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Abstract Barrow proposed that the area law of the horizon
entropy might receive a “fractal correction” § oc A!+A/2
due to quantum gravitational effects, with 0 < A < 1 mea-
sures the deviation from the standard area law. While such
a modification has been widely studied in the literature, its
corresponding theory of gravity has not been discussed. We
follow Jacobson’s approach to derive the modified gravity
theory (interpreted as an effective theory), and find that in the
stationary case the resulting theory only differs from general
relativity by are-scaled cosmological constant. Consequently
inasymptotically flat stationary spacetimes the theory isiden-
tical to general relativity. The theory is not applicable when
there is no horizon; the multi-horizon case is complicated. We
emphasize on the importance of identifying the correct ther-
modynamic mass in a theory with modified thermodynamics
to avoid inconsistencies. We also comment on the Hawking
evaporation rate beyond the effective theory. In addition, we
show that the Bekenstein bound is satisfied if the thermody-
namic mass is used as the energy, up to a constant prefactor.
We briefly comment on the Tsallis entropy case as well. Inter-
estingly, for the latter, the requirement that Bekenstein bound
holds imposes a lower bound on the non-extensive parame-
ter: § > 1/2, which unfortunately rules out the previously
suggested possibility that the expansion of the universe can
accelerate with normal matter field alone.
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1 Introduction: in search of an effective gravity theory
from barrow entropy

Barrow suggested that quantum gravity (QG) effects might
introduce fractal structures on the horizon [1]. Explicitly, he
proposed that the Schwarzschild horizon is not a 2-sphere,
buta “sphereflake”. A sphereflake is obtained as follows: start
with a Schwarzschild black hole whose Schwarzschild radius
is ro and keep on adding more spherical surfaces to “extend”
the horizon (similar to the construction of the well-known
fractal Koch snowflake). At each iteration, add N spheres of
radius 1,1 = Ary, A < 1, to the existing spheres. Depending
on the number of spheres added at each iteration and the scal-
ing factor, the fractal dimension of the resulting sphereflake
would be different. Since it is often much more convenient to
have an explicit metric to work with, a spherically symmet-
ric black hole metric in the usual coordinates {z, r, 6, ¢} that
incorporates such an entropy correction was introduced and
analyzed in the literature [2,3]. However, this immediately
raised a question: in what sense does such a metric describe
the underlying geometry? After all, a sphereflake has a very
intricate structure, is ¥ = const. supposed to correspond to a
sphereflake? Does such a foliation even exist?

Motivated by the need to further understand such a metric,
in this work, we try to construct an effective theory from
the correction to the underlying thermodynamic. As we will
argue, at the level of such an effective theory in which QG
degrees of freedom are traced out, the fractal structure is not
visible, so the usual foliation {7, r, 8, ¢} does make sense.
However, it also turns out that in the vacuum case the theory
is just general relativity (though perhaps with a modified
gravitational constant).

Our approach will follow the landmark paper [4] of Jacob-
son, in which he derived Einstein’s field equations assum-
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ing the area law § = nA (Bekenstein—Hawking entropy has
n = 1/4G). The idea is to consider the heat flow across
the horizon due to the energy carried by matter field (with
energy—momentum tensor 7yp)

80 = —« f ATapk®kPdrd A, 1)
H

where A is the area of the horizon H with £ denoting the
tangent vector of the horizon generators, « the surface gravity,
and A is an appropriate affine parameter. The change of the
horizon area is governed by the Raychaudhuri equation:

SA = / OdrdA = — / AR kkPdAdA, )
H H

where 6 is the expansion of the horizon generators. Then,
using the first law of thermodynamics 6Q = TdS, where
T = k/2m, we obtain

"y f AT pkkbdrdA = — <1 / ARk K dAA. (3)
H 2 Ja

This can only be valid if T,pk?k” = (9/27)Rapk®k? for
all null vector k%, thus (2w/n)Typ = Rup + fgap for some
function f. The contracted Bianchi identity then fixes f and
yields the Einstein field equations. Jacobson’s work reveals a
deep relationship between thermodynamics and gravity, thus
opening a new field of research in gravitation.

