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Abstract This paper performs a systematic investigation
of geodesic motion in Euclidean Schwarzschild geometry,
which is studied in the equatorial plane. The explicit form
of geodesic motion is obtained in terms of incomplete ellip-
tic integrals of first, second and third kind. No elliptic-like
orbits exist in Euclidean Schwarzschild geometry, unlike the
corresponding Lorentzian pattern. Among unbounded orbits,
only unbounded first-kind orbits are allowed, unlike general
relativity where unbounded second-kind orbits are always
allowed.

1 Introduction

Ever since Schwarzschild obtained his spherically symmet-
ric solution of vacuum Einstein equations [1], the resulting
spacetime geometry has been investigated with a huge variety
of perspectives. In particular, we find it important to mention
the following works.

(i) The Regge–Wheeler proof [2] that a Schwarzschild sin-
gularity will undergo small vibrations about the spher-
ical form and will therefore remain stable if subjected
to a small nonspherical perturbation.

(ii) The detailed investigation of geodesic motion in the
case of Lorentzian signature of the metric performed in
Refs. [3–6], as well as the more recent works regarding
Schwarzschild–(anti-)de Sitter spacetimes, BTZ black
holes, noncommutative Schwarzschild black holes, and
static and spherically symmetric traversable wormholes
geometries [7–10].

a e-mail: emmanuele.battista@univie.ac.at;
emmanuelebattista@gmail.com (corresponding author)
b e-mail: gesposit@na.infn.it

(iii) The proof in Ref. [11] that general vacuum initial
data with no symmetry assumed, if sufficiently close
to Schwarzschild data, evolve to a vacuum spacetime
which possesses a complete future null infinity, remains
close to Schwarzschild in its exterior, and approaches a
member of the Schwarzschild family as an appropriate
notion of time goes to infinity.

(iv) The work on gravitational instantons in Euclidean quan-
tum gravity [12], until the recent discovery of a new
asymptotically flat instanton [13], and the even more
recent proof that all known gravitational instantons are
Hermitian [14].

(v) A broader set of investigations in Euclidean Schwarz-
schild, including zero modes [15], black holes in matrix
theory [16], Yang–Mills solutions [17,18], the master
equations of a static perturbation [19], multiplicative
noise [20].

(vi) The work by the authors in Ref. [21], where a basic
integral formula of geometric measure theory has been
evaluated explicitly in the relevant case of Euclidean
Schwarzschild geometry, and it has been suggested
that the in-out amplitude for Euclidean quantum grav-
ity should be evaluated over finite-perimeter Rieman-
nian geometries that match the assigned data on their
reduced boundary. This work has also obtained a heuris-
tic derivation of a formula expressing a correction to the
classical entropy of a Schwarzschild black hole. Fur-
thermore, in Ref. [22] we have provided explicit exam-
ples for the concept of generalized discontinuous nor-
mals to finite-perimeter sets in non-Euclidean spaces
and two-dimensional gravity settings.

Motivated by our original calculations in Refs. [21,22],
in this paper we study geodesic motion in Euclidean
Schwarzschild geometry. The present work can be seen as
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a step towards a novel perspective on some features of clas-
sical and quantum Euclidean gravity. From the point of view
of functional-integral quantization, the work in Refs. [21,22]
has in our opinion good potentialities because measurable
sets belong to two broad families: either they have finite
perimeter, or they do not. In the former case, the tools of
geometric measure theory [23] might help in putting on firm
ground the so far purely formal work of theoretical physics
literature.

If one tries to understand the very nature of quantum field
theory, one may still regard it as integration over suitable
function spaces [24], at least in order to define and evaluate
in-out amplitudes. This involves the action functional and
the effective action, and is therefore a part of the relativisti-
cally invariant, space-time approach to quantum field theory
[25,26]. The Euclidean approach is a mathematical frame-
work where this form of quantization acquires a mathemati-
cal meaning and is therefore physically relevant, despite the
fact that the space-time metric has Lorentzian (rather than
Riemannian) signature. For example, one first solves a heat
equation for a suitable Green function, and its analytic con-
tinuation yields eventually the Feynman propagator.

Gravitational instantons play a role in the tree-level eval-
uation of quantum amplitudes, and their investigation in the
seventies led also to new results in Riemannian geometry
[27].

In recent years, some authors have considered a novel geo-
metric perspective on the nature of particles. When compact
gravitational instantons are studied, it turns out that the neu-
tron can be described by complex projective space CP2 [28]
with the associated Fubini-Study metric, but more recently
[29,30], asymptotically flat instantons such as Euclidean
Schwarzschild have been considered as candidates for a geo-
metric description of the neutron. Although none of these
arguments is compelling, they add evidence in favour of grav-
itational instantons having good potentialities, if one is inter-
ested in foundational and qualitative features of the laws of
nature.

