the φ-fluid correspondence to
include scalar fields coupled nonminimally to matter (but
not to R). The effect of these couplings is analogous to that
of a scalar field potential which constitutes a source of fluid
“particles” making the “particle number density” n a non-
conserved quantity, but has no drastic effect on the rest of the
analogy. This extension allows one to discuss the Einstein
frame version of scalar-tensor gravity in which the gravita-
tional Brans-Dicke-like field φ̃ couples explicitly to matter
but not to R (contrary to the Jordan frame formulation of
the same theory in which the scalar φ �= φ̃ couples to R but
not to matter). This development makes it possible to fill a
gap in the first-order thermodynamics of scalar-tensor grav-
ity which, being based on the notion of temperature, was thus
far unable to deal with the Einstein frame description.

2 Temperature and chemical potential in the scalar
field-fluid analogy

Consider the first law of thermodynamics [54, Box 22.1,
p. 561])

d
(ρ

n

)
+ P d

(
1

n

)
= T d

( s

n

)
, (23)

where T denotes the temperature, s the entropy per unit vol-
ume (i.e., s = S/V ), ρ is the internal energy density (per
unit volume), and P is the pressure. The symbol s in [54]
corresponds to s/n in our discussion.

Now, taking s and n as independent variables from [54,
Box 22.1, p. 561], one has that

T (s, n) = 1

n

∂ρ

∂(s/n)

∣∣∣
n

= ∂ρ

∂s

∣∣∣
n

, (24)

thus, since Eq. (10) maps into a perfect fluid, the absence of
any dissipative effects, hence vanishing heat fluxes, requires

T = 0, in accordance with the principles of the thermo-
dynamics of scalar-tensor gravity [36–39,46]. Therefore,
assuming φ = φ(s, n) and X = X (s, n), one has that

0 = ∂ρ

∂s

∣∣∣
n

= −Lφ

∂φ

∂s

∣∣∣
n

, (25)

where we have taken advantage of Eqs. (4) and (6). The con-

dition in Eq. (25) is then satisfied if Lφ = 0 or ∂φ
∂s

∣∣∣
n

= 0.

Since, in general, L will contain a potential term, consis-
tency with the thermodynamics of scalar-tensor gravity [36–
39,46] translates into the condition

∂φ

∂s

∣∣∣
n

= 0 , (26)

so that the temperature of gravity vanishes for a scalar field
non-minimally coupled to Einstein gravity.

On a similar note, it is easy to see that combining [54, Box
22.1, p. 561]

P (n, s) = n
∂ρ

∂n

∣∣∣
s/n

− ρ , (27)

with Eqs. (4) and (5) recovers the perfect fluid identification
P = L if and only if

∂φ

∂n

∣∣∣
s/n

= 0 , (28)

when Lφ �= 0.
It is then easy to identify the chemical potential of the

system, which reads [54, Box 22.1, p. 561])

μ = P + ρ

n
= √

2X , (29)

where we have again taken advantage of Eqs. (4)–(6).
The condition in Eq. (7) is incompatible with both the

thermodynamic analogy presented here and the requirement
of conservation of the entropy per particle along perfect fluid
lines (see Appendix 1). This condition is, however, marginal
in our discussion since it is not used.

2.1 Approach to the diffusive equilibrium

One can a posteriori derive an equation describing the
approach to diffusive equilibrium along the fluid lines. For
relativistic fluids, the chemical potential μ and the (purely
spatial) diffusive flux density of particles q(p)

a will obey a
generalization of Fick’s law analogous to Eckart’s general-
ization (22) of Fourier’s law (cf. Ref. [55])

q(p)
a = −D

(
hab∇bμ + μ u̇a

)
, (30)
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where D is a diffusion coefficient analogous to the thermal
conductivity K . Diffusive equilibrium is reached when the
chemical potential μ vanishes identically (in the presence of
acceleration u̇a , a constant μ would still generate particle
diffusion due to the second term in the right-hand side of
Eq. (30). Equation (30) is reminiscent of a relativistic version
of the drift-diffusion equation [56]. This is used, for example,
in the context of semiconductors [57], where it describes
particle currents (for electrons and holes) in terms of the
particle density gradients and a term containing the electric
field vector.3