This also means that if the area law is modified, we should
expect that the corresponding theory of gravity will no longer
be general relativity (GR). This brings us back to the Bar-
row entropy [1]. For a fixed mass, let A denote the actual
horizon area. Without the Barrow modification, we would
have a Schwarzschild black hole with area that we denote by
A = A. Upon turning on the entropy correction, the orig-
inal area A = A then receives a correction and becomes
A= ozAH%, where A is the Barrow entropy index satisfy-
ing 0 < A < 1. Here « is a constant that is usually taken
to be order unity for simplicity. Thus we set its value to be
o = 1 in the following. Strictly speaking, Barrow’s proposal
is not a modification of the area law, since he still assumed
that S = A/4, only that A is now the area of a fractal surface
(a sphereflake instead of $2); note that because of the fractal
nature the dimension of the area is no longer equal to 2 but
larger. Therefore, naively, applying Jacobson’s method one
should expect that there is nothing new, that we should just
obtain GR. This is true. However, as we will see, there can
be a different interpretation.

@ Springer

2 Barrow gravity

. A
From Eq. (3), the Barrow correction A = A'"2 means we
now have!

/ Mak'Kdrd ! = i/ ARk kb drd A1
H 2 I
4)

from which we can obtain?
A
/ A (Tab - iRab) 14+ 2 ) AZk%PdrdA = 0. (5)
H 2 2

Still assuming for now n = 1/4G, we have?

T, L) (142)a% = 5 6)
ab 871G ab ) = J8ab

for some function f. Taking the covariant derivative, and
applying the contracted Bianchi identity a la Jacobson, we
can eventually obtain

(1+3) [ (3)]

+(1+2)(z L Ry ) 2431994 = 0,/
) ab 871G ab ) =0pJ-

(N

Here, we treat A as fixed, which is expected to be true over
the horizon. In the stationary case (horizon area is constant),
we have only one term on the LHS:

11 2) a8 L v, (B =4 8
< +E> [—% b<5)]— b [ ()

that is

A
2

(1+5)A R
87G 2’

for some constant A’. Substituting this back into Eq. (6)
yields the Einstein equations for stationary spacetimes

f=A- ©))

1 A
Rap — EgabR + 88— = 8t GTyp, (10
2

(1+3)4

! Note that for an actual fractal, we cannot define a tangent vector (at
least not in the usual sense). For example, a Koch snowflake is evidently
continuous but not differentiable. However, we are working at the level
of effective theory in which the black hole surface is still smooth; see
below.

2 Mathematically this is just a change of variable from A to A2 , but
we emphasize that physically we are now treating — as shall be argued
below — A as the actual physical area (with the price that the entropy is
no longer A/4). Thus, interpreted in this way, Egs. (5) and (6) are not
simply re-labeling of Jacobson’s equations but an extension of it.

3 At this stage, we can also choose to recover GR by requiring just
1
Tab — g Rab = f8ab-
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where A = 87 G A’ is the “bare” cosmological constant for
A = 0. It may be more appropriate to consider the bare A
as a quantity whose physical dimensions vary with A so that

—1
overall the combination A[(l + %) A%] has dimension

of length 2.

Thus, Barrow entropy yields a GR-like gravity but with a
re-scaled cosmological constant* A := A[(l +2) A%] l.
This seems to suggest that the theory can naturally accom-
modate a dynamical “cosmological constant”, which would
be advantageous in cosmology, though an analysis beyond
the stationary assumption should be done to confirm this.
What is problematic is that the theory cannot be applicable
to spacetimes with no horizon, such as a pure Anti-de Sitter
spacetime since the derivation of the field equation requires
anon-zero area. While this is true also for Jacobson’s deriva-
tion of GR, it was not an issue since A does not appear in
the final field equation. Equation (10) is equally problematic
for spacetimes that have more than one horizon — how should
the cosmological constant term be re-scaled if there are more
than two areas? However, this is due to the fact that in the
presence of multiple horizons, they each have an associated
temperature, which makes “heat flow across the horizon” a
delicate and complicated issue to begin with. The theory, at
least in the form that it is derived in this work, is therefore
also not applicable to multi-horizon spacetimes.

On the other hand, when the theory is applicable, if the bare
A is zero, then it is identical to GR. Note that this is not say-
ing that Barrow is wrong about the fractalized Schwarzschild
geometry, just that Jacobson’s method only gives us an effec-
tive modified theory that does not exhibit all the QG proper-
ties. That is to say, the fractalized horizon is a QG effect that is
not visible at the level of thermodynamics considered here.
At the level of effective theory, we can therefore treat the
horizon as a smooth surface still with area A, but the entropy
may no longer equal a quarter of the horizon in general. This
explains why we can have a modified gravity theory even
though Barrow assumed S = A/4 in the beginning.