Moreover, the systematic proof of geodesic completeness
of gravitational instantons as a possible criterion for their
singularity-free nature has not been attempted nor obtained in
the literature, as far as we know. This would be of interest both
in mathematical and in theoretical physics of fundamental
interactions.

The paper is organized as follows. Section 2 obtains the
equations for geodesic motion in the equatorial plane. Sec-
tion 3 solves the cubic equation for turning points and pro-
vides a qualitative analysis of the orbits, whereas the explicit
solution in terms of elliptic integrals jointly with its graphi-
cal representation is obtained in Sect. 4. The lack of circular
orbits is proved in Sect. 5. Concluding remarks are made in
Sect. 6, and relevant details are given in the appendices.

2 Geodesic equations in Euclidean Schwarzschild
geometry

The Euclidean Schwarzschild metric expressed in Schwarzs-
child coordinates (τ, r, θ, φ) reads as [31–33]

g(1)
E =

(
1 − 2M

r

)
dτ ⊗ dτ + dr ⊗ dr(

1 − 2M
r

)
+r2

(
dθ ⊗ dθ + sin2 θ dφ ⊗ dφ

)
, (2.1)

where the link with the Lorentzian-signature metric is
obtained by setting τ = it . We work on the real Riemannian
section where the metric is positive-definite. This implies that
the r coordinate must obey the restriction

r ≥ 2M, (2.2)

which agrees with the restriction obtained on using Kruskal–
Szekeres coordinates. Thus, the Kretschmann invariant
RμνσρRμνσρ is a bounded function on the real Riemannian
section of Euclidean Schwarzschild.

By exploiting the symmetries of Schwarzschild geometry,
we can limit our investigation to the equatorial plane θ =
π/2, where the geodesic equations read as

d2r

dλ2 − A′

2A

(
dr

dλ

)2

− r A

(
dφ

dλ

)2

− AA′

2

(
dτ

dλ

)2

= 0,

(2.3a)

d2φ

dλ2 + 2

r

dr

dλ

dφ

dλ
= 0, (2.3b)

d2τ

dλ2 + A′

A

dr

dλ

dτ

dλ
= 0, (2.3c)

where λ is the affine parameter, the prime denotes the deriva-
tive with respect to the r variable and we have set

A(r) ≡ 1 − 2M

r
. (2.4)

After dividing Eqs. (2.3b) and (2.3c) by dφ/dλ and dτ/dλ,
respectively, we obtain

d

dλ

[
log

(
dφ

dλ

)
+ log r2

]
= 0, (2.5)

d

dλ

[
log

(
dτ

dλ

)
+ log A

]
= 0, (2.6)

from which we derive

dτ

dλ
= C

A(r(λ))
(2.7)

r2 dφ

dλ
= J, (2.8)
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C and J being integration constants. By virtue of Eqs. (2.7)
and (2.8), Eq. (2.3a) reads as

d

dλ

[
A−1(r(λ))

((
dr

dλ

)2

+ C2

)
+ J 2

r2

]
= 0, (2.9)

and hence we arrive at

A−1(r(λ))

[(
dr

dλ

)2

+ C2

]
+ J 2

r2 = E, (2.10)

where E > 0 is a constant.
The squared line element evaluated via (2.1) and with θ =

π/2 reads as

ds2
∣∣∣
θ=π/2

= A(r)dτ 2 + A−1(r)dr2 + r2dφ2, (2.11)

then from Eqs. (2.7), (2.8), and (2.10) we obtain the useful
relation

ds2 = Edλ2, (2.12)

which makes it possible to write the equations defining
geodesic motion as

(
dr

ds

)2

=
(

1 − 2M

r

) (
1 − L2

r2

)
− C2E2, (2.13a)

dφ

ds
= L

r2 , (2.13b)

dτ

ds
= CE(

1 − 2M

r

) , (2.13c)

where we have defined the real-valued constants E and L as

E ≡ 1√E , (2.14a)

L ≡ J√E = J E . (2.14b)

Upon introducing the variable

u = 1

r
, (2.15)

Eq. (2.13) can be equivalently written as

(
du

dφ

)2

= 1

L2

(
dr

ds

)2

= F(u), (2.16)

ds

dφ
= 1

Lu2 , (2.17)

dτ

dφ
= CE

Lu2(1 − 2Mu)
, (2.18)

where

F(u) ≡ 2Mu3 − u2 −
(

2M

L2

)
u +

(
1 − C2E2

L2

)

= 2M(u − u1)(u − u2)(u − u3). (2.19)

The above differential equations completely determine the
geodesic motion in Euclidean Schwarzschild geometry in the
equatorial plane θ = π/2. The turning points are described
by the cubic equation

