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Abstract The theory of f (R)-gravity is one of the theo-
ries of modified Einstein gravity. The vacuum solution, on
the other hand, of the field equation is the solution for black
hole geometry. We establish here an asymptotically flat rotat-
ing black hole solution in an f (R)-gravity. This essentially
leads to the modified solution to the Kerr black hole. This
solution exhibits the change in fundamental properties of the
black hole and its geometry. It particularly shows that radii of
marginally stable and bound orbits and black hole event hori-
zon increase compared to those in Einstein gravity, depending
on the modified gravity parameter. It further argues for faster
spinning black holes with spin (Kerr) parameter greater than
unity, without any naked singularity. This supports the weak
cosmic censorship hypothesis.

1 Introduction

General relativistic gravity of Einstein turns out to be a
remarkable discovery to explain a range of astrophysical
sources, apart from its theoretical integrity, even after more
than 100 years of its original discovery. Eventually, all the
predictions of Einstein’s gravity proved to be correct, partic-
ularly after the direct detection of gravitational wave in 2015
[1]. In fact, the said discovery could be considered ‘three
in one’: direct confirmation of gravitational wave, spinning
black hole and binary black hole.

Although to understand coalescence of, e.g., black holes
and to probe the underlying gravitational radiation, strong
field general relativity (GR) or numerical relativity is indis-
pensable, most of the direct tests of GR are done based on
weak field approximation. Therefore, the global validity of
GR in the strong field regime, i.e. the true nature of gravity
close to the source of gravity, remains questionable. Hence,
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no one can rule out possible modification to GR in natu-
ral systems, particularly when the theory is asymptotically
flat. Asymptotic flatness assures reduction of modified GR
to GR and to Minkowskian with distance from the source.
Therefore, even if close to the source, i.e. a compact object
like black hole, neutron star, actual gravitational theory is
modified GR, the same theory will be able to explain any
solar-system based or Earth-based experiment.

One such example of modified GR is the theory of f(R)-
gravity [2,3], which was explored to explain sub- and super-
Chandrasekhar limiting mass white dwarfs, in a unified the-
ory, what GR as such could not. They are possibly leading to
under- and over-luminous type Ia supernovae under the same
model framework. Recently, we also established an asymp-
totically flat vacuum solution, unlike that for a white dwarf, of
f (R)-gravity in spherical symmetry [4]. This is essentially a
modified solution for the Schwarzschild, hence nonrotating,
black hole. We showed that depending on the modified grav-
ity parameter, various basic characteristics of the black hole,
e.g. marginally stable and bound circular orbits, event hori-
zon etc., change. We also showed that for a very hot accretion
flow, critical/sonic point location changes in modified GR.
There are other explorations of black hole in modified GR as
well [5–7].

However, most of the cosmic objects are rotating, hence
more realistic, at least in general, black holes are expected
to be rotating. The same goes with other compact objects
described by non-vacuum solutions. What if, a black hole
is rotating in modified GR, more precisely in f (R)-gravity?
In other words, how the Kerr solution changes in the f (R)-
gravity?

In this work, we establish an asymptotically flat solution
for a rotating black hole in modified GR. In place of obtaining
a solution from the appropriate Einstein action for a modi-
fied GR, we rely on the Newman–Janis algorithm (NJA) [8].
We know that based on NJA the Kerr black hole solution
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can be derived from the Schwarzschild solution by making
an elementary transformation involved with complex num-
bers. The basic idea is, as if due to the choice of coordinates
combining realistic coordinates and metric parameters, the
Kerr metric appeared to be diagonal and also spherical sym-
metric, like the Schwarzschild black hole. However, once it
is expanded in realistic coordinates it turns out to have off-
diagonal terms with axially symmetric nature of the metric.
We plan to implement NJA in the modified Schwarzschild
metric under f (R)-gravity [4] to obtain the corresponding
modified Kerr solution. To the best of our knowledge, there
is no venture towards this solution before this work. Once we
obtain the modified Kerr solution, we explore various basic
characteristics of the metric, e.g. radius of event horizon,
marginally stable and bound circular orbits, various compo-
nents of epicyclic oscillation frequency, orbital angular fre-
quency, etc., with the change of black hole spin and modified
gravity parameter.