It is worth noting that the Tsallis entropy [6-8], when
applied to black holes, is very similar to the Barrow entropy
in form, being: S = % A%, where 8§ > 0 is the non-
extensive parameter and Ag a constant [7]; however, they are
fundamentally different as Tsallis entropy replaces the under-
lying Boltzmann-Gibbs distribution with a non-extensive
classical generalization, whereas Barrow entropy has a QG
origin. Using Tsallis entropy instead of the Barrow one, we
found that Jacobson’s method would lead to a modification
of the Einstein equations on the matter side and acts as an

4 We thank Manosh Manoharan for pointing out that Asghari and
Sheykhi have previously already obtained Eq. (10) in [5]. However
the focus of our work is quite different.

effective gravitational constant Gegr = % (AAO) , which
correctly reduces to the usual G when 6 = 1. Note that

Geff > 00 if § — 0.

3 Comment on the “Modified” Schwarzschild solution

Precisely because of the effective theory being oblivious to
the fractal structures, we can consider a spherically symmet-
ric solution. This was already implicitly assumed in the liter-
ature when the metric of the modified Schwarzschild black
hole takes the standard static form [2,3] ds? = — g(r)dt2 +
g(r)~'dr? + r?dQ?. Otherwise, as briefly mentioned in the
Introduction, one is faced with a peculiar question: is the exte-
rior spacetime foliated by S? except at the horizon which
is a sphereflake (which is problematic since the horizon is
not convex — there will be points that are not contained in
the spherical sections outside the horizon, for example), or
does the foliation itself consist of a family of sphereflakes (in
which case it is natural to consider A to be a function of the
distance from the horizon, so that A — 0 asymptotically)?
In either case the geometry d Q2 is not trivial, and it is doubt-
ful whether such a foliation even exists. From the effective
theory point of view this complication does not arise, since
d$2? is just the metric of a round sphere. It is likely that to
properly describe the geometry of the fractalized black hole
beyond the effective theory requires a vastly more compli-
cated metric, if not full QG.

At the level of effective theory, however, since the vacuum
theory is just GR, its spherically symmetric static solution
must be Schwarzschild, so what is the implication of not
having an area law? Let the metric function be g(r) = 1 —
2G M /r as usual. The Hawking radiation is

g 1
T T 81GM’

T+

T

(11)

Note that this starting point already differs from the
approach in [2,3], in which the authors computed the Hawk-
ing temperature assuming the first law dM = TdS. The
results were (with the units G = 1)

1
T = - , (12)
(A +2)dm) T2 mi+A

A+ 2)MA 47y 3
g(r)zl—( +2) . (4r) . (13)

This is problematic. First of all, it can be seen that the expres-
sion of g(r) is just are-definition of the Schwarzschild metric
with ADM mass M equals to [(A + 2)/2](47[)%MA+1, yet
in the first law the mass is M. In principle this is not neces-
sarily a problem, since it is possible that the thermodynamic
mass differs from the ADM mass [9]. To see where problems
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might arise, we should think about this from a more opera-
tional point of view. Consider actually observing a black hole
and measuring its mass, this would give us, essentially,” M.
From here we have no knowledge of what M and A are sep-
arately, they are not observable quantities. In other words,
the metric in Eq. (13) cannot be interpreted as a modified
Schwarzschild solution; it is Schwarzschild. Thus, one cannot
constrain A by observations if we use a vacuum asymptoti-
cally flat metric. Furthermore, the black hole entropy should
be prescribed only after we know what the measured mass is,
because in order to compute the entropy one must have the
horizon radius, which is given by the metric. This means that
we cannot even begin the derivation from the first law, as we
need the metric in the first place to provide rj, that goes into
the entropy S o (r}%)H‘A/ 2 1In the derivation of [2], rj, was
taken from the usual Schwarzschild metric r;, = 2M, not the
actual metric.

From the effective theory point of view, as we have argued,
the geometry is precisely Schwarzschild, with temperature
given by the usual Eq. (11). The astrophysically measured
ADM mass is M, and the horizon radius expression that goes
into Barrow entropy is r, = 2M, so there is no ambiguity.
The only compromise one must make is that in such a the-
ory the thermodynamic mass cannot be the same as M. It
is helpful at this stage to restore all the factors of 7, G, ¢
and kp and consider the first law dE = TdS. Denote the
thermodynamic mass as Minerm. Then

1
/ (M) = / ds (14)
A A
B 47 GIM2\ ' kgc? Itz ca) (15)
- ct Gh ’
where
ksG\ ™2
cwy= (=) My (16)

is a dimensionful constant that needs to be included to keep
the correct physical dimension for entropy. We have factored
out the power of Planck mass Mp, A for convenience. This is
the only term that survives after collecting and canceling all
the powers of 7, G, ¢, kp. We can then obtain

/M dMiperm = 2271 2 MZFA MG, (17)

By the fundamental theorem of calculus, and assuming that
A is fixed, we get

M =

MPHA A1 3 oA, 18
thherm( ) g Pl ( )

5 With the usual caveat that the ADM mass is technically defined at
spatial infinity.

@ Springer

Separating variables and integrating finally yields

Miperm = M Mo, (19)
This makes it clear that both Miperm and M have the same
physical dimension of a mass; they are the same only when
A =0.