F(u) = 0, (2.20)

whose roots, say u1, u2 and u3, satisfy the following equali-
ties (Viète’s formulae):

u1 + u2 + u3 = 1

2M
, (2.21)

u1u2 + u2u3 + u3u1 = − 1

L2 , (2.22)

u1u2u3 = −
(
1 − C2E2

)
2ML2 . (2.23)

3 Roots of the cubic equation F(u) = 0: qualitative
analysis of the orbits

The cubic equation F(u) = 0 can be re-expressed in canon-
ical form [34,35]

w3 + pw + q = 0, (3.1)

where

p = −
(

1

L2 + 1

12M2

)
, (3.2)

q = − 1

108M3 + 1

6ML2 (2 − 3C2E2). (3.3)

Hence the discriminant � is given by

� = −(4p3 + 27q2)

= 1

4(ML)2

[
16

(
M

L

)4

− (27C4E4 − 36C2E2 + 8)

×
(
M

L

)2

+ (1 − C2E2)

]
. (3.4)

From the above equations, it is clear that the integration con-
stant C (cf. Eq. (2.7)) is a multiplicative constant and hence
can be set to one without loss of generality. However, in order
to keep our analysis as general as possible, we here continue
employing a generic C .

The sign of 	 depends on the behaviour of the real-valued
function

G (E,m) = 16m4 −
(

27C4E4 − 36C2E2 + 8
)
m2

+
(

1 − C2E2
)

, (3.5)

where

m ≡ M

L
, (3.6)
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Fig. 1 The discriminant (3.4) obtained with E = 1.02 and C = 1. It
is clear that 	 assumes either positive, negative, or vanishing values

Fig. 2 The function (3.5) with C = 1. It is clear that the discriminant
(3.4) can be either positive, negative, or zero ifC2E2 > 1 (cf. Eq. (3.7))

Fig. 3 The discriminant (3.4) obtained with E = 0.26 and C = 1. It
is clear that 	 never becomes negative

the discriminant (3.4) being in fact expressible as

	 = 1

4
(
M2L

)2 G (E,m) . (3.7)

In this way, we find that 	 can be either positive, negative,
or zero only if C2E2 > 1 (see Figs. 1 and 2), whereas when
C2E2 ≤ 1 we only have 	 ≥ 0 (see Figs. 3 and 4). In

Fig. 4 The function (3.5) with C = 1. It is clear that the discriminant
(3.4) never becomes negative provided C2E2 ≤ 1 (cf. Eq. (3.7))

particular, in this second case, 	 = 0 if

|m| = 1

2
, (3.8a)

E = 0, (3.8b)

or

m = 0, (3.9a)

CE = 1. (3.9b)

This means that the cubic (2.20) can only admit real roots
as soon as C2E2 ≤ 1. This is different from the Lorentzian
case, where complex roots can arise both with C2E2 > 1
and C2E2 ≤ 1.

From the theory of cubic equations it is known that multi-
ple roots arise when the discriminant (3.4) vanishes. In par-
ticular, if 	 = 0 and p = 0, w1 = w2 = w3 = 0 is a triple
root of (3.1). On the other hand, if 	 = 0 and p 	= 0, then
w1 = 3q/p is a single root, while w2 = w3 = −3q/(2p) is
a double root of (3.1). In our case, from Eq. (3.2) it is clear
that 	 and p cannot vanish simultaneously. This means that
the cubic equation (2.20) never admits a triple root when
(3.4) vanishes. Furthermore, by employing Descartes’ rule
of signs and bearing in mind the discriminant (3.4), we have
the following situation:

• C2E2 < 1:

(i) 	 > 0. The cubic (2.20) has two distinct positive
roots and one negative root (see Fig. 5);

(ii) 	 = 0. The cubic (2.20) admits one negative root and
two coincident positive roots (see Fig. 6 and Eq. (3.8))
which read as

u1 = − 1

2M
, (3.10a)

u2 = u3 = 1

2M
, (3.10b)

respectively.
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Fig. 5 The positive roots of Eq. (2.20) when C2E2 < 1 and 	 > 0

• C2E2 > 1:

(i) 	 > 0. The cubic (2.20) presents one positive root
and two distinct negative roots (see Fig. 7);

(ii) 	 = 0. The cubic (2.20) admits one positive root and
two coincident negative roots (see Fig. 8);

(iii) 	 < 0. The cubic (2.20) exhibits one positive root
and two complex conjugate roots (see Fig. 9).

• C2E2 = 1:

(i) 	 > 0. The cubic (2.20) has one vanishing root, the
negative root

u1 =
1 −

√
1 + 16

M2

L2

4M
(3.11)

and the positive root

u2 =
1 +

√
1 + 16

M2

L2

4M
, (3.12)

see Fig. 10;
(ii) 	 = 0 with M 	= 0 and |L| 
 M (see Eq. (3.9)). By

virtue of Eqs. (3.11) and (3.12), we find that the cubic
(2.20) admits a vanishing root (with multiplicity two)

and the positive root u2 = 1

2M
(see Fig. 11).