The paper is organized as follows. In the next two sec-
tions, we recapitulate the basic formalism of obtaining modi-
fied GR based field equation in f (R)-gravity and its solution
for an asymptotically flat non-rotating black hole, respec-
tively, in Sects. 2 and 3. Thereafter, we establish a rotating
black hole solution in Sect. 4 based on NJA. Further, we dis-
cuss the nature of singularity of the metric and horizons in,
respectively, Sects. 5 and 6. For the latter, first we present the
numerical solution and then approximate analytical solution.
Subsequently, we explore various fundamental orbits, as in
GR, in this modified gravity framework for a test particle
motion in Sect. 7 and corresponding fundamental oscillation
frequencies in Sect. 8. We conclude our work in Sect. 9.

2 Basic formalism of field equation

In GR, the Einstein–Hilbert action produces the field equa-
tion. With the metric signature (+ − −−) in 4-dimension it
is given by [9]

S =
∫ [

c4

16πG
R + LM

]
, (1)

where c is the speed of light, R is the scalar curvature such
that R = Rμνgμν , often called Ricci scalar, with Rμν being
Ricci tensor, G is Newton’s gravitation constant, LM is the
Lagrangian of the matter field and g = det (gμν) is the deter-
minant of the metric tensor gμν . Varying this action w.r.t. gμν

and equating it to zero with appropriate boundary condition
produces the Einstein’s field equation for GR, given by

Gμν = Rμν − 1

2
gμνR = 8πG

c4 Tμν, (2)

where Tμν is the energy–momentum tensor of the matter
field. This equation relates the matter to the curvature of the
spacetime. In case of modified GR, here f (R) gravity, the
Ricci scalar in Einstein–Hilbert action is replaced by f (R)

(being a function of the Ricci scalar). The action is then
represented as

S =
∫ [

c4

16πG
f (R) + LM

]
. (3)

Now varying this modified action w.r.t gμν with appropri-
ate boundary condition gives a modified version of the field
equation, which is given by [10–12]

F(R)Gμν + 1

2
gμν[RF(R) − f (R)]

−(∇μ∇ν − gμν�)F(R) = 8πG

c4 Tμν, (4)

where F(R) = d
dR f (R), � is the d’Alembertian operator

given by � = ∇μ∇μ and ∇μ is the covariant derivative. For
f (R) = R, this equation reduces to the well-known Einstein
field equation in GR.

Now for the vacuum solution the energy–momentum ten-
sor vanishes, i.e. Tμν = 0, and the equation reduces to

F(R)Gμν + 1

2
gμν [RF(R) − f (R)]

− (∇μ∇ν − gμν�
)
F(R) = 0. (5)

The trace of this equation is given by

RF(R) − 2 f (R) + 3�F(R) = 0. (6)

Substituting f (R) from Eq. (6) into Eq. (5), we have

FRμν − ∇μ∇νF = 1

4
gμν (RF − �F) . (7)

3 Solution for a nonrotating black hole

Here we briefly recapitulate a solution for a non-rotating
black hole in f (R)-gravity obtained earlier [4]. The vacuum
solution of a spherically symmetric and static system can
be written in the form of gμν = diag

(
s (r) ,−p (r) , −r2,

−r2sin2θ
)
. Now we assume that F (R) has a form such that,

F (r) = 1 + B/r . Hence, as r → ∞, F (r) → 1, which
generates the usual theory of GR. Note that B ≤ 0 to guar-
antee the attractive nature of gravity [4]. Now from Eq. (6)
we have [13]

