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Abstract Recent studies of quantum field theory in FLRW
spacetime suggest that the cause of the speeding up of the
universe is the running vacuum (RV), see Moreno-Pulido
and Solà Peracaula (Eur Phys J C 82(6):551, 2022; Eur Phys
J C 80(8):692, 2020). Appropriate renormalization of the
energy-momentum tensor shows that the vacuum energy den-
sity is a smooth function of the Hubble rate and its deriva-
tives: ρvac = ρvac(H, Ḣ , Ḧ , . . .). This is because in QFT
the quantum scaling of ρvac with the renormalization point
turns into cosmic evolution with H . As a result, any two
nearby points of the cosmic expansion during the standard
FLRW epoch are smoothly related through δρvac ∼ O(H2).
In our approach, what we call the ‘cosmological constant’ �

is just the nearly sustained value of 8πG(H)ρvac(H) around
(any) given epoch, where G(H) is the running gravitational
coupling. In the present study, after summarizing the main
QFT calculations supporting the RV approach, we focus on
the calculation of the equation of state (EoS) of the RV for
the entire cosmic history within such a QFT framework. In
particular, in the very early universe, where higher (even)
powers ρvac ∼ O(HN ) (N = 4, 6, . . . ) triggered inflation
during a short period in which H =const, the vacuum EoS
is very close to wvac = −1. This ceases to be true during the
FLRW era, where it adopts the EoS of matter during the rela-
tivistic (wvac = 1/3) and non-relativistic (wvac = 0) epochs.
Interestingly enough, we find that in the late universe the
EoS becomes mildly dynamical and mimics quintessence,
wvac � −1. It finally asymptotes to −1 in the remote future,
but in the transit the RV helps alleviating the H0 and σ8 ten-
sions.

a e-mail: cristian.moreno@fqa.ub.edu
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1 Introduction: � and the cosmological constant
problem

After 105 years of history [1], one of the most perplexing
aspects of the cosmological constant (CC), �, in Einstein’s
gravitational field equations is that we still don’t know what it
is and why it has the value that we have measured. It is usually
associated to the energy density ρ0

vac = �/(8πGN ) of some-
thing that we call ‘vacuum’ (GN being Newton’s constant)
and we call it vacuum energy density (VED). But we don’t
know which vacuum we are referring to: is it the cosmic vac-
uum, or maybe the quantum mechanical vacuum, or else? In
addition, we naively assume that it remains strictly constant
throughout the cosmic evolution. There is actually no need
for that, since a (direct and/or indirect) dependence on the
cosmic time, i.e. ρvac(t, ζ ), is perfectly compatible with the
Cosmological Principle, where ζ = ζ(t) is some dynamical
variable. Still, we prefer to believe that � is a fundamental
constant of Nature, maybe because we feel that in this way
Occam’s razor is safely on our side. But soon we come across
a really nasty surprise: measurements show that its current
value is of order ρ0

vac ∼ 10−47 GeV4 ∼ (
10−3eV

)4
[2–5]

in natural units. Such a value turns out to be far too smaller
than any typical energy density in particle physics or quan-
tum field theory (QFT), and hence we have not the slightest
chance to provide a fundamental explanation for it. We real-
ize that we are up against an unsurmountable brick wall:
the ‘cosmological constant problem’ (CCP), which smashes
Occam’s razor to pieces in our hands, and with it all our
hopes for a possible understanding of the universe on fun-
damental grounds. The CCP is indeed the baffling realiza-
tion that the successful QFT methods applied to the world
of the elementary particles seem to predict an effective value
for ρvac which is excruciatingly much larger than the cur-
rent critical density of the universe ρ0

c (which ρ0
vac should

be comparable to) [6–12]. The Higgs boson, whose discov-
ery (with a mass Mh � 125 GeV) was made just 10 years
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ago certified the existence of the electroweak vacuum from
spontaneous symmetry breaking (SSB) [13–15]. However, it
presumably contributes a huge (positive) amount M4

h ∼ 108

GeV4 to the zero-point energy (ZPE) of the quantum vac-
uum, and also as much as 〈V 〉 ∝ −M2

h v2 ∼ −109 GeV4

(negative) from SSB, with v ∼ 250 GeV the Higgs vac-
uum expectation value (VEV). No less significant is the ZPE
part from the top quark, which is ∝ −m4

t ∼ −109 GeV4

(negative because it is a fermion). With no a priori cor-
relation between ZPE and SSB, we expect that our QFT
estimates are wrong by a factor of

(
109/10−47

) ∼ 1056.
Yet, this blatant fiasco pales when compared to the VED
yield from quantum gravity: MPl

4/ρ0
vac ∼ 10120, where

MPl = (8πGN )−1/2 = 2.43 × 1018 GeV is the (reduced)
Planck mass. In the face of it, we are left flabbergasted and
impotent!

In the next section, we fly over some of the troublesome
issues that the notion of vacuum energy and cosmological
constant faces in the context of flat spacetime. A proper treat-
ment is only possible in curved spacetime, and this is what
the rest of the paper is about.

2 Vacuum energy in flat spacetime

Because of the CCP, the quantum vacuum option for explain-
ing dark energy (DE) with a �-term became outcast and was
blamed of all evils, particularly of the acute fine tuning prob-
lem. This is a bit unfair, of course, as all existing forms of
DE are actually plagued with the same tuning illness and to
a degree which is no lesser than that of the quantum vacuum
itself [10–12]. Moreover, the vacuum is a most fundamen-
tal notion in QFT; we should expect that a description of
the CCP and of the DE from first principles should actually
come from the quantum vacuum and the machinery of QFT.
A simple calculation on renormalizing the VED of a single
free scalar field φ in Minkowski spacetime, e.g. using Mini-
mal Subtraction (MS) and dimensional regularization (DR),
renders the following, well-known, one-loop result (see e.g.
[10–12] and references therein):

ρvac = ρ�(μ) + m4

64π2

(
ln

m2

μ2 + Cvac

)
. (1)

Here ρ�(μ) is the renormalized cosmological term in the
Einstein-Hilbert (EH) action and μ is the usual ’t Hooft’s
mass unit of DR [16]. The second term on the r.h.s is the MS-
renormalized ZPE at one-loop. In a symbolic way, we may
write VED = ρ� + ZPE. This expression was made finite
by the usual counterterm procedure: ρ

(b)
� = ρ�(μ) + δρ�,

wherein ρ
(b)
� is the starting (bare) coupling in the EH action

and δρ� is the MS-counterterm in any of its variants, which
leaves an arbitrary constant Cvac in the result after cancelling

a pole in n = 4 spacetime dimensions. This is prima facie all
very simple in Minkowski space, but simplicity is not at all an
advantage here, for Eq. (1) carries already the whole drama
of the CCP. If that expression is interpreted as the VED, the
ZPE part is proportional to m4, and hence for any typical
mass in particle physics we have to fine tune ρ�(μ) to an
incommensurable level (from 55 to 120 decimal places, see
above) to produce ρ� +ZPE ∼ 10−47 GeV4. Not to mention
the mandatory (hyperfine) retuning to be made at higher and
higher orders of perturbation theory [10,11].