From Figs. 5, 6, 7, 8, 9, 10 and 11 it is clear that the
conditions

0 < u1 < u < u2,

F(u) > 0,

never hold simultaneously. This is due to the fact that when
(2.20) admits two positive roots (i.e., when C2E2 < 1) the
function (2.19) is such that F(0) > 0. As a consequence, no
elliptic-like orbits exist in Euclidean Schwarzschild geom-
etry, unlike the corresponding Lorentzian pattern. Further-

Fig. 6 The positive roots of Eq. (2.20) when C2E2 < 1 and 	 = 0

Fig. 7 The positive root of Eq. (2.20) when C2E2 > 1 and 	 > 0

Fig. 8 The positive root Eq. (2.20) when C2E2 > 1 and 	 = 0

more, since F(0) > 0 only if C2E2 < 1, we have the fol-
lowing classification:

C2E2 < 1 : unbounded orbits, (3.13)

C2E2 > 1 : bounded orbits, (3.14)

which amounts to the reversed situation with respect to gen-
eral relativity. Here, bounded (resp. unbounded) orbits are
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Fig. 9 The positive root of Eq. (2.20) when C2E2 > 1 and 	 < 0

Fig. 10 The non-negative roots of Eq. (2.20) when C2E2 = 1 and
	 > 0

defined as those trajectories where r remains bounded (resp.
unbounded).

From Eq. (2.13a) we see that (dr/ds)2 < 0 if r = 2M .
Therefore, the condition (2.2) should be tightened and for
this purpose we impose

r > 2M. (3.15)

In light of the above condition, the lower bound

r > |L| (3.16)

is a necessary but not sufficient condition to ensure that
(dr/ds)2 > 0.

Hereafter, we will limit our analysis to geodesics enforc-
ing the constraint

u <
1

2M
, (3.17)

jointly with F(u) ≥ 0 (see Eq. (2.16)).

Fig. 11 The roots of Eq. (2.20) when C2E2 = 1, 	 = 0, and M 	= 0

4 Solution in terms of elliptic integrals

As we have shown before, the algebraic equation of third
degree (2.20) involves three real roots as soon as C2E2 ≤ 1.
In particular, when C2E2 < 1 and the discriminant (3.7) is
non-vanishing, the solution u3 turns out to admit the lower
bound (see Appendix A for further details)

u3 ≥ 1

2M
, (4.1)

with u3 = 1/(2M) in the case E = 0. On the other hand,
Figs. 5 and 6 clearly indicate that the case C2E2 < 1 could,
in principle, entail both first-kind trajectories, for which
0 < u ≤ u2, and second-kind ones, where u > u3 (this
is our definition of first-kind and second-kind orbits). Since
the latter neither obey (3.15) nor belong to the real section of
the complexified Schwarzschild spacetime, our calculations
will be restricted to first-kind orbits. This represents a clear
difference with respect to general relativity, where second-
kind trajectories are always allowed.

Under the hypothesis 0 < C2E2 < 1, the three real solu-
tions of the cubic (2.20) can be parametrised as

u1 = −1



(e − 1) , (4.2a)

u2 = 1

2M
− 2



, (4.2b)

u3 = 1



(e + 1) , (4.2c)

where we have adopted a choice which does not resem-
ble exactly the Lorentzian-signature framework [6] (see
Appendix B for details).

The roots (4.2) clearly satisfy Eq. (2.21) and in addition

u1 < 0 < u2 <
1

2M
< u3, (4.3)

provided that


 > 0, (4.4a)
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e > 1, (4.4b)

1

2 (e + 1)
< μ <

1

4
, (4.4c)

where we have defined

μ ≡ M



. (4.5)

It follows from Eqs. (4.4a) and (4.4b) that, similarly to the
Lorentzian-signature pattern, we can interpret the positive
constant 
 as the latus rectum and e as the eccentricity;
indeed, we will see that our investigation predicts the exis-
tence of trajectories which display a formal analogy with the
hyperbolic orbits of general relativity (see Figs. 12 and 13,
below).