2
X ′

X
+ r

F ′

F

X ′

X
− 2r

F ′′

F
= 0 (8)
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and

−4s + 4X − 4rs
F ′

F
+ 2r2s′ F ′

F

+2rs
X ′

X
− r2s′ X ′

X
+ 2r2 s′′ = 0, (9)

where X (r) = p (r) s (r).
Solving Eqs. (8) and (9), and applying the boundary con-

dition X (r) → 1 as r → ∞, X (r) can be found as [4]

X (r) = 16r4

(B + 2r)4 . (10)

Putting Eq. (10) in Eq. (9) we obtain the series solution for
s(r) (for B �= 0) as

s (r) = −16 + 2BC1 + 32log2 + (BC2 + 8) iπ

2B2 r2

+1 + B (−24 + BC2)

24r
+ B2 − 1

16 B
3C2

r2

+−B3 + 11
160 B

4C2

r3 + 188B4 − 13B5C2

192r4 + · · · , (11)

where C1 and C2 are constants of integrations which can
be obtained by arguing that the metric needs to behave as
Schwarzschild metric at a large distance, which requires the
coefficient of r2 to vanish and coefficient of 1/r to be −2,
which gives

C2 = 24 (B − 2)

B2 , (12)

C1 = −8
B (−1 + log4 ) + (−3 + 2B) iπ

B2 . (13)

Thus, the temporal component of the metric turns out to be

gtt = s (r) = 1 − 2

r
− (−6 + B) B

2r2

+ B2 (−66 + 13B)

20r3 − B3 (−156 + 31B)

48r4

+3B4 (−57 + 11B)

56r5
+ O

[
r−6

]
. (14)

Thus the radial component of the metric can be found as
grr = −p (r), where p (r) = X (r)/s(r), and thus the
power series solution takes the form as

p (r) = 1 + 2 − 2B

r
+ (−1 + B)(−4 + 3B)

r2

− (−2 + B) (80 + B (−160 + 83B))

20r3

+16 − 52B + 1
60 B

2 (3732 + B (−1917 + 338B))

r4

+32 − 128B + 1008B2

5 − 155B3 + 6002B4

105 − 6431B5

840

r5

+O
[
r−6

]
. (15)

4 Rotating black hole

4.1 Revisiting basics of Newman–Janis algorithm

After the original discovery of the Kerr metric, Newman and
Janis showed that the solution could be derived from the
Schwarzschild solution by making an elementary transfor-
mation involved with complex numbers, assuming the black
hole to be spinning. The spin (angular momentum per unit
mass) of black hole comes into the solution as an arbitrary
parameter. The static spherically symmetric metric and the
line element could be written in the general form in (+−−−)

convention as [14]

ds2 = s (r) dt2 − p (r) dr2 − r2
(
dθ2 + sin2θ dφ2

)
. (16)

In the null coordinates, this line element can be written, by
advancing the time coordinate as dt = du+ f̂ dr and setting

f̂ = [s(r)/p(r)]− 1
2 , as

ds2 = s(r) du2 + 2 [s (r) p (r)]
1
2 du dr

−r2
(
dθ2 + sin2θ dφ2

)
. (17)

Thus, the contravariant form of the metric can be written as

gμν =

⎛
⎜⎜⎜⎝

0 [s (r) p (r)]− 1
2 0 0

. − 1
p(r) 0 0

. . − 1
r2 0

. . . − 1
r2sin2θ

⎞
⎟⎟⎟⎠ . (18)