It is important not to confuse VED with CC. The former
may exist in Minkowski spacetime, as given e.g. in Eq. (1),
whereas the latter can only exist in the context of Einstein’s
equations of curved spacetime and hence in the presence of
gravity. Only in the last case the CC is physically meaningful
and its value becomes inexorably intertwined with the VED
through Einstein’s equations, as follows: ρvac = �/(8πGN ).
We should not confuse the physical�defined in this way with
the corresponding bare parameter in the EH-action, which is
related to ρ� in a similar way (but in this case the relation
involves only the bare values of all the parameters involved).
The problem with the above calculation is that it is of no use
at all in curved spacetime, say in the cosmological Friedman-
Lemaitre-Robertson-Walker (FLRW) background. There is
no sense in associating the scale μ to any cosmological vari-
able since, if Einstein’s equations are invoked, the � term
as such in these equations cannot exist in Minkowski space
unless the VED is exactly ρ� + ZPE = 0. So there is no
cosmology to do with Eq.(1), despite some attempts in the
literature. This point has been driven home recently in [12],
and in [17]. A realistic approach to the VED within QFT
in curved spacetime should be different. A recent attempt
has been put forward in the comprehensive work [18], which
further extends that of [19] in providing a QFT formulation
of the RV framework, or running vacuum model (RVM).
See also the review [12] for a summarized account and a
generous list of references Here we shall adopt this same
approach in order to investigate the equation of state (EoS)
of the quantum vacuum. As we shall see, it does not reduce
to just the traditional result wvac = −1. It turns out that
in a QFT formulation the vacuum EoS becomes dynamical
and evolves as a nontrivial function of the cosmic expansion,
wvac = wvac(H, Ḣ , Ḧ , . . .), where dots indicate differenti-
ation with respect to cosmic time t , i.e. ˙( ) ≡ d( )/dt .

3 Computing the vacuum energy density in FLRW
spacetime

Before we can face the computation of the EoS of the run-
ning vacuum in curved spacetime, we need to compute the
vacuum energy density (VED) and vacuum pressure. This is
sooner said than done, and we should not presume that they
are related in the simple way Pvac = −ρvac, which is valid
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only in the classical theory without quantum matter fields. In
this section and the next, we summarize the approach and the
main results presented at length in [18] insofar as concerns
the calculation and renormalization of the VED in FLRW
spacetime.1 The reader mainly interested on the phenomeno-
logical results may now wish to jump directly to Sect. 5 and
skip some QFT technicalities.

To simplify the (usually arduous) computations in curved
spacetime, and also to minimize the number of parameters
involved, we use just a single quantum matter scalar field φ

with massm, nonminimally coupled to curvature and without
effective potential, hence with the action:

S[φ] = −
∫

dnx
√−g

(
1

2
gμν∂μφ∂νφ + 1

2
(m2 + ξ R)φ2

)
. (2)

Even with this relatively simple system, in which φ has
no interactions with other fields nor with itself, QFT calcula-
tions become already quite cumbersome [18]. The ZPE asso-
ciated to φ is, of course, an UV-divergent quantity. Parameter
ξ in the action is the non-minimal coupling of φ to grav-
ity. It is well-known that in the special case ξ = 1/6, the
massless (m = 0) action is (locally) conformal invariant in
n = 4 spacetime dimensions. Although ξ is not necessary
for the QFT renormalization of the above action at one-loop,
it is convenient to keep ξ arbitrary. In general, the presence
of a nonminimal coupling is expected in a variety of con-
texts, e.g. in extended gravity theories [20–23]. There is also
a fermionic contribution to the VED, of course, but it is not
necessary for the present considerations [24]. In this work,
therefore, we shall focus on the scalar contribution only.

First of all, we must compute the ZPE of φ in FLRW space-
time. However, in contrast to the previous section, rather than
keeping on MS-renormalization to deal with the UV diver-
gences also in the curved spacetime case (which proves inap-
propriate to deal with the CCP [10–12]), we adhere to adia-
batic renormalization [25–27], where physical quantities are
organized in the so-called adiabatic orders, although with
a crucial nuance: we renormalize the energy-momentum-
tensor (EMT) off-shell, meaning that we define its renor-
malized VEV (associated to the fluctuations δφ of the fields)
as follows [18,19]:

〈T δφ
μν 〉Ren(M) = 〈T δφ

μν 〉(m) − 〈T δφ
μν 〉(0−4)(M). (3)

The latter, as can be seen, is obtained by performing an
appropriate substraction from its on-shell value (i.e. the value
defined on the mass m of the quantized field), specifically we
subtract the vacuum EMT value (i.e. its VEV) computed at
an arbitrary scale M . The result is finite because we subtract
adiabatic orders up to order 4 (the only ones that can be diver-
gent in n = 4). This is entirely different from MS since we

1 We adopt the same conventions of [18]. See, in particular, Appendix A
of that reference.

subtract both UV-divergent and convergent parts at M . The
renormalization point M will be used later on as a renormal-
ization group (RG) tool to explore the cosmic evolution at the
expansion history time H(t) by setting M = H . But here is
left arbitrary. Let us note that the renormalized EMT must be
related with the (renormalized) effective action of vacuum,
namely the action W describing the vacuum fluctuations of
the quantized matter fields of QFT in FLRW spacetime, [25–
27]:

〈T δφ
μν 〉 = − 2√−g

δW

δgμν
. (4)

This relation offers us a precious opportunity for a nontriv-
ial cross-check. In fact, one can choose any pathway: we may
either compute (3) directly by expanding the solution of the
Klein-Gordon equation (�−m2−ξ R)φ = 0 (satisfied by the
quantum field operator φ in FLRW spacetime) in Fourier field
modes and letting the creation and annihilation operators to
act on the vacuum with the usual commutation relations; or,
alternatively, we may compute the (renormalized) effective
action W through the DeWitt-Schwinger expansion [25–27]
(upon carefully correcting their coefficients to account for
the off-shell effects at the scale M), and then use Eq. (4)
to retrieve the renormalized EMT. Let us note, in particu-
lar, that the Fourier field modes of the first method must be
computed using the WKB expansion assuming the notion
of adiabatic vacuum (which all of the annihilation opera-
tors must destroy) [28]. The details of this lengthy calcula-
tion can be found in the comprehensive studies [18,19], see
[12] for a summarized exposition. The important point is that
the two pathways must converge, and do indeed converge,
exactly to the same result. Once the renormalized EMT is
accounted for by any of these procedures, we must extract
the renormalized VED out of it. We perform the calcula-
tion in the conformally flat metric, ds2 = a2(τ )ημνdxμdxν ,
where ημν = diag(−1,+1,+1,+1) is the Minkowski met-
ric (τ being the conformal time and a the scale factor of
the FLRW line element). Since the renormalized VEV of
the EMT at the scale M takes the form 〈T vac

μν 〉Ren(M) =
−ρ�(M)gμν + 〈T δφ

μν 〉Ren(M), the renormalized VED at that
scale reads2

ρvac(M) = 〈T vac
00 〉Ren(M)

a2 = ρ�(M) + 〈T δφ
00 〉Ren(M)

a2 . (5)