Viète’s formulae (2.22) and (2.23) yield

1

L2 = μ
(
3 + e2

) − 1

M

, (4.6a)(

1 − C2E2
)

L2 =
(
e2 − 1

)
(1 − 4μ)


2 , (4.6b)

respectively, and we recognize that the set of constraints (4.4)
guarantees also that

L2 > 0, (4.7)

0 < C2E2 < 1. (4.8)

In the hypothetical case

μ = 1

(6 + 2e)
, (4.9)

the roots (4.2b) and (4.2c) would coincide and relations (4.6)
would be turned into

L2

M2 = 4 (3 + e)2

(e + 1) (e − 3)
, (4.10a)

(
1 − C2E2

)
=

(
e2 − 1

)
(
e2 − 9

) . (4.10b)

However, Eqs. (4.2)–(4.4), as well as Eq. (4.8), do not account
for this scenario. Indeed, we know that when u2 = u3 both
(3.8) and (3.10b) are satisfied, but the latter implies that the
constraint (3.17) is violated, while, in light of the former,
Eq. (4.10) cannot be valid; furthermore, it is clear that (3.8b)
cannot stem from Eq. (4.8). Therefore, our analysis of first-
kind trajectories naturally implies, on the one hand,

u2 	= u3, (4.11)

while, on the other hand, it includes also the limiting situation

u2 → 1

2M
. (4.12)

First-kind orbits having C2E2 < 1 (i.e., unbounded, see
Eq. (3.14)) will be dealt with in the following section.

4.1 First-kind orbits having C2E2 < 1

As pointed out before, the case C2E2 < 1 consists of
unbounded first-kind orbits only. This means that, equiv-
alently, our study will rely on one portion of Fig. 5 only,
whereas the situation depicted in Fig. 6 will be ignored.

Orbits of first kind are constrained by means of

0 < u ≤ u2 <
1

2M
, (4.13)

see Fig. 5.
Starting from Eqs. (2.15)–(2.19), the system of differential

equations for the geodesic motion can be re-expressed in the
form (where ε = ±1)

dτ

ds
= dτ

dr

dr

ds
= CE(

1 − 2M
r

) , (4.14)

dr

ds
= ε

√(
1 − 2M

r

) (
1 − L2

r2

)
− C2E2, (4.15)

dφ

ds
= dφ

dr

dr

ds
= L

r2 , (4.16)

with the understanding that the physically relevant solution
pertains to non-negative values of the argument of the square
root on the right-hand side of Eq. (4.15). Moreover, as pointed
out before, we focus on the case in which the root u1 of the
equation F(u) = 0 is negative, while the roots u2 and u3 are
positive and such that (cf. Eqs. (4.3) and (4.13))

u ≤ u2 < u3. (4.17)

We therefore find from Eqs. (4.14)–(4.16), upon setting
P3(u) = F(u)/(2M) = (u − u1)(u − u2)(u − u3), the
following integral formulae for the solution:

s = s0 + ε

L
√

2M

∫ u2

1
r

du

u2
√
P3(u)

, (4.18)

τ = τ0 + εCE

L
√

2M

∫ u2

1
r

du

u2(1 − 2Mu)
√
P3(u)

, (4.19)

φ = φ0 + ε√
2M

∫ u2

1
r

du√
P3(u)

. (4.20)

Note that, in agreement with what we said before, the upper
limit of integration is u2, in order to avoid negative values of
P3(u), which are unphysical. At this stage, it is convenient
to apply twice the method of adding and subtracting 2Mu
in the numerator of the integrand in Eq. (4.19). Thus, upon
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defining (our n = 0, 1, 2)

Jn =
∫ u2

1
r

du

un
√
P3(u)

, (4.21a)

I =
∫ u2

1
r

du(
u − 1

2M

)√
P3(u)

, (4.21b)

we obtain eventually the desired solution in the form

s = s0 + ε

L
√

2M
J2, (4.22)

τ = τ0 + CE(s − s0) + εCE

√
2M

L
(J1 − I ), (4.23)

φ = φ0 + ε√
2M

J0. (4.24)

The four integrals occurring in the solution (4.22)–(4.24) can
be evaluated by means of incomplete elliptic integrals (see
Appendix C) according to the formulae [36]

a = u3, b = u2, c = u1, (4.25a)

ϕ = arcsin

√√√√ (a − c)
(
b − 1

r

)
(b − c)

(
a − 1

r

) , (4.25b)

k2 = (b − c)

(a − c)
, (4.25c)

α2 = a

b
k2, (4.25d)

β = k

√√√√
( 1

2M − a
)

( 1
2M − b

) , (4.25e)

J0 = 2√
a − c

F(ϕ, k2), (4.26a)

J1 = 2

a
√
a − c

[
F(ϕ, k2) +

(
α2

k2 − 1

)
π(ϕ, α2, k2)

]
,

(4.26b)

J2 = 2

a2
√
a − c

{
F(ϕ, k2) + 2

(
α2

k2 − 1

)
π(ϕ, α2, k2)

+
(

α2

k2 − 1

)2
1

2(α2 − 1)(k2 − α2)

[
α2E(ϕ, k2)

+ (k2 − α2)F(ϕ, k2) + (2α2k2 + 2α2 − α4 − 3k2)

× π(ϕ, α2, k2) − α4sn(u)cn(u)dn(u)

(1 − α2sn2(u))

]}
, (4.26c)