Let us compute the derivative dμ/dτ , where τ is the
proper time along the flow lines of the effective φ-fluid:

dμ

dτ
≡ uc∇cμ = ∇cφ√

2X
∇c

(√
2X

)
= ∇cφ ∇cX

2X
. (31)

Now use the expression of the expansion scalar of the φ-fluid
[44,46]

Θ ≡ ∇au
a = 1√

2X

(
�φ − ∇cX∇cφ

2X

)
(32)

to eliminate the term containing second derivatives of φ in
Eq. (31), obtaining

dμ

dτ
= −μΘ + �φ . (33)

This equation is not so simple because of the d’Alembertian
of φ in the right-hand side. However, to gain some insight,
we can consider the situation in which L does not depend
on φ, for example a free scalar field with L = X , in which
case �φ = 0 and Eq. (33) reduces to4

μ̇ = −μΘ . (34)

One can introduce a representative length 	 by [58]

	̇

	
≡ Θ

3
(35)

and then

μ̇

μ
= −3	̇

	
(36)

so that μ = const./	3. The simplified evolution equation of
μ then simply says that when the flow expands and dilutes, μ

3 The similar form of the drift current and of Eckart’s heat current
density is due to the presence of a force, hence of an acceleration, in
the constitutive law leading to the expression of the drift current. This
similarity could potentially be of interest for analogue gravity.
4 If LX = 1, then n = μ satisfies the same equation, which is reported
in [35].

decreases and the state of equilibrium μ = 0 is approached,
while when the flow gets concentrated, the chemical potential
increases and there is departure from the equilibrium state.
In particular, the φ-flow is diluted in an expanding universe,
which will approach the diffusive equilibrium state μ = 0 as
	 → +∞. Near spacetime singularities, instead, this flow is
focused, the flow lines become closer and closer, and there
are extreme departures from the equilibrium state μ = 0. In
principle, this understanding of the approach to equilibrium
in the thermodynamical picture based on μ is equivalent to
that obtained in the context of scalar-tensor thermodynam-
ics based on T [36–39]. However, in the comoving frame
one does not see particle diffusion, as explained in the next
subsection. When the second term �φ is included in the right-
hand side of Eq. (33), the situation becomes more complex
since this term could in principle be positive or negative,
hence it can favour the approach to equilibrium or oppose it
depending on its sign.

2.2 No diffusive particle current in the comoving frame

The effective stress-energy tensor (10) of the effective φ-
fluid has the perfect fluid form (11), yet the chemical poten-
tial μ = √

2X depends on the spacetime position so its
variation must give rise to a diffusive φ- (or “particle”) cur-
rent (the acceleration also contributes to this diffusive flow
according to Eq. (30)). Then it is natural to ask why we do
not see a vector qa(p) describing this diffusion in the effec-
tive fluid stress-energy tensor. The answer is well-known
to researchers working with relativistic dissipative fluids, in
which the direction of the energy flow is distinct from that of
the particle flow. In dissipative fluids, the Eckart (or comov-
ing) frame is based on the particle four-velocity (that is, the
four-velocity of the Eckart or comoving observers is the ua

of the fluid given by Eq. (3)). Since this frame is adapted to
follow the total flow of particles, the diffusive particle current
vanishes. The Landau or energy frame, instead, is the frame
of observers with four-velocity ua(L) �= ua moving with the
energy flow. In this frame, Landau observers see a diffusive
particle flow described by a current qa(p) but not an energy
flow, since the heat current density qa(L) vanishes identically.
For a perfect fluid, the Eckart (comoving) and the Landau
(energy) frames coincide and both the heat and the particle
diffusion currents are zero.

We have shown that T = 0 but μ = √
2X �= 0 in the

comoving frame of the effective fluid associated with a mini-
mally coupled scalar field. Here we check explicitly that this
fact does not contradict the vanishing of the diffusion cur-
rent because the two terms in the right hand side of Eq. (30)
cancel each other out. We have

∇aμ = ∇a

(√
2X

)
= ∇a X√

2X
(37)
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and the spatial gradient of μ is

hab∇bμ =
(
gab + ∇aφ∇bφ

2X

) ∇bX√
2X

= ∇a X√
2X

+ ∇bφ∇bX

(2X)3/2 ∇aφ . (38)

Adding to this quantity the acceleration term μ u̇a and using
the expression (21) of the acceleration yields

hac∇cμ + μ u̇a = 0 , (39)

which ensures that there is no diffusive “particle” current in
this frame in spite of the non-uniform chemical potential.