Here “.”s in Eq. (18) indicate that the metric is symmetric
and will have the same elements as in the upper triangle. The
contravariant form of the metric can be written so that it can
be expressed in terms of its null tetrads [8,15,16] as

gμν = lμnν + lνnμ − mμmν − mνmμ, (19)

where the null tetrads satisfy the conditions

lμl
μ = mμm

μ = nμn
μ = 0,

lμn
μ = −mμm

μ = 1,

lμm
μ = nμm

μ = 0, (20)

with the bar indicating the complex conjugate.
Putting the elements of the metric from Eqs. (18) to (19),

along with Eq. (20), the null tetrads are found to be

lμ = δ
μ
1 , (21)

nμ = −1

2

1

p (r)
δ
μ
1 + [s (r) p (r)]−

1
2 δ

μ
0 , (22)

mμ = 1√
2 r

(
δ
μ
2 + i

sinθ
δ
μ
3

)
. (23)
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Then following NJA, we proceed by making a complex trans-
formation as

u → u′ = u − ia cos θ,

r → r ′ = r + ia cos θ,

θ → θ ′ = θ,

φ → φ′ = φ. (24)

By considering this as a complex rotation of the θ −φ plane,
the tetrads can be obtained as

lμ = δ
μ
1 , (25)

nμ = −1

2

1

p (r, θ)
δ
μ
1 + [s (r, θ) p (r, θ)]−

1
2 δ

μ
0 , (26)

mμ = 1√
2 (r + iacosθ )

(
iasinθ (δ

μ
0 − δ

μ
1 ) + δ

μ
2

+ i

sinθ
δ
μ
3

)
. (27)

Note that s(r, θ) and p(r, θ) in Eq. (26) are completely
different from s (r) and p (r) in Eq. (22) (and in Eqs. (11)
and (15); also see [17–19]). In fact, the new functions are
functions of both r and θ , while the old ones are functions of
only r .

From Eq. (19), the contravariant form of the metric is
obtained as

gμν =

⎛
⎜⎜⎜⎝

− a2sin2θ
�

[s (r, θ) p (r, θ)]− 1
2 + a2sin2θ

�
0 − a

�

. − 1
p(r,θ)

− a2sin2θ
�

0 a
�

. . − 1
�

0
. . . − 1

�sin2θ

⎞
⎟⎟⎟⎠ ,

(28)

where � = r2 + a2cos2θ . The inverse of this metric, i.e. its
covariant form, is

gμν =

⎛
⎜⎜⎜⎜⎝

s (r, θ) [s (r, θ) p (r, θ)]
1
2 0 asin2θ

(
[s (r, θ) p (r, θ)]

1
2 − s (r, θ)

)

. 0 0 −a [s (r, θ) p (r, θ)]
1
2 sin2θ

. . −� 0

. . . −sin2θ
(
� + a2sin2θ

(
2[s (r, θ) p (r, θ)]

1
2 − s (r)

))

⎞
⎟⎟⎟⎟⎠ . (29)

Now we redefine the coordinates u and φ such that, du =
dt + g (r) dr and dφ = dϕ + h(r) dr , with g and h as

g (r) = −
(p(r, θ))

1
2

(
� + a2sin2θ [s (r, θ) p (r, θ)]

1
2

)

(s (r))
1
2
(
� + a2sin2θ e2λ(r,θ)

) ,

(30)

h (r) = − a p (r)

� + a2sin2θ p (r)
, (31)

in a new coordinate system. This leads to all the non-diagonal
elements, except gφt , go to zero. This transforms the metric to
Boyer–Lindquist coordinate system. Now putting X (r, θ) =
p (r, θ) s (r, θ), the metric in this coordinate system takes the
form

gμν =

⎛
⎜⎜⎜⎜⎜⎝

s (r, θ) 0 0 asin2θ
(
(X (r, θ))

1
2 − s (r, θ)

)
. − �

� s(r,θ)
X(r,θ)

+a2sin2θ
0 0

. . −� 0

. . . −sin2θ
(
� + a2sin2θ

(
2(X (r, θ))

1
2 − s (r)

))

⎞
⎟⎟⎟⎟⎟⎠

, (32)

which essentially leads to the counter part of rotating black
hole of the metric in Eq. (16).