2 The scale M should not be confused with ’t Hooft’s mass unit μ in
DR [16]. Both scales may appear simultaneously in the calculations,
with μ playing here (optionally) a mere auxiliary role in intermediate
steps (e.g. if one opts for using DR to deal with the divergent integrals),
see [18,19]. Since, however, we are not using at all the MS scheme as a
renormalization procedure, the renormalized results cannot depend on
μ, but only on M . Needless to say, the full effective action does not
depend on M either, but the renormalized VED does since the effective
action of vacuum is only a part of the full effective action [18].
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We can see that the above expression also adopts the structure
VED = ρ� + ZPE, where the 00th component (the ZPE)
emerges from the explicit calculation of (3) in the FLRW met-
ric [18,19]. Up to 4th adiabatic order, a lengthy calculation
yields the following compact result:

〈T δφ
00 〉(0−4)

Ren (M)

= a2

128π2

(
−M4 + 4m2M2 − 3m4 + 2m4 ln

m2

M2

)

−
(

ξ − 1

6

)
3H2

16π2

(
m2 − M2 − m2 ln

m2

M2

)

+
(

ξ − 1

6

)2 9
(
2H′′H − H′2 − 3H4

)

16π2a2 ln
m2

M2 . (6)

This expression is finite and explicitly dependent on the scale
M , the mass m of the particle and the conformal Hubble
rate H and its time derivatives in conformal time (related
to the ordinary Hubble rate in cosmic time t simply as
H(η) = aH(t)). Primes denote differentiation with respect
to conformal time: ()′ ≡ d () /dτ . With 〈T vac

μν 〉Ren(M) given
as above, the renormalized vacuum part of the general-
ized Einstein’s equations within QFT in curved spacetime
read MPl

2(M)Gμν + α(M)(1)Hμν = 〈T vac
μν 〉Ren(M), where

(1)Hμν is a standard higher derivative (HD) tensor [25], the
only one needed in conformally flat spacetimes (such as
FLRW). The VED ρvac = ρvac(M, H), as given by (5)-(6),
is a function not only of M but also an explicit function of
H and of its time derivatives. The change of the VED with
respect to M and H reads

ρvac(M, H) − ρvac(M0, H0)

= 3
(
ξ − 1

6

)

16π2

[
H2

(
M2 − m2 + m2 ln

m2

M2

)

−H2
0

(

M2
0 − m2 + m2 ln

m2

M2
0

)]

+ O(H4). (7)

This result is a perfectly smooth function with no quartic
mass terms ∼ m4 (see next section). In addition, the quadratic
ones ∼ m2 become completely smoothed by the H2 factor.
Whence, the terms ∼ m2H2 are fully innocuous for the CCP;
and, finally, those of order O(H4) are irrelevant for the cur-
rent universe. The above renormalization procedure of the
VED is in accordance with the standard QFT formalism in
curved spacetime, where the UV-divergences of the vacuum
effective action W – defined in (4) – can be transferred to
the couplings of the classical action, which can absorb the
infinities into renormalized coupling constants [25]. These
renormalized couplings depend of course on the renormal-
ization scale M as the vacuum action W itself, and with it the
VED becomes also dependent on M . The dynamics of vac-
uum in the RVM is then inherited from setting M = H in the
renormalized theory. This is akin to set the renormalization
scale to the characteristic energy of the process in ordinary

gauge theories, a usual practice in the renormalization group
approach [12]. In cosmology we have less clues on how to
proceed, but in FLRW spacetime that setting looks reason-
able and moreover it can be tested, see Sect. 5. We should
emphasize, however, that while the vacuum action W does
depend on M the full effective action containing also the clas-
sical part does not depend on the scale M . This is of course
the essence of the renormalization group and thanks to this
condition one can derive the renormalization group equa-
tions for all the couplings, see [18]. A particularly important
renormalization group equation is that of the VED itself and
is discussed in the next section.

4 β-function for the vacuum energy density

A chief result which can be derived from equations (5) and (6)
is the expression for the β-function driving the RG-running
of the vacuum energy density, ρvac. This important result was
not know until very recently [18]:

βρvac = M
∂ρvac(M)

∂M
=

(
ξ − 1

6

)
3H2

8π2

(
M2 − m2

)

+
(

ξ − 1

6

)2 9
(
Ḣ2 − 2H Ḧ − 6H2 Ḣ

)

8π2 , (8)

where we have used H′ = a2(H2 + Ḣ) and H′′ =
a3

(
2H3 + 4H Ḣ + Ḧ

)
in (6), and also the fact that the β-

function for the renormalized parameter ρ� in the EH-action
is

βρ�(M) = M
∂ρ�(M)

∂M
= 1

2(4π)2 (M2 − m2)2. (9)

The latter ensues from the fact that in Minkowski space
(H = 0) the expression (5) must be RG invariant, as it
is indeed the case with (1) in the MS scheme [12]. In both
renormalization schemes, the flat spacetime expressions cor-
respond originally to renormalizing a bare coupling and
hence they are globally independent of M (the renormal-
ization point).3 Again the terms O(H4) are irrelevant for
the present universe. The obtained β-function of the VED
is thus very softly dependent on the mass scale, just as
βρvac ∝ H2

(
M2 − m2

) + O(H4) rather than the traditional
(and troublesome!) form βρvac ∝ m4. This explains the can-
cellation of quartic terms in performing the subtraction (7) in

3 In Minkowski spacetime there is nothing else in the vacuum action
apart from the term ρ�. In curved spacetime, in contrast, we have also
the curvature scalar plus the geometric HD terms. The renormalization
of the VED is then not just the renormalization of a bare term, as in fact
the VED becomes explicitly dependent on H as well as on M , as we
have just seen. In this case, only the full effective action (involving the
classical part plus the nontrivial quantum vacuum effects) is scale- (i.e.
RG-) independent, as previously noted. For a more formal derivation of
these expressions using the full effective action, see [18].
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the previous Sect. [18]. Thus, when one considers the evolu-
tion of the VED in this context there is no influence whatso-
ever from the dangerous quartic mass terms in (6). It should
be stressed that the result (8) is exact and does not depend on
the fact that (6) was computed up to 4th adiabatic order, as
the higher order terms (order 6th and above) are finite and
hence do not depend on M .

5 The evolving VED in the present epoch: the canonical
RVM

What about VED physics? The measurable difference
between the VED values at different epochs of the cosmic
evolution, say H0 = H(t0) and H = H(t) within our
observational range, now follows from the usual RG pre-
scription, based on choosing the renormalization points near
the corresponding values of the energy scales, in this case
M0 = H0 and M = H (hence bringing them near the physi-
cal state of the FLRW spacetime at each epoch). For simplic-
ity, we denote these VED values as ρvac(H0) and ρvac(H),
respectively. Using (7), the leading result can be cast as fol-
lows [18,19]:

ρvac(H)=ρ0
vac+

3νeff(H)

8π
mPl

2 (H2−H2
0 )+O(H4), (10)

with mPl = G−1/2
N the usual Planck mass. As usual, we shall

neglect the O(H4) terms for all the considerations referring
to the current universe (and for that matter for the entire
FLRW regime, which is well away from the early inflationary
period). The effective running parameter νeff(H) is a (mildly
evolving) function of H during the FLRW regime and is given
in the Appendix A, but for the late time universe it suffices
to take it constant, namely νeff ≡ νeff(H0):

νeff � ε ln
m2

H2
0

, ε ≡ 1

2π

(
ξ − 1

6

)
m2

mPl
2 . (11)

Both ε and νeff are small parameter since m2 
 mPl
2 for any

particle mass. Clearly, the dominant contribution to the VED
running stems from the largest massesm ∼ MX , presumably
from fields of a typical GUT scale MX ∼ 1016 GeV (possibly
including a large multiplicity factor) [29].