2.3 Phantom fields

A phantom scalar field is obtained from a canonical one by
changing the sign with which X appears in the Lagrangian,

L = −X − V (φ) , (40)

which changes the usual stress-energy tensor to

Tab = −∇aφ∇bφ + 1

2
gab∇cφ∇cφ − gabV (41)

and the equation of motion to

�φ + Vφ = 0 . (42)

For example, in FLRW cosmology (which is no doubt the
main area of theoretical physics contemplating phantom
fields) φ = φ(t) and X > 0, together with V (φ) ≥ 0.
The phantom equation of state parameter is then

w ≡ P

ρ
= L

−2X − L
= −X − V

−X + V
= −1 − 2X

V − X
(43)

and the requirement ρ > 0, equivalent to 0 < X < V , then
yields w < −1.

According to the previous section, for a phantom scalar
field the particle number density, temperature, and chemical
potential are

n = −√
2X < 0 , (44)

T = 0 , (45)

μ = √
2X > 0 . (46)

While T and μ remain the same as for non-phantom fields,
the number density n becomes negative for phantoms.

The thermodynamics of phantom fields and, more in gen-
eral, phantom fluids, has been discussed in many works,
usually beginning with assumptions different from ours and
often assuming negative temperature (or entropy) and pos-
itive chemical potential (or entropy), or vice-versa, from

the outset and often considering quantum fields [59–71].
Usually, these discussions are limited to FLRW cosmology,
where negative temperatures were speculated independently
[72]. It is difficult to compare all these different (and some-
times contradictory) scenarios and assumptions, and to make
sense of their conclusions caused by such an exotic, and most
likely unphysical, field as the phantom. Moreover, our anal-
ogy is restricted to classical scalar fields. However, the picture
that we offer for nonminimally coupled scalars in GR seems
more grounded in fluid physics than many scenarios in the
literature, in the sense that temperature and chemical poten-
tial are well-defined, with T = 0 and μ > 0, but n < 0.
This feature is definitely unphysical, as are many of the con-
sequences of a phantom field permeating the universe, and
we will not consider phantom fields further.

3 Nonminimal coupling to matter and Einstein frame
formulation of scalar-tensor gravity

Let us consider now the situation in which the scalar
field couples nonminimally to other forms of matter, which
are described by the Lagrangian density L (m) through
a coupling function f (φ) (this coupling is non-trivial if
f (φ) �= const.). For simplicity, we restrict to the scalar field
Lagrangian L = X − V (φ). The total Lagrangian density
is then

L = X − V (φ) + f (φ)L (m) . (47)

The equation of motion of φ becomes

�φ = Vφ − fφL
(m) . (48)

The extra term acts as a source of φ, hence as a source of
“particles” in the effective φ-fluid. As a consequence, the
stress-energy tensors of φ and of the other matter are not
conserved (∇bT (φ)

ab �= 0, ∇bT (m)
ab �= 0) but their sum is,

∇b
(
T (φ)
ab + T (m)

ab

)
= 0. The coupling term on the right-hand

side of Eq. (48) acts in the same way as the potential V (φ),
preventing the conservation of the “particle” current density
Na = nua = ∇aφ according to Eq. (16). Indeed, this extra
term breaks the shift invariance φ → φ + C of the scalar
field Lagrangian L = L (X) in the absence of a potential
V (φ) and prevents Na from being a conserved Noether cur-
rent even when V (φ) ≡ 0.

Since in the Einstein frame the scalar couples minimally
to gravity but nonminimally to matter, these considerations
open up the possibility of discussing the Einstein frame for-
mulation of the thermodynamics of scalar-tensor gravity,
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which has so far been developed in the Jordan frame [36–
39].