4.2 Transformation of specific functions under NJA and
modified Kerr metric

Equipped with the knowledge of NJA, the angular momen-
tum parameter can be easily incorporated in the non-rotating
vacuum solution. For this we first proceed by noting that
while we make the complex transformation, the coordinates
r and u are complexified and a new parameter a is intro-
duced. However, since in the end one needs a real spacetime,
a function Q must remain real and so its changes are given
as [16,20]

Q (r) → Q (r, r) , (33)

so that the functions 1/r2n and 1/r2n+1 must be written as

1

r2n → 1

(rr)n
, (34)
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1

r2n+1 = 1

r2n

1

r
→ 1

(rr)n
1

2

(
1

r
+ 1

r

)
. (35)

Now suppose the function Q (r, r) has some terms of 1
(rr)n

and 1
(rr)n

1
2

( 1
r + 1

r

)
with at least one of them having a non-

zero coefficient, then after the complex transformation of
u → u′ = u − ia cos θ, r → r ′ = r + ia cos θ, θ → θ ′ =
θ, φ → φ′ = φ, the components of Q (r, r) will transform
as

1

r2n ≡ 1

(rr)n
→ 1

[(r + ia cos θ)(r − ia cos θ)]n
= 1

�n

(36)

and similarly

1

r2n+1 ≡ 1

(rr)n
1

2

(
1

r
+ 1

r

)

→ 1

[(r + ia cos θ)(r − ia cos θ)]n
1

2

(
1

r + ia cos θ

+ 1

r − ia cos θ

)
= r

�n+1 . (37)

Thus, after the complex transformation, the function Q(r)
transforms to Q(r, θ).1 Applying Eqs. (36) and (37) to the
functions X (r), s(r) and p (r), we have

X (r, θ) = (r2 + a2cos2θ )
2

(( B
2 + r

)2 + a2cos2θ
)2 , (38)

s (r, θ) = 1 − 2r

r2 + a2cos2θ
− (−6 + B) B

2
(
r2 + a2cos2θ

)

+ B2 (−66 + 13B) r

20
(
r2 + a2cos2θ

)2 − B3 (−156 + 31B)

48
(
r2 + a2cos2θ

)2

+3B4 (−57 + 11B) r

56
(
r2 + a2cos2θ

)3 + · · · , (39)

p (r, θ) = 1 + (2 − 2B)r

r2 + a2cos2θ
+ (−1 + B)(−4 + 3B)

r2 + a2cos2θ

− (−2 + B) (80 + B (−160 + 83B)) r

20
(
r2 + a2cos2θ

)2

+16 − 52B + 1
60 B

2 (3732 + B (−1917 + 338B))(
r2 + cos2θ

)2

+
(

32 − 128B + 1008B2

5 − 155B3 + 6002B4

105 − 6431B5

840

)
r

(
r2 + cos2θ

)3

+ · · · . (40)

Thus Eqs. (32), (38)–(40) essentially complete our devel-
opment of the metric which is the asymptotically flat vacuum
solution for a rotating black hole in a modified gravity. It can

1 Q (r) and Q(r, θ) are not necessarily equal.

be easily seen that by setting B = 0, we obtain the usual
Kerr-metric.

5 Source and singularity

From Eq. (32) we see that the metric becomes singular, when
s(r) or p(r) becomes singular and that happens when � = 0,
since � is present at the denominator in both. This shows that
the metric becomes singular for [20]

r = 0, θ = π

2
.

This can be seen to be a geometric singularity by comput-
ing the curvature contraction RμνρλRμνρλ. Further, it is an
extended singularity, rather than ‘point-like’ singularity (as
in Schwarzschild metric).