In the expression (10) we have identified ρvac(H0) with
today’s VED value, ρ0

vac, while ρvac(H) stands for the VED
at a nearby point H . Equation (10) constitutes the canoni-
cal form of the RVM [10–12]. As noted above, phenomeno-
logical analyses of the cosmological data support this sce-
nario and makes it competitive with the standard model with
rigid �-term [30–37]. Worth noticing, the RVM passes also
successfully the basic cosmographic tests [38,39], which are
essentially model-independent.

The phenomenological success of the above RVM formu-
las seem to effectively support the fact that for the FLRW
universe the natural choice of the scale M is indeed M = H .
It has the triple virtue of being: (i) theoretically consistent
(as shown in the comprehensive works [18,19]), (ii) inspired
in the usual practice of ordinary gauge theorizes, as previ-
ously noticed, and (iii) it identifies the proper energy scale
(in natural units) of the FLRW cosmology. Such a scale set-
ting is clearly adapted for the study of the homogeneous and
isotropic universe as a whole, therefore satisfying the Cos-
mological Principle. However, extending it to smaller scales
is a delicate matter, especially if one wants to be free from
model-dependent assumptions and still be able to probe cos-
mological and astrophysical effects at a time. For instance, in
the context of cluster and galactic systems there are relevant
local scale settings (typically associated with the physical
dimensions of the involved structures) that allow to explore
the possibility of having bags of inhomogeneous vacuum
energy capable of influencing the processes of gravitational
collapse of these structures. Examples on how to treat these
situations within the RVM have been considered in the past,
see e.g. [40–45], although there are additional assumptions to
be made in these cases which unavoidably lead, as mentioned,
to a model-dependent approach, something which we would
like to avoid here since it could obscure the interpretation
of the purely cosmological scenarios based on the homoge-
neous and isotropic FLRW universe. It is already significant
from our point of view the fact that we can effectively test
the simplest assumption M = H in the pure cosmological
context and find it to be fully consistent with the modern cos-
mological observations and in particular with the large scale
structure formation data in the linear regime, obtaining qual-
ity fits that surpass the performance of the �CDM in many
cases, as shown by the fact that the H0 and σ8 tensions can
be highly alleviated [30].

From the foregoing discussion, we learn that QFT in
curved spacetime predicts that the VED is a slowly evolv-
ing function of the cosmological expansion, and hence the
effective �-term too (remember that the physical value of �

is proportional to ρvac, not to the parameter ρ� in the action).
We can better appraise the evolution of the VED in a graphi-
cal way in Fig. 1. Parameters are taken from the best-fit values
of [4,5]. On the left plot of Fig. 1 we show the evolution of
the matter densities (relativistic and nonrelativistic) together
with the slow evolution of the vacuum density. On the right
plot we depict a logarithmic representation of the various
densities such that the differences can be better appreciated,
above all in the case of the VED. The curves are displayed
for different typical values of νeff . Despite of the fact that the
VED evolution is very mild, of course, its EoS is nevertheless
potentially observable, see Sect. 8.
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Fig. 1 The plot on the left shows the evolution of the different energy
densities with the expansion in the canonical RVM context, Eq. (10).
The inner window serves to magnify the low redshift region. The right

plot provides a complementary view using a (vertical) logarithmic scale.
The VED exhibits a very mild dynamics up to the radiation dominated
epoch

6 Running gravitational coupling

The evolution of the VED preserves the Bianchi identity
provided there is an exchange with another dynamical vari-
able [10–12]. If we assume local matter conservation (i.e.
no exchange between the vacuum and any of the matter
components such as dust or radiation density, collectively
represented by ρm), then the gravitational coupling G must
vary with the cosmic expansion to compensate for the VED
running. Let us consider the late universe, in which we
can neglect the O(H4) renormalization effects on the VED.
Using the formalism of [18] we find that the cosmic time
evolution of the VED is connected to that of G as follows:

ρ̇vac + 3H (ρvac + Pvac) = − Ġ

G
(ρm + ρvac)

= − Ġ

G

3H2

8πG
, (12)

where Friedmann’s equation has been called for under the
assumption that the higher order gravitational terms do not
contribute in the current universe. As indicated above, to
trace the evolution of the VED at the cosmic history time
H(t) one can take the renormalization scale M at this value
and we obtain the desired running law for the gravitational
coupling as a function of the Hubble rate. We find [18]

G(H) = GN

1 − ε ln H2

H2
0

. (13)

Notice that GN = G(H0) is the current local gravity
value (Newton’s ‘constant’), usually associated to the inverse
Planck mass squared: G(H0) = GN = 1/m2

Pl (in natural
units). The parameter ε in (13) is the same, of course, as
the one previously defined in (11). It is apparent that for

ε = 0 (hence νeff = 0), both ρvac and G cease to be run-
ning quantities since they do not feel the quantum vacuum
effects. But for ε �= 0 (νeff �= 0) there is indeed a dynam-
ical exchange between the two quantities which insures the
perfect fulfilment of the Bianchi identity and shows the con-
sistency of the obtained result. One can also determine the
explicit form of the running couplings for the gravitational
HD terms [18,19,46], but the most relevant running laws for
our purposes are those for ρvac and G. They are both nec-
essary to compute the vacuum EoS (see Appendix A for
details).

A final comment may be in order to further illustrate the
potential significance of this framework. Testing the evolu-
tion of the VED in curved spacetime through the cosmic
dependence of the renormalization scale is a novel feature
as compared to ordinary gauge theories of strong and elec-
troweak interactions in flat spacetime. Interestingly, it makes
possible to probe the effect of the (cosmic) time-dependence
of the running couplings and masses in the particle and
nuclear physics world, and hence it may ultimately pro-
vide a possible theoretical explanation [48–53] for the pur-
ported evolution of the fundamental ‘constants’ of Nature,
as claimed in some experiments [54,55]. Modern attempts
at challenging the stability of the fundamental ‘constants’
can be seen e.g. in [56] and references therein.

7 EoS of the running vacuum in the inflationary epoch

It was recently argued that inflation could be another con-
sequence of the running vacuum universe [18]. If so, there
would be no need to introduce explicit, ad hoc, inflaton
fields in the classical action. In this approach, inflation in
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the very early universe can be produced by pure quan-
tum effects in QFT in curved spacetime. To bring about
inflation we need (even) powers of H beyond ∼ H2, i.e.
HN (N = 4, 6, . . .). Inflation then proceeds through a short
period where H =const. We call this mechanism RVM-
inflation [18,19], see also [57]. The needed powers of H
emerge from calculating the ZPE up to 6th adiabatic order
(not shown in Eq. (6)). The ∼ H4 ones disappear in the adi-
abatic subtraction procedure.4 In the present context, there-
fore, the H6 terms take over during inflation. Their compu-
tation is rather cumbersome [18], but these terms are finite
and do not require renormalization. The final result can be
condensed as follows:

ρinf
vac = 〈T δφ

00 〉6th
Ren(m)

a2 = ξ̃

80π2m2 H6 + f (Ḣ , Ḧ ,
...
H . . .),

(14)

where we have defined the parameter ξ̃ = (
ξ − 1

6

) − 2
63 −

360
(
ξ − 1

6

)3
. The remaining terms are collected in the com-

plicated function f (Ḣ , Ḧ ,
...
H . . .). They carry along many

different combinations of powers of H accompanied in all
cases with time derivatives of H , and hence they all van-
ish for H =const. This means that a short period where
H =const can trigger inflation from the ∼ H6/m2 term
indicated above, where m ∼ MX ∼ 1016 GeV. Explicit ana-
lytic solution for the Hubble rate and matter densities during
the inflationary epoch is possible, with the results

H(â) = HI

(
1 + â8

)−1/4
(15)

and

ρr (â)=ρI â
8
(

1+â8
)− 3

2
, ρvac(â)=ρI

(
1+â8

)− 3
2
. (16)

We see from (15) that in the beginning the Hubble rate
evolves very little around an initial (big) value HI ∼
MPl

1/2 m1/2ξ̃−1/4, namely H(â) � HI for 0 < â < 1,
where we have defined â ≡ a/a∗ and a∗ determines the
transition point from the regime of vacuum dominance into
that of radiation dominance, as can be easily inferred from
the density equations (16). The point a∗ is estimated to be
around a∗ ∼ 10−29 in [60]. Since Ḣ = −2H2

I â
8/(1 + â8),

we have |Ḣ/H2| ∝ â8 
 1 for â 
 1 and we can safely
neglect Ḣ ≈ 0, and successive derivatives, during inflation.
In Fig. 2 (left) we depict the evolution of the vacuum and
radiation densities, where we can see that the vacuum state
rapidly decays into radiation, as it is also obvious from the
two relations in (16). At the beginning (a = 0) there is no
radiation at all (ρr (0) = 0), whilst the VED at this point is

4 See [58,59] and references therein for a related (stringy) approach.

maximal, namely ρvac(0) = ρI ∝ MPl
2H2

I , but finite. This
shows in passing that there is no initial singularity in this
formulation. On the other hand, for â � 1 (i.e. a � a∗) it
is reassuring to see that we retrieve the standard decaying
behavior of radiation, ρr (a) ∼ a−4. In the meantime, the
primeval VED decreases very fast and it causes no problem
with primordial BBN (big bang nucleosynthesis) even if νeff

is kept in the radiation epoch (see next section). Thus, RVM-
inflation is followed by a standard FLRW radiation epoch.
This type of scenario, which we find here in the context of
QFT in curved spacetime, was assumed phenomenologically
in [61,62] – see also the recent comprehensive study [60].
We should also clarify that RVM-inflation is different from
Starobinsky’s inflation [63], where it is Ḣ rather than H that
remains constant for a short time – see [57–59] for a thorough
discussion.

Remarkably, during this initial phase we find that the run-
ning vacuum behaves as ‘true’ vacuum with equation of state
(EoS) wvac = −1. Indeed, the vacuum EoS in the early
universe follows from computing the corresponding vacuum
pressure at that primeval stage up to 6th adiabatic order. The
result adopts the form:

Pvac(M) = −ρvac(M) + f2(M, Ḣ) + f4(M, H, Ḣ , . . . ,
...
H)

+ f6(Ḣ , . . . ,
.....
H ) + · · · , (17)

in which the functions f2, f4 and f6 involve adiabatic con-
tributions of second, fourth and sixth order, respectively, and
all of them carry at least one time derivative of H [18]. There-
fore, all these functions vanish for H =const. (â 
 1) and
we find Pvac = −ρvac to a very good approximation. The
RVM inflationary period is thus characterized by the tradi-
tional EoS of vacuum, wvac = −1. This can be appreciated
in Fig. 2 (right).

8 EoS of the running vacuum in the FLRW regime

We have just seen that the vacuum EoS, wvac, during the infla-
tionary epoch is very close to −1, but the more we near the
radiation epoch the more it departs from −1 and transmutes
into +1/3, as it can also be clearly seen in Fig. 2 (right). In
general, after the inflationary epoch (i.e. for â > 1), quan-
tum effects trigger a fully dynamical behavior of wvac which
goes on during the entire conventional FLRW regime. As a
result, the vacuum EoS does not remain stuck to the classical
value wvac = −1 and indeed changes throughout different
epochs. Such an evolution can be explicitly derived from the
QFT framework of [18,19]. Some details of the calculation
are provided in the Appendix A, where the precise formula is
given. A sufficiently accurate approximation to the running
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Fig. 2 Inflationary period. On the left it is shown the evolution of the
energy densities (16) of vacuum and relativistic matter before and after
the transition point a∗ ∼ 10−29 (where â ≡ a/a∗ takes the value 1) from
inflation to the early radiation epoch (see the text). The (constant) VED
during inflation decays into radiation and the standard FLRW regime

starts. On the right we can see the evolution of the vacuum EoS from
wvac � −1 up to â = 1. Once this point is left well behind (â � 1), the
vacuum evolves into an incipient radiation phase and adopts its EoS:
wvac → 1/3

vacuum EoS during the entire FLRW cosmic stretch reads as
follows:

wvac(z) = −1

+ νeff
(
�0

m(1 + z)3 + 4
3 �0

r (1 + z)4
)

�0
vac + νeff

[−1 + �0
m(1 + z)3 + �0

r (1 + z)4 + �0
vac

] ,

(18)

where �0
vac = ρ0

vac/ρ
0
c � 0.7 is the current vacuum cos-

mological parameter, whereas �0
m = ρ0

m/ρ0
c � 0.3 and

�0
r = ρ0

r /ρ0
c ∼ 10−4 are the corresponding matter and radi-

ation parts. Since |νeff | 
 1 and �0
r 
 �0

m, it is readily seen
that for small z the previous formula boils down to

wvac(z) � −1 + νeff
�0

m

�0
vac

(1 + z)3 (z < O(1)), (19)

thus recovering the approximate result first advanced in
[18]. Here, however, we have generalized this result into the
more complete formula (18) for the full FLRW regime (cf.
Appendix A).

The above EoS formulas depend on the crucial coefficient
νeff , which we have computed in QFT but it must ultimately
be fitted to the cosmological data [30–37]. These analyses
show that νeff ∼ 10−2 − 10−3 and that νeff > 0 is the
preferred sign.

From the foregoing considerations, we find that the run-
ning vacuum never has the exact EoS wvac = −1 during the
FLRW stage, not even at z = 0, where

wvac(0) � −1 + νeff
�0

m

�0
vac

� −1 (νeff > 0). (20)

Thus, amazingly, the RV currently behaves as quintessence.5

Such an effective behavior is triggered by the quantum effects
and from this point of view there would be no need to intro-
duce ad hoc quintessence fields (nor ad hoc inflatons, as
shown in the previous section).