First-order thermodynamics deals with theories that have
(Jordan frame) action

SST = 1

16π

∫
d4x

√−g

[
φR − ω(φ)

φ
∇cφ∇cφ − V (φ)

]

+S(m), (49)

where the Brans-Dicke scalar φ > 0 is approximately the
inverse of the effective gravitational coupling Geff and ω(φ)

is the “Brans-Dicke coupling”. The scalar contribution to the
energy-momentum tensor can be cast in the form of an effec-
tive imperfect fluid (19) [44]. Applying Eckart’s first-order
non-equilibrium thermodynamics to this fluid allows one to
recover an effective temperature T (and thermal conductivity
K )

KT =
√−∇cφ∇cφ

8πφ
. (50)

This is nothing but a temperature relative to GR, which rep-
resents the KT = 0 equilibrium state. In this way, one can
depict a landscape of gravity theories, where different the-
ories (or classes thereof) are identified by their temperature
relative to equilibrium and obtain an understanding of how
this equilibrium might be approached through a dissipation
process. However, the Einstein frame could not be handled
in this picture based on the notion of temperature. The alter-
native and complementary picture relying on the chemical
potential that was developed in the previous sections, on the
other hand, can fill the gap. We switch from the Jordan to
the Einstein frame by performing the well-known conformal
transformation of the metric [73]

gab → g̃ab ≡ φ gab (51)

and the scalar field redefinition φ → φ̃ with

dφ̃ =
√ |2ω + 3|

16π

dφ

φ
. (52)

The action then reads

SEF =
∫

d4x
√−g

[
R̃

16π
− 1

2
g̃ab ∇a φ̃∇bφ̃ −U (φ̃)

+ L (m)

φ2(φ̃)

]
, (53)

with

U (φ̃) = V (φ)

16πφ2

∣∣∣φ=φ(φ̃) . (54)

All Einstein frame variables
(
g̃ab, φ̃

)
are denoted by a tilde.

The Einstein frame field equations read

R̃ab − 1

2
g̃ab R̃ = 8π

(
e
−

√
64π

|2ω+3| φ̃
T (m)
ab + ∇a φ̃∇bφ̃

−1

2
g̃ab g̃

cd∇cφ̃∇d φ̃ −U (φ̃) g̃ab

)
,

(55)

g̃ab∇a∇bφ̃ − dU

dφ̃

+8
√

π

|2ω + 3| e
−

√
64π

|2ω+3| φ̃
L (m) = 0 . (56)

The scalar contribution to the stress-energy tensor arising
from this action is of course that of a perfect fluid (11). How-
ever, this presents a puzzle for the first-order thermodynamics
of scalar-tensor theories. The thermodynamical formalism
based on the temperature description is not suitable for a per-
fect fluid, since all imperfect fluid quantities vanish and the
theory becomes trivial. This means that the approach to equi-
librium cannot be studied. The formalism based on tempera-
ture only works for gravitational theories in representations
where an effective imperfect fluid description can be found,
which is possible only if the scalar is directly coupled to R in
the action. These considerations relate to the well-known but
hard-to-tackle problem of the ambiguity that arises in dis-
tinguishing between “gravitational” and “matter” degrees of
freedom whenever we switch representation through a con-
formal transformation [74].

However, the notion of chemical potential comes to the
rescue. Although the temperature T of the Einstein frame
scalar field effective fluid is zero, according to the previous

sections, the chemical potential μ̃ =
√

2X̃ is not. Now the
scalar field φ̃ has gravitational nature and is always present in
spacetime, that is, one cannot decide to set it to zero or replace
it with other forms of matter. The state of diffusive equilib-
rium corresponds to μ̃ = 0 and φ̃ = const., but this condition
automatically recovers GR (possibly, with a cosmological
constant if a potential for the scalar field is present), as a lim-
iting case given that a timelike gradient for the scalar field rep-
resents our starting assumption for this analogy. This result
goes hand-in-hand with that of first-order thermodynamics of
scalar-tensor gravity formulated in the Jordan frame, where
GR is the zero-temperature state of equilibrium [36–38,46].
In the Einstein frame, instead, K̃ T̃ is identically zero but GR
is the state of equilibrium of scalar-tensor gravity correspond-

ing to vanishing chemical potential μ̃ =
√

2X̃ . Therefore,
the thermodynamical picture based on the chemical poten-
tial solves the issue and an understanding of the approach
to equilibrium even for theories described by perfect fluids
is possible. We would argue that the simplicity of the argu-
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ment adds to the first-order thermodynamics of scalar-tensor
gravity instead of detracting from it.