4 Comment on the Bekenstein bound

Shortly after our work appeared on the arXiv, Abreu and
Neto studied the Bekenstein bound assuming non-standard
entropies including that of Barrow [10]. They showed that if
one uses M as the energy E, then the Bekenstein bound is
violated since, with the units Mp; = 1, the inequality S <

2nRE leadsto S < S ZJ%A, which is not valid for large black
holes with § > 1. In fact, with R = 2M, the putative bound
is equivalent to E > 2872/2M T2 The expression on the
RHS is exactly of the form of the thermodynamic mass in
Eq. (19), up to a factor of (1/2)(A +2)/(A + 1), which lies
in the range 0.75 and 1. Thus, if we identify £ = Merm,
while the Bekenstein bound is still violated, the violation is
“only” by this factor. Thus, we can save the Bekenstein bound
by postulating a minor modification: § < Cw RE, where
C =4(A + 1)/(A + 2) is a constant that contains A. This
then reduces to the usual Bekenstein bound when A goes to
zero. The crucial physics in Bekenstein bound is contained in
the entropy S being bounded above by R x E for any fixed A,
the exact coefficient does not really matter. Thus we interpret
this result as a non-violation of the Bekenstein bound. This
example further supports our case that one should be careful
with identifying the correct thermodynamic mass.

As an additional evidence for this, let us repeat the calcu-
lation for the Tsallis entropy:

AI—S
Sr= =2 A°. 20
T <4G ) (20)

The energy, which is the thermodynamic mass, is

E = Myerm = ﬂ = 245*4LM25*1 1)
fem =\ nG? 25— 1
The resulting equation is:
8
ST g A(l)_6248_2G26_128—]7T5M28. (22)

We see that, contrary to what is argued in [10], the Beken-
stein bound S < 27 RE is satisfied if we take into account
the thermodynamic mass, provided that 1/2 < § < 1. The
upper bound is tighter than the bound § < 2 obtained by
considering the modified Friedmann cosmology in [11]. If
we allow a constant pre-factor so that § < Cz RE as per the
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case of Barrow entropy discussed above, however, we can
relax the bound to § > 1/2.

Interestingly, we note that § < 1/2 in cosmology allows
the universe to expand with only normal matter (i.e., with
an equation of state w > 0) [11]. Our analysis suggests that
this is not feasible if we choose to keep a Bekenstein bound.
Note that § < 1/2 also corresponds to £ = Mperm < 0.
Thus, one may be tempted to conclude that it is the positivity
of the mass that imposes § < 1/2. For black holes, with T
and S both positive, E < 0 indeed does not make physi-
cal sense, and so the condition that E < 0 is equivalent to
that of having a Bekenstein bound. However, thermodynamic
energy (“internal energy”) can in principle be negative in a
generic thermodynamical system in which the work done by
the system is greater than heat given to the system.

5 Comment on the Hawking rate

Because the black hole is identically Schwarzschild, the
Hawking rate is unmodified at the level of effective theory.
Beyond the effective theory regime, when the fractal structure
becomes important, it is not clear if we can still model Hawk-
ing evaporation by the simple Stefan—Boltzmann law (or even
a somewhat modified version). Even if we could, there are
many subtleties that have no clear answer. First of all, we
remark that since Hawking particles are created outside the
horizon, the emission rate is only modified if we accept that
A-correction also applies to other spacetime regions, not just
on the horizon (this does not mean that other surfaces obey
thermodynamical laws [12]). This is reasonable: A might
depend on the strength of the gravitational field and goes to
zero asymptotically (see also the Discussion section for the
running A case).