In Fig. 3 we provide a detailed plot of the more general
formula for the EoS (18) and for a large window of the FLRW
regime spanning from the present time up to high redshift,
in fact covering the entire nonrelativistic matter-dominated
(dust) epoch and embracing part of the radiation epoch. The
plot is performed for different values of νeff within the typi-
cal range obtained in actual fits to the data [30]. The approx-
imate EoS (19) is only valid for the most recent universe
and deviates significantly from the more accurate one (18)
for intermediate or large values of z. This can be clearly
seen in Fig. 4 where the two formulas are plotted on top of
each other so as to ease the comparison and to evince the
large deviation at higher and higher redshifts. Notice that
the detailed plot of the vacuum EoS in Fig. 3 interpolates
in a numerical way the results that can be directly inferred
analytically from Eq. (18) for the different redshift intervals
all the way from the radiation epoch, down to the matter-
dominated epoch until reaching the current epoch. Denoting

5 Equation (19) resembles previous effective EoS forms for the dynami-
cal VED derived phenomenologically in [64–66], although it is different
from them since it predicts a quintessence behavior of the RV already at
z = 0, in contrast to the aforementioned forms which predict a depar-
ture of wvac from −1 only for z > 0 but still yield the conventional
behavior wvac = −1 at z = 0.
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Fig. 3 Vacuum EoS for different (positive) values of νeff [30]. Some
regimes to be noted: i)wvac � −1 for very low redshift, ii)−1 < wvac <

−1/3, vacuum mimics quintessence for low and intermediate redshift
(the horizontal dotted line marks off the DE threshold wvac = −1/3),
iii) wvac = 0 plateau, vacuum imitates dust matter, and iv) wvac = 1/3
plateau, vacuum mimics radiation. The running vacuum behaves as a
cosmic chameleon

Fig. 4 Deviation of the approximate vacuum EoS formula (19) with
respect to the more precise one given by Eq. (18) for a typical value
νeff = 0.005

by zeq = �0
m/�0

r − 1 � 3300 the equality point between
matter and radiation, we find

wvac(z) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 for z � zeq

with �0
r (1 + z) � �0

m, radiation behavior (νeff �= 0),

0 for O(1) < z 
 zeq

with �0
m � �0

r (1 + z), dust behavior (νeff �= 0),

−1 + νeff
�0

m
�0

vac
(1 + z)3

for − 1 < z < O(1), quintessence behavior (νeff > 0).

(21)

As it turns out, the running vacuum EoS follows the EoS of
relativistic matter in the radiation-dominated epoch, subse-
quently the EoS of non-relativistic (dust) matter in the matter-
dominated epoch, the EoS of quintessence at present (for
νeff > 0) and finally asymptotes to de Sitter era in the future
(z → −1).

In the presence of quantum vacuum effects, the deceler-
ation parameter q = −1 − Ḣ/H2 can be easily derived.
Using the expression for the quantum corrected H derived
in Appendix A up to order O(νeff) and requiring that q = 0
we find that the transition redshift from deceleration to accel-
eration becomes slightly shifted with respect to that of the
concordance model (aka �CDM), as follows:

zt =
(

2
(
�0

vac − νeff
)

�0
m(1 + νeff)

)1/3

− 1. (22)

As expected, the �CDM result is recovered for νeff = 0.
Since, however, νeff is small and zt cannot be measured with
precision yet, it is not the ideal signature. What it really
acts as a useful signature of the RV is its effective behav-
ior as quintessence in the low redshift range, as we have seen
above. Indeed, the running vacuum is kind of ‘chameleonic’.
It behaves as ‘true’ vacuum (wvac = −1) only in the very
early times when it triggers inflation. It then remains silent for
eons (hidden as if being relativistic or pressureless matter).
Today, it appears as (dynamical) dark energy (DE), specifi-
cally as quintessence (−1 < wvac < −1/3), cf. Fig. 3 . As a
result of this multifaceted behavior, it may crucially help in
solving the σ8 and H0 tensions [67–71] afflicting the �CDM
model. In fact, in [30] it was argued that if there is a ‘DE
threshold’ z∗ near our time where the DE dynamics of the
vacuum gets suddenly activated, this can be extremely helpful
for solving the σ8 tension within the RVM. At the same time,
it was shown that if the gravitational coupling runs slowly
(logarithmically) with the expansion, this can help fixing the
H0 tension. In Fig. 3 we can see that a continuous (i.e. not
abrupt) DE ‘threshold’ window with low z∗ = O(1) does
indeed exist for the RVM, in the sense that for z < z∗ the
vacuum gets progressively activated as DE (wvac < −1/3),
whereas for z > z∗ the vacuum EoS transmutes successively
into that of dust matter and radiation. There is therefore a
tracking of the matter EoS by the vacuum in the RVM frame-
work.

Some of the dynamical properties exhibited by the run-
ning vacuum in the current QFT formulation [18,19] have
been longed for in the past using ad hoc scalar fields in the
classical action, see e.g. [72] and references therein. In fact,
many authors have tried to motivate a dynamical character
of the dark energy (DE) through cosmological scalar fields
(quintessence and the like) since this could help solving the
cosmic coincidence problem [73]. This can be achieved by
picking out the effective potential of the scalar field among
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those that satisfy the so-called tracker condition. In these
cases the effective EoS of the scalar field can track matter
through the cosmic evolution, see e.g. [74] where the track-
ing feature is illustrated for the well-known Peebles & Ratra
potential [75]. Here, in contrast, we have shown for the first
time (to the best of our knowledge) that the quantum vacuum
associated with the quantum fluctuations of the matter fields
(in the context of QFT in curved spacetime) has the ability
to track the EoS of matter throughout the cosmic evolution
and can mimic quintessence in the late universe. Interest-
ingly enough, this feature is accomplished here by virtue of
the inner dynamics of the quantum vacuum. In the absence
of the quantum fluctuations of the quantized matter fields,
the vacuum EoS would be stuck at −1, as usually assumed.
We believe that this remarkable new ingredient of the QFT
formulation of the RVM (which was entirely absent in the
old proposals, see [10,11] and references therein) is worth
being stressed. In point of fact, it is one of the main results
presented in this work.

Finally, let us recall that in the present RVM frame-
work the dynamics of vacuum is intertwined with that of
the gravitational coupling through a log of the Hubble rate:
G = G(ln H) [18]. This fact together with the mentioned
tracking feature (which is responsible for the aforementioned
existence of a DE ‘threshold’ window at low redshift) are
both present and they combine constructively to mitigate the
σ8 and H0 tensions at a time. The running vacuum EoS for
the current universe (19) is actually similar to the EoS of
the effective dark energy (DE) in a Brans-Dicke (BD) theory
in the presence of a cosmological constant, as in fact such
theory mimics the RVM – see Ref. [76,77]. Additionally, the
trademark of the BD framework is indeed the existence of a
mildly varying G. In this respect let us note that recent phe-
nomenological analyses on the viability of different kinds
of modified gravity theories have put tight constraints from
BBN on their parameters, see e.g. the work [78]. Basically,
any deviation from standard cosmology modifies the expan-
sion rate and hence modifies the freeze-out temperature of the
weak interaction processes which control the neutron abun-
dance at the BBN time. Thus, since a variation of G and/or of
the vacuum (in general of the DE) energy density can mod-
ify the expansion rate, a bound ensues for the parameters of
the new model. In particular, in the mentioned work [78] an
updated BBN bound is put on the parameter νeff of the RVM,
which is in the ballpark of 10−3 (being however insensitive
to its sign). This updated BBN bound on νeff turns out to be in
accordance with the typical fitting values obtained from the
current-era cosmological data in the last few years, see the
various works [30–34]. In short, the competitive fits to the
global cosmological data obtained from the RVM, which in
fact challenge the performance of the �CDM, are consistent
with the most recent bounds from BBN.