4 Conclusions

We have begun our discussion with minimally coupled scalar
fields in GR and have corrected the current view of the anal-
ogy between these fields and effective perfect fluids with
regard to temperature and chemical potential. This new view
has allowed us to reformulate the first-order thermodynamics
of scalar-tensor gravity as seen from the Einstein conformal
frame, which was not possible earlier. Hence, we conclude
this work from the broader view of the equivalent fluid of a
scalar field nonminimally coupled to R in scalar-tensor grav-
ity. Two main conclusions emerge.

First, if the scalar field φ described by a Lagrangian den-
sity L (φ, X) couples nonminimally with the Ricci scalar
in the Jordan frame description of scalar-tensor gravity, the
equivalent fluid has a nonvanishing temperature defined in
[36,37,44,46] (exceptions are theories in which the scalar
field is non-dynamical [47]).

Second, in GR a scalar field coupled minimally to R
(but possibly nonminimally to other forms of matter) has
zero temperature T but nonvanishing chemical potential
μ = √

2X . However, in the comoving (or Eckart) frame, no
diffusive flux of “φ-particles” is visible because this frame
follows the total motion of this effective fluid. This situation
includes the Einstein frame description of scalar-tensor grav-
ity and allows one to establish that GR is the state of diffusive
equilibrium (i.e., μ ≡ 0) of scalar-tensor gravity formulated
in the Einstein frame. The previous approaches to first-order
thermodynamics of scalar-tensor and Horndeski gravity [36–
39,46] were based on the Jordan frame description and on
the temperature of the φ-fluid and were thus unable to deal
with the Einstein frame. Realizing that scalar fields mini-
mally coupled to the curvature should have zero temperature
but non-zero chemical potential is the key to resolve that
conundrum.

This work is limited to situations in which there are no
derivative couplings of the scalar and no second derivatives of
φ in the Lagrangian, while theories withL = L (φ, X,�φ)

are the subject of much attention in the literature. Other ques-
tions arise naturally: what is the Landau frame for the fluid
equivalent of a nonminimally coupled scalar field? The dis-
cussion in the literature thus far has exclusively been based
on the comoving (Eckart) frame, but the choice of the Lan-
dau frame is advantageous in the analysis of relativistic fluids
in nuclear collisions [75–79] and may disclose unexpected
view of scalar fields as well. Future work will focus on these
questions.
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Appendix A: s/n = const. along perfect fluid lines

Here we reproduce a standard result of perfect fluids stating
that the entropy per particle s/n is constant along the flow
lines of a perfect fluid in which entropy and particle number
are conserved. As a consequence, neighbouring fluid lines
do not exchange entropy per particle and different values of
s/n distinguish different flow lines.

Consider a flow line with four-tangent ua parametrized by
the proper time τ ; we have

d

dτ

( s

n

)
= 1

n

ds

dτ
− s

n2

dn

dτ
. (A.1)

Conservation of particle number gives

0 = ∇cN
c = ∇c

(
nuc

) = n∇cu
c + uc∇c n (A.2)

and

dn

dτ
≡ uc∇cn = −n∇cu

c . (A.3)

Likewise, conservation of entropy for a perfect fluid without
dissipation yields

0 = ∇cs
c = ∇c

(
suc

) = s∇cu
c + uc∇c s (A.4)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2023) 83 :24 Page 9 of 11 24

and

dn

dτ
= −s∇cu

c . (A.5)

Then we have

d

dτ

( s

n

)
= 1

n

(
ds

dτ
− s

n

dn

dτ

)

= 1

n

(
−s∇cu

c + s

n
n∇au

a
)

= 0 . (A.6)

For the effective φ-fluid, s/n cannot be identified with the
scalar field φ, as done in previous literature. Indeed, as shown
above, s/n is constant along fluid lines (this is certainly the
case also for the effective φ-fluid if Lφ = 0), while φ nec-
essarily changes along the flow lines. In fact, in general, φ

depends on the proper time τ along the flow lines, as well as
on the spatial coordinates of the 3-space orthogonal to these
flow lines. Indeed, in applications to FLRW cosmology (the
main purpose of Refs. [19–22]), φ depends only on τ , which
coincides with the FLRW comoving time. The situation in
which φ depends only on s/n and, in particular, the identifi-
cation φ = s/n would mean that there is a coordinate system
in which the gradient ∇aφ is purely spatial, then the latter is
spacelike and cannot be timelike, which is instead essential
for identifying (3) with the effective fluid four-velocity and
constructing the effective fluid description of the scalar field.
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