I = − 2

(2M − a)
√
a − c

×
[
F(ϕ, k2) +

(
β2

k2 − 1

)
π(ϕ, β2, k2)

]
. (4.26d)

At a deeper level, the solution of Eq. (4.20) for 1
r = u(φ)

should not depend on the integration path. If one denotes by
γ a closed integration path and if one sets

1√
2M

∫
γ

du√
P3(u)

= ω, (4.27)

this means that [7]

φ − φ0 − ω = 1√
2M

∫ u2

u

du′
√
P3(u′)

, (4.28)

should hold as well. In other words, the desired solution
should be periodic of period ω. At this stage, Eq. (4.20) is
viewed as defined on the Riemann surface of the algebraic
function u → √

P3(u). At the deep level of complex analy-
sis and algebraic geometry, this is the appropriate concept of
periodicity [7], which should not be confused with the peri-

odicity of the function y = cos
(

τ
4M

)√
r

2M − 1 exp
( r

4M

)
in

Kruskal–Szekeres coordinates [31].

4.2 Graphical representation of unbounded first-kind orbits

Having obtained the general solution (4.22)–(4.24) of first-
kind orbits that satisfy C2E2 < 1, we can now provide their
graphical representation.

The plot of the solution φ = φ(r) for unbounded first-
kind orbits is displayed in Fig. 12, whereas the case of the
limiting regime (4.12) is shown in Fig. 13. It is clear that
the resulting trajectory has the same behaviour as the orbit
displayed in Fig. 12.

It should be noted that the limiting scenario (4.12) is ruled
by (cf. Eq. (4.2b))

μ → 0. (4.29)

By virtue of the constraint (4.4c), the condition (4.29) is
admissible provided that (see Eq. (4.4b))

e → +∞, (4.30)

Fig. 12 The function φ = φ(r) for first-kind orbits having C2E2 < 1.
The following constants have been chosen: φ0 = 0, M = 2, e = 4.5,

 = 11, ε = ±1, and C = 1
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Fig. 13 The function φ = φ(r) for first-kind orbits having C2E2 < 1
in the limiting case (4.12). The following constants have been chosen:
φ0 = 0, M = 1, e = 1.5 × 107, 
 = 105, ε = ±1, and C = 1

Fig. 14 The function τ = τ(r) for first-kind orbits having C2E2 < 1.
The following constants have been chosen: τ0 = 0, M = 2, e = 4.5,

 = 11, ε = ±1, and C = 1

whereas the definition (4.5) of the parameter μ further
demands (see Eq. (4.4a))


 → +∞. (4.31)

For the numerical evaluation of the inverse function r =
r(φ), we refer the reader to the method in Sec. III of Ref. [7].

The plots of the functions τ = τ(r) and s = s(r) are
given in Figs. 14 and 15, respectively.

4.3 Geodesics with C2E2 ≥ 1

As pointed out before, as soon as C2E2 > 1 the cubic (2.20)
has only one positive root. We have checked that this solu-
tion is always bigger than 1/2M (see also Eq. (2.21)). There-
fore, in view of the constraint (3.17), no geodesic motion is
allowed when C2E2 > 1. In other words, no bounded orbit
exists in Euclidean Schwarzschild geometry.

The condition (3.17) demands that the case C2E2 = 1
entails only the root u = 0. This means that when C2E2 = 1
the geodesic motion only allows r = +∞.

Fig. 15 The function s = s(r) for first-kind orbits having C2E2 < 1.
The following constants have been chosen: s0 = 0, M = 2, e = 4.5,

 = 11, ε = ±1, and C = 1

5 Lack of circular orbits

The last interesting topic to be addressed concerns the inves-
tigation of the possible presence of circular orbits. This task
is performed in this section, where we will consider C = 1
for simplicity.

By virtue of Eq. (2.13a), we can define an “Euclidean
potential energy” VE (r) as

VE (r) = ε

(
1 − 2M

r

)(
1 − L2

r2

)
, (5.1)

where, as before, ε = ±1. It is known that [6] the minimum
of the potential corresponds to a stable circular orbit, the
maximum to an unstable one, whereas the point of inflec-
tion represents the innermost stable circular orbit. For the
potential (5.1), we find that the first derivative

dVE (r)

dr
= 2ε

r4

[
Mr2 + L2(r − 3M)

]
, (5.2)

vanishes at

r1,2 = −L2 ∓ √
L4 + 12M2L2

2M
. (5.3)

Since r1 < 0, we will only consider the solution

r2 ≡ r�. (5.4)

Then, from the study of the second derivative of VE (r), we
obtain

d2VE (r)

dr2

∣∣∣∣∣
r�

=
32εM4L2

(
L2 + 12M2 −

√
L4 + 12M2L2

)
(√

L4 + 12M2L2 − L2
)5

,

(5.5)
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Fig. 16 The potential energy function (5.1) with ε = −1, M = 1, and
L = 1