Perhaps the most important question is: what is the power
in the temperature in the Stefan—Boltzmann law when the
horizon is fractalized? Statistical mechanics and field theory
on fractals have been studied in the literature but many open
questions remain [13-15]. Also, since a fractalized horizon
is no longer a convex surface, not all particles emitted close
to the horizon is headed “outward”, this would also affect the
Hawking rate. Note also that in [1], Barrow wrote that the
Hawking rate goes up as we add more and more spheres in
the construction of the sphereflake horizon, and in fact the
rate could diverge if the final area diverges (see also [16]).
However, it is not obvious that this is the right “area” to con-
sider. Take a space-filling curve (such as the Hilbert curve) for
example, whose image is the unit square. At each iteration of
the construction of the fractal, more and more line segments
were added, so that the length at the N'th step is 2V — 27V,
The final length clearly diverges. But the final fractal is a unit
square with (Hausdorff) dimension 2, whose area is 1. Like-
wise, if the final sphereflake horizon has dimension ptA

and the entropy scales like the highest dimensional area of the
emerging fractal, the emission surface should not be the sum
of the 2-dimensional areas. Perhaps the approaches based on
fractional quantum mechanics can be useful to understand
this issue [17].

6 Discussion

Following Jacobson’s derivation of GR from Bekenstein—
Hawking area law, we have derived the effective modified
gravity theory that corresponds to Barrow entropy. In the
stationary case the theory is just GR but with a re-scaled
cosmological constant. At the level of effective theory, the
fractal structures are not visible. Instead, the theory treats
the black hole as possessing a smooth spherical horizon, but
satisfying a non-area law entropy in general. If we assume
a static and vacuum spacetime, the black hole solution must
be none other than Schwarzschild, but with a different ther-
modynamic mass. In general we must be very careful with
identifying the correct thermodynamic mass that goes into
the first law of black hole thermodynamics (see also [18]). In
most scenarios we expect the thermodynamics mass to be the
same as the ADM mass, however from the literature we know
this is not necessarily the case [9]. If we insist on physical
ground following [19] that the thermodynamic mass should
be the same as the ADM one (essentially by considering
the conservation of energy of the collapse of a mass shell),
then we have to conclude that the effective Barrow gravity is
not viable. Even if we allow Merm # M (unlikely, but not
impossible, since energy conservation is a delicate issue in
a fully dynamical spacetime with no time translational sym-
metry), the overall message of our work, as well as [19], is
that we should be careful when dealing with modified black
hole thermodynamics in order to avoid inconsistencies (see
also [20]).

Let us now comment on the field equation Eq. (10).
Though it is tempting to think that the effective cosmological

_ —1
constant A 1= A [( 1+45)A %] might ameliorate the cos-

mological constant problem by allowing A to be extremely
small even if the bare A is of its natural scale, one should
keep in mind that Eq. (10) assumes stationarity so that the
horizon does not evolve. For cosmological spacetimes, the
apparent horizon typically is a function of cosmic time, and
thus one must consider the full Eq. (7), which is highly non-
trivial to analyze. Another interesting point we can notice is
that since a Kerr-AdS black hole has a smaller area than a
Schwarzschild-AdS black hole of the same physical mass,
they also correspond to two different effective cosmologi-
cal constants. In other words, the effective AdS length scale
depends on the angular momentum. Furthermore, since the
Kerr-AdS metric contains the AdS scale in various coeffi-
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cients, this would also mean that the metric depends on the
angular momentum in a vastly more complicated manner
than it already does in GR. On the other hand, the fact that the
effective cosmological constant naturally changes with the
area (and thus with the black hole parameters) is in line with
— or better accommodates — the idea of extended black hole
thermodynamics [21,22], or “black hole chemistry” [23,24].
To study the variation beyond a stationary horizon, is how-
ever, like in the cosmological setting, a complicated task.

Another possibility is that n in § = 1A may no longer be
1/4G but instead A-dependent. This will modify the RHS of
the field equation (i.e., give rise to an effective gravitational
constant). In [25], it is argued why the Barrow index A is
expected to run, i.e., energy-scale dependent, but since A is
fixed over a given horizon, this does not affect the derivation
of the field equation itself. The effective theory is incomplete
in the sense that if A does run, the dynamics of A cannot be
determined. This should be contrast with, e.g., Brans-Dicke
theory in which the scalar field ¢ that acts as an effective grav-
itational constant appears not only in the modified Einstein’s
field equations but is also determined by its own equation of
motion (¢ o< T'9). This is not surprising as A is a QG cor-
rection — its dynamics requires the detailed knowledge of the
underlying QG theory, beyond the effective thermodynamic
treatments.

Finally, we emphasize that there are still a lot of subtle
issues worth investigating when thermodynamics is modi-
fied. For example, it has recently been argued that when the
Barrow entropy or the Tsallis entropy is used, one should
replace the Hawking temperature with an effective “equilib-
rium temperature”. One could ask how this may affect our
analysis. However, given the ongoing debate [26-29] we feel
that any further investigation along this line would deserve a
separate work.
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