9 Conclusions

The main aim of this work has been to study the equation
of state (EoS) of the running vacuum within the theoreti-
cal framework recently expounded in great detail in [18,19],
in which the vacuum energy density (VED) is computed
for a quantized scalar field nonminimally coupled to grav-
ity in the context of QFT in FLRW spacetime. While the
running vacuum model (RVM) idea existed since long on
semi-qualitative grounds, the QFT approach of [18,19] —
see [12] for the essentials and a list of references – puts a
more solid theoretical underpinning to the RVM and leads
to new features which had never been explored before. In
fact, on the basis of this formalism and in contradistinction
to the usual assumption wvac = −1, we have found that
quantum effects make wvac dynamical and trigger a small
deviation of if from −1. We have quantified this deviation
by explicitly computing wvac as a function of the cosmologi-
cal redshift for the whole FLRW regime. The result points to
potentially significant phenomenological implications which
can be observationally tested. In the QFT formulation of
the RVM, the dynamics of the EoS actually stems from the
dynamical character of the vacuum itself. Thus, the measured
value ρvac(H0) ≡ ρ0

vac does not appear in this framework as
a ‘fundamental constant’ but just as the current value of the
VED as a slowly evolving dynamical variable. Because of
the unavoidable need of renormalization in QFT, there is no
strict cosmological constant conceived as an everlasting fun-
damental entity of Nature. Using the subtracting point M as
a renormalization group tool to explore the cosmic evolu-
tion at each expansion history time H(t), we find that the
VED, ρvac(H), is dynamical and evolves with the cosmic
expansion. However, the time evolution of the VED is so
mild that it mimics the behavior of a ‘cosmological con-
stant’ � = 8πGNρvac(H) for a large stretch of cosmic time
around any given epoch H . In fact, the change is only of order
∼ νeff H2, where the small coefficient νeff is computable
from QFT and is responsible for the minute running of the
VED (|νeff | 
 1). Perhaps the most remarkable point of this
result is that such a small evolution can be derived from first
principles, as in fact νeff is nothing but the coefficient of the
β-function of the running VED.

During the FLRW regime, the dynamical VED is given by
Eq. (10). Notwithstanding the small quantum effects encoded
in the value of νeff , the RVM carries two important signatures
worth being mentioned owing to their possible phenomeno-
logical significance. First of all, we emphasize again that its
EoS is not given by the constant value wvac = −1, which has
been a characteristic of the classical vacuum; rather, it is time
evolving and ultimately an explicit function of the redshift:
wvac = wvac(z). Second, the EoS dynamics carries a mea-
surable imprint at present since it behaves as quintessence:
wvac(z) � −1. There are no quintessence fields at all here, of
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course; the effective quintessence behavior is just the conse-
quence of the underlying quantum vacuum effects. Thus, no
classical ad hoc fields are needed to explain the cosmic accel-
eration within the RVM framework, as it can be accounted
for by the fluctuations of the quantized matter fields [18,19].

The nontrivial modification of the EoS of the running vac-
uum with respect to the classical result wvac = −1 is a clear
sign that a proper renormalization of the quantum matter
effects was mandatory in the study of the QFT vacuum in a
curved background. Not only so, it serves as an effective phe-
nomenological signature to test the RVM. Unfortunately, for
some time the widespread confusion in the literature about
cosmological constant, �, and VED, ρvac, has prevented to
achieve a proper treatment of the renormalization of these
quantities in cosmological spacetime. Perhaps the most per-
nicious practice has been the reiterated attempts to relate
these concepts in the context of flat spacetime calculations,
which is meaningless, see [12]. In flat spacetime one can
still define the VED, of course, but it has no relation what-
soever with the cosmological constant. As indicated in Sect.
2, if we speak of � as the physically measured value, then
its relation with the current ρvac is totally straightforward:
ρ0

vac = �/(8πGN ). However, at a more formal level where
these quantities are derived from a gravitational action in
curved spacetime and in the presence of quantized matter
fields subject to renormalization, then a lot more of care
needs to be exercised. Leaving for the moment quantum
gravity considerations for a better future (viz. for when the
quantum treatment of the gravitational field becomes, hope-
fully, accessible), the more pedestrian renormalization ofρvac

within QFT in curved spacetime proves to be already quite
helpful at present. Because of inappropriate renormalization
schemes and computational procedures, the presence of quar-
tic mass terms ∼ m4 proved to be troublesome within the
usual methods, but these difficulties might well be overcome
in the formulation presented in [18,19] on which the present
study is based. It leads to a renormalized VED which is a
mildly dynamical quantity evolving with the cosmic expan-
sion. The outcome is that ρvac = ρvac(H) is a smooth func-
tion of the Hubble rate and its time derivatives without any
disruption from ∼ m4 effects [18,19]. In the remote past,
however, the higher powers of H (predicted in this approach)
became extremely active and may have triggered fast infla-
tion during a short period in which H � const. At present,
on the other hand, a new and much placid de Sitter epoch
takes over gradually. Overall, the running vacuum acts as a
formidable cosmic chameleon: early on, it triggers inflation
as ‘true vacuum’ (wvac = −1); then it hides behind matter for
aeons (even adopting its EoS: wvac = 1/3 first, and wvac = 0
later); and, finally, it reappears disguised as quintessence in
our days. Only in the remote future it will become ‘true vac-
uum’ again. The running vacuum reveals itself as a time-
evolving entity whose EoS is also dynamical and changes

significantly over the cosmic evolution. Remarkably, in the
late universe plays the role of (dynamical) dark energy and
could afford a reasonable explanation for the cosmic accel-
eration.
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Appendix A Derivation of the running vacuum EoS for
the FLRW regime

Our goal in this appendix is to provide some details about
the derivation of the important EoS formula (18) given in
the main text, which is valid for the post-inflationary epoch,
i.e. for the whole FLRW regime. For this we will be using
the approach and formulae from [18]. In the latter reference
the running vacuum EoS was disclosed as a function of the
redshift only within the approximation z 
 1, but here we
wish to provide a close expression for the EoS as a function of
z valid for the entire FLRW epoch. As previously warned, for
all the considerations made during the FLRW regime we will
neglect the quantum corrections of order O(H4) or above,
which can only be relevant for the inflationary epoch. Thus,
for the EoS determination during the post-inflationary epoch,
it suffices to keep the terms of adiabatic orders 2 in Eq. (17)
only. We find
wvac(H) = Pvac(H)

ρvac(H)
= −1

+ 1

ρvac(H)

(
ξ − 1

6

)

8π2
Ḣm2

(

1 − ln
m2

H2

)

+ O(H4)

(A1)
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where ρvac(H) in the denominator of the above formula is
given by Eq. (10). TheO(H4) terms are to be neglected here-
after. We can see from Eq. (A1) that at leading order the vac-
uum EoS is coincident with that of the �CDM (wvac = −1),
as it could not be otherwise. Up to second adiabatic order, it
reads

wvac(H) = −1 + εmPl
2

4πρvac(H0)
Ḣ

(

1 − ln
m2

H2
0

)

� −1 − νeff mPl
2 Ḣ

4πρ0
vac

, (A2)

where the small parameter ε is defined by Eq. (11). We have
set H = H0 in the log since the change is extremely slow
within long cosmological periods, for example around our
time, and used ln m2

H2
0

� 1 in the last step. This expression

is the result at O(νeff) for very low redshift and coincides
with the result already reported in [18]. Upon using (11) and
the �CDM form for Ḣ (which is consistent at this order)
it can be immediately be written in terms of the redshift as
indicated in Eq. (19) of the current work.