Fig. 17 The potential energy function (5.1) with ε = 1, M = 1, and
L = 1

which means that

r� is a maximum of VE (r) if ε = −1,

r� is a minimum of VE (r) if ε = 1, (5.6)

as shown in Figs. 16 and 17.
Furthermore, r = r� cannot represent a point of inflection

since the condition d2VE (r)
dr2

∣∣∣
r�

= 0 implies 12M2 + L2 =
0, which in turn does not lead to any real-valued solution.
Despite the result (5.6), no circular orbit can exist in our
model (even if r� > 2M when |L| > 2M). In fact, bearing

in mind Eq. (2.13a), we see that the requirement
( dr

ds

)2
> 0

entails, when E2 > 1,

VE (r)

ε
> 1, (5.7)

but this lower bound is not fulfilled at r = r�. Furthermore,
as a consequence of Eq. (2.13a), the condition

( dr
ds

)2 = 0

yields

VE (r)

ε
= E2, (5.8)

which, when evaluated at r = r�, leads to complex-valued
solutions for the energy E (equivalently, these solutions do
not satisfy E2 > 1 nor do they fulfill 0 < E2 < 1).1 Since
circular orbits are not present also if E2 ≤ 1, this com-
pletes our proof that Euclidean Schwarzschild geometry does
not envisage circular orbits. This differs from general rela-
tivity, where both stable and unstable circular trajectories
are predicted, the innermost stable circular orbit occurring at
r = 6M [6].

We have been looking for circular geodesics that make a
loop around the Euclidean time and correspond to constant
values of r and φ. However, when r and φ are constant,
Eq. (2.3c) is solved for τ(λ) by a linear function of the affine
parameter, while Eq. (2.3a) shows that dτ/dλ = 0. Thus,
the Euclidean time τ is found to be constant, and the desired
circular geodesic shrinks to the point

(τ = constant, r = constant, φ = constant). (5.9)

6 Conclusions

In this paper we have evaluated in detail geodesic motion in
Euclidean Schwarzschild geometry, limited to the real Rie-
mannian section of the complexified Schwarzschild space-
time. Our explicit solution (4.22)–(4.24) in terms of incom-
plete elliptic integrals of first, second and third kind has never
appeared in the literature, to the best of our knowledge.

Our investigation has revealed new interesting features,
which do not occur in the corresponding Lorentzian-signature
framework. This means that the Euclidean and the Lorentzian
Schwarzschild geometries are characterized by deep differ-
ences which cannot be merely reduced to the opposite signs
occurring in the timelike component of their metric tensors.
Indeed, we have shown that no elliptic-like orbits occur in the
Euclidean Schwarzschild spacetime and, in general, bounded
orbits are not allowed. Furthermore, unbounded orbits con-
sist of first-kind trajectories only and are described by means
of a parametrization which differs from the one adopted in
general relativity (see Eq. (4.2)).

Recently, a new examination of the geodesic motion in
Lorentzian Schwarzschild geometry has been proposed in
the literature, where all kinds of nonradial causal geodesic
orbits have been described via a single formula making use

1 The equation VE (r�)
ε

= E2 leads also to the real-valued solution E =
0 when |L| = 2M . However, this solution cannot be accepted for two
reasons: (i) it violates Eq. (2.14a); (ii) it does not fulfill the constraint
r� > 2M .
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of Weierstrass elliptic functions [37]. On the other hand, the
Euclidean case studied in this paper exploits incomplete ellip-
tic integrals. Thus, an interesting issue to be addressed could
consist in verifying whether the pattern of Ref. [37] can be
employed also in Euclidean settings.

The lack of bounded orbits in Euclidean Schwarzschild
geometry is a feature existing also at quantum level. Indeed,
it has been shown in Ref. [30] that only the inclusion of a
“magnetic field” (i.e., a self-dual Abelian gauge field) yields
bounded (elliptic) orbits (the same conclusions hold also for
Taub-NUT and Taub-Bolt spaces, see Refs. [38,39]). More-
over, in this framework (and in particular in the context of
the recently proposed geometric models of matter [28]) the
Euclidean Schwarzschild space emerges as a natural geo-
metric candidate for the neutron [29] (whereas the Euclidean
Taub-NUT space can represent the electron [28]).

The investigation of singularities in Euclidean Schwarzs
child geometry is a physical motivation supporting our paper.
In fact, it is known [40] that in general relativity timelike
and null geodesic incompleteness is the criterion used to
define the occurrence of space-time singularities. On the
other hand, in the case of Euclidean Schwarzschild geom-
etry, the absence of the singularity at r = 0 is demon-
strated via a “shortcut” by considering the real section of the
complexified Schwarzschild spacetime in Kruskal–Szekeres
coordinates [31]. Our analysis can be thus exploited to show
that the geodesics of (the real section of) the Euclidean
Schwarzschild spacetime are indeed complete and hence no
singularity can emerge.