However, we would like to generalize that formula for a
broader redshift range within the FLRW epoch and for this
we cannot approximate the denominator of (A1) through the
constant ρ0

vac = ρvac(H0) as we did before. We need to use
now the dynamical form of the VED during the FLRW epoch,
i.e. Eq (10), in which the parameter νeff itself is running [18]:

νeff(H) ≡ ε

(

−1 + ln
m2

H2 − H2
0

H2 − H2
0

ln
H2

H2
0

)

. (A3)

Its approximately constant form for H in the late time uni-
verse is given by (11) in the main text. To find out the vacuum
EoS such that it be valid for any redshift from now up to the
initial stages of the radiation-dominated epoch, we have to
insert Eq. (A3) into the canonical RVM form for the VED,
i.e. Eq. (10), and use the latter in the denominator of the EoS
equation (A1). To further proceed we need an explicit form
for H . For νeff strictly constant, the RVM can be solved
analytically [31–34]. However, the QFT form of the RVM
is more complicated since the effective parameter (A3) is a
function of H and then an exact analytical solution is not fea-
sible. Even so, taking into account that νeff(H) is a slowly
varying function of H and that |ε| 
 1, the function νeff(H)

remains always small, and hence we can obtain a very good
approximate solution for the full FLRW regime by expand-
ing the solution in the small parameter ε. In this way we will
be able to split the corrected H2 (involving the QFT effects)
into the leading �CDM part plus O(ε) corrections or higher.
The standard or concordance �CDM model part of H2 is
simply

H2
�CDM(z)=H2

0

[
�0

m(1+z)3+�0
r (1 + z)4+�0

vac

]
. (A4)

Now upon inserting Eq. (10) into Friedmann’s equation and
separating the �CDM contribution, we find the following
result:

H2 = 8πG(H)

3
(ρm(z) + ρvac(H) + · · · ) � H2

�CDM

+ε
(
H2

�CDM − H2
0

) (

−1 + ln
m2

H2
0

)

+ O(ε2), (A5)

where the dots in the first equality stand for the neglected
O(H4) corrections to Friedmann’s equation in the present
universe (the interested reader can find their explicit form in
[18]). In the above expression, the term departing from the
�CDM result has been calculated up to order O(ε), but we
should remark that G(H) in (A5) is given by by Eq. (13) and
hence it had also to be expanded to O(ε) so as to obtain the
complete O(ε) correction indicated in Eq. (A5). In a similar
way we find

Ḣ = Ḣ�CDM + ε Ḣ�CDM

(

−1 + ln
m2

H2
0

)

+ O(ε2). (A6)

Finally, introducing the above equations in Eq. (A1), we
arrive after some calculations at the formula

wvac(z) � −1

+
νeff

⎛

⎝1 − ln E2
�CDM

ln m2

H2
0

⎞

⎠ (
�0

m(1 + z)3 + 4
3�0

r (1 + z)4
)

�0
vac + νeff

⎡

⎣−1 + E2
�CDM(z)

⎛

⎝1 − ln E2
�CDM(z)

ln m2

H2
0

⎞

⎠

⎤

⎦

,

(A7)

in which E2
�CDM(z) ≡ H2

�CDM(z)

H2
0

, with νeff given by (11).

Once more we have used ln m2

H2
0

� 1 to simplify the final

result. In practice, it is sufficient to use the even more sim-
plified form

wvac(z) = −1 + νeff
(
�0

m(1 + z)3 + 4
3�0

r (1 + z)4
)

�0
vac + νeff

[−1 + E2
�CDM(z)

] , (A8)

since ln E2
�CDM 
 ln m2

H2
0

in the entire FLRW regime, as it

can be easily checked. We immediately recognize that the
obtained Eq. (A8) is just our EoS formula (18) in the main
text (q.e.d.). It is fully model-independent as the mass of the
scalar particle has been absorbed by the generalized coeffi-
cient νeff (within the very good approximation used to derive
it). Moreover, as indicated in Sect. 8, for small redshif val-
ues Eq. (A8) trivially reduces to the much simpler form (19).
Recall that the three distinct qualitative behaviors implied by
the running vacuum EoS during the various epochs of the
FLRW regime are summarized in Eq. (21).
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The above EoS formula for the vacuum can still be further
refined to include the next-to-leading O(ν2

eff) terms. This
implies more work since we need to consistently collect all
of ε2 terms and in particular also those from expanding up to
that order the running gravitational coupling (13). We shall
omit the details of this lengthier calculation. The result stays,
however, rather compact and we find that up to the next-to-
leading order in ε we have

H2(z) = H2
�CDM + ε

(
H2

�CDM(z) − H2
0

) (

−1 + ln
m2

H2
0

)

+ε2
(
H2

�CDM(z) − H2
0

)(

−1 + ln
m2

H2
0

)2

(A9)

or

E2(z) ≡ H2(z)

H2
0

� E2
�CDM(z)

+νeff

(
E2

�CDM(z) − 1
)

+ ν2
eff

(
E2

�CDM(z) − 1
)

(A10)

and

Ḣ = Ḣ�CDM + ε Ḣ�CDM

(

−1 + ln
m2

H2
0

)

+ ε2 Ḣ�CDM

×
(

−1 + ln
m2

H2
0

)2

� Ḣ�CDM + νeff Ḣ�CDM

+ν2
eff Ḣ�CDM. (A11)

These expressions obviously extend the previous ones up to
O(ε2). We can use them to compute the EoS at this order.
Once more we see that the expansion in ε is such that at
leading order it can be expressed as an expansion in νeff .
The final result for the EoS to O(ν2

eff) takes on the form in
Eq.(A7) with only the replacement νeff → νeff(1 + νeff) in
the parameter νeff of its numerator. Thus, since 0 < νeff 

1, the next-to-leading O(ν2

eff) terms obviously imply a tiny
correction to the O(νeff) formula, which in practice can be
neglected.

We remark that the model at this point is solved. Indeed,
from Eq. (A10) the quantum correction to the ordinary
�CDM parameter �0

vac can be expressed directly in terms
of the redshift as follows:

�vac(z) � �0
vac + νeff

(
E2

�CDM(z) − 1
)

+ ν2
eff

(
E2

�CDM(z) − 1
)

.

(A12)

Obviously �vac(z = 0) = �0
vac is satisfied, as it should be.

To withinO(νeff ) this expression is similar to the one found in
previous calculations based on the phenomenological RVM,
see e.g. [31–34], except that here we have derived the funda-
mental RVM formulas, including the running vacuum EoS,
from QFT in curved spacetime within the framework recently
put forward in [18,19]. The above equation can be written

to O(νeff) in terms of the vacuum energy density itself as
follows:

ρvac(z) � ρ0
vac + νeff ρ0

c

(
E2

�CDM(z) − 1
)

, (A13)

where ρ0
c = 3H2

0 /(8πGN ) is the current critical density.
This expression has been used for the VED plots in Fig. 1.
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