Last, this work can represent a starting point for a sys-
tematic study of geodesic motion in Euclidean gravity. Thus,

the first step carried out in this paper can be followed by an
analysis involving the whole set of gravitational instantons in
general. This might entail the discovery of new results both
in Riemannian geometry and Euclidean quantum gravity.
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Appendix A: General formulae for roots of the cubic
F(u) = 0

The three roots of the cubic (2.20) can be obtained by means
of a numerical evaluation of the following quantities (recall
that m ≡ M/L):

u1 = 1

6M
+

(
1 + i

√
3
) (

1 + 12m2
)

(
6M

3√
4
)
B

+
(
−1 + i

√
3
)
B

12M
3√

2
,

(A1)

u2 = 1

6M
−

(
1 − i

√
3
) (

1 + 12m2
)

(
6M

3√
4
)
B

−
(

1 + i
√

3
)
B

12M
3√

2
,

(A2)

u3 = 1

6M
+

(
1 + 12m2

)
(

3M
3√

4
)
B

+ B

6M
3√

2
, (A3)

where

B ≡
33

√(
2 − 72m2 + 108C2E2m2

) +
√(

2 − 72m2 + 108C2E2m2
)2 − 4

(
1 + 12m2

)3
. (A4)

The above formulae are valid for any real-valued C and
E .

Appendix B: More details about the roots of the cubic
F(u) = 0 under the hypothesis C2E2 < 1

In Sect. 4, we have seen that the form (4.2) of the roots of the
cubic (2.20) accounts correctly for the geodesic motion under
the hypothesis C2E2 < 1. In this Appendix we will show
that, had we chosen the same parametrization as in general
relativity [6], we would have obtained some inconsistencies.
Let

u′
1 = −1



(e − 1) , (B1a)
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u′
2 = 1



(e + 1) , (B1b)

u′
3 = 1

2M
− 2



, (B1c)

denote a new (hypothetical) set of roots of the cubic (2.20)
in the case C2E2 < 1. Equation (B1) is identical to the
choice adopted in the context of Einstein’s theory [6] and
furthermore it is clear that (cf. Eq. (4.2)) u′

1 = u1, u′
2 = u3,

and u′
3 = u2. In addition, by means of the parametrization

(B1), the constraint (4.3) is not enforced since

u′
1 < 0 < u′

2 < u′
3 <

1

2M
, (B2)

provided that


 > 0, (B3a)

e > 1, (B3b)

μ <
1

4
, (B3c)

1 − 6μ − 2μe > 0, (B3d)

where μ has been defined in Eq. (4.5). Condition (B3c) is
guaranteed by (B3b) and (B3d). Viète’s formulae (2.22) and
(2.23) lead to the same relations as in Eq. (4.6), i.e.,

1

L2 = μ
(
3 + e2

) − 1

M

, (B4a)(

1 − C2E2
)

L2 =
(
e2 − 1

)
(1 − 4μ)


2 . (B4b)

Equations (B3d) and (B4a) entail

e > 3,
1(

3 + e2
) < μ <

1

(6 + 2e)
, (B5)

and hence the set of constraints (B3) should be slightly mod-
ified according to


 > 0, (B6a)

e > 3, (B6b)

μ <
1

4
, (B6c)

1(
3 + e2

) < μ <
1

(6 + 2e)
, (B6d)

where (B6c) is fulfilled on account of (B6b) and (B6d). Note
that, unlike the analysis of Sect. 4, the parameter e is such
that e /∈ (1, 3) (cf. Eqs. (4.4b) and (B6b)). At this stage, from
the requirement

E2 > 0, (B7)

we obtain from Eq. (B4)

μ >
1

2 (e + 1)
, (B8)

which disagrees with Eq. (B6d). Thus, as we have seen in
Sect. 4, the parametrization (4.2) should be employed in place
of (B1).

Appendix C: Incomplete elliptic integrals

According to the standard notation in Ref. [36], the incom-
plete elliptic integrals of the first, second, and third kind can
be defined as

F(ϕ, k2) =
∫ ϕ

0

dθ√
1 − k2 sin2 θ

, (C1)

E(ϕ, k2) =
∫ ϕ

0

√
1 − k2 sin2 θ dθ, (C2)

π(ϕ, α2, k2) =
∫ ϕ

0

dθ

(1 − α2 sin2 θ)
√

1 − k2 sin2 θ
, (C3)

respectively, while the Jacobi elliptic functions read as

sn(u) = sin ϕ, cn(u) = cos ϕ, dn(u) =
√

1 − k2 sin2 ϕ.

(C4)
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