Now defining local rectangular coordinate system

x = r sin θ cos φ + α sin θ sin φ,

y = r sin θ sin φ − α sin θ cos φ,

z = r cos θ,

we immediately see that r = 0, θ = π/2 corresponds
to x2 + y2 = α2 and z = 0. Consequently, the physical
singularity of the Kerr metric is a ring singularity. With the
small B approximation as made in Sect. 6.2 below, the term
involved with spin angular momentum transforms as α ≈
a − 1.5B (as will be clearer in Sect. 6.2 below), thus the
radius and angular position as, respectively,

α = a − 1.5B, θ = π

2
. (41)

Therefore, the singularity can be seen to be on a circle of
radius α around the origin in the z = 0 plane. The solution
can be considered to lie uniformly distributed on this circle,
bounding an interior disc

√
x2 + y2 ≤ α. This singularity

signifies the presence of a rotating black hole and is termed
as ring singularity.

6 Horizons

In addition to the ring-like curvature singularity, there are
also additional coordinate singularities. Such coordinate sin-
gularities can be removed by suitable choice of coordinates,
but they often underlie important physical phenomenon
and have geometric description. Considering the Boyer–
Lindquist coordinates for the metric given by (32), we define
� as

� = �
s (r, θ)

X (r, θ)
+ a2sin2θ, (42)
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Table 1 Numerical values of rH for varying B and a

r H a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B 0 2.00 1.99 1.98 1.95 1.92 1.87 1.80 1.71 1.60 1.44 1.00

− 0.1 2.15 2.14 2.13 2.11 2.07 2.02 1.96 1.88 1.78 1.64 1.42

− 0.2 2.30 2.29 2.28 2.26 2.22 2.18 2.12 2.05 1.95 1.83 1.66

− 0.3 2.45 2.44 2.42 2.41 2.37 2.33 2.28 2.21 2.12 2.01 1.86

− 0.4 2.60 2.59 2.58 2.55 2.52 2.48 2.43 2.37 2.29 2.19 2.06

− 0.5 2.73 2.74 2.72 2.70 2.67 2.63 2.59 2.52 2.45 2.36 2.24

− 1 3.46 3.45 3.45 3.43 3.41 3.37 3.33 3.28 3.23 3.16 3.07

− 1.5 4.17 4.16 4.15 4.14 4.12 4.09 4.06 4.02 3.97 3.91 3.84

− 2 4.86 4.86 4.85 4.84 4.82 4.79 4.76 4.73 4.68 4.63 4.58

− 2.5 5.55 5.45 5.54 5.53 5.51 5.49 5.46 5.43 5.39 5.34 5.29

− 3 6.23 6.25 6.22 6.21 6.19 6.17 6.15 6.12 6.08 6.04 5.99

then grr = −�/�, which becomes singular when � = 0.
The solution of r for � = 0 gives two real values r± of which
r− ≤ r+. These radii are referred to as outer (r+) and inner
(r−) horizons; the former is called the event horizon and the
later one Cauchy horizon, and the region r < r+ is referred
to as the ‘interior’ of the black hole. It can be shown that
the event horizon marks the point of no return. Now since
r− lies inside the event horizon and no actual observer can
have access to the interior of the event horizon, we avoid any
discussion about the inner horizon r−.

6.1 Numerical solution

From Eqs. (32), (38)–(40) we obtain the metric components
as a series solution and substituting them in equation (42)
effectively gives �. Now � = 0 has been numerically solved
in order to obtain event horizon rH which is r+. We will
obtain an analytic approximation of the result in the next
section. Tables 1 and 2 show rH for different a and B in the
equatorial plane.

Tables 1 and 2 show that rH monotonically increases with
the increase of |B| and monotonically decreases with the
increase of a. From Table 2 and Fig. 1 it can be seen that
unlike in Kerr metric, |amax | > 1 is allowed due to B < 0.
The variation of maximum a, i.e. amax , for varying B is
shown in Fig. 2. It can be seen from the Fig. 2 that |amax |
varies almost linearly with B. Exploring and interpreting
these results with the exact solutions is beyond the scope
of this work. We will look at an analytic approximation of
the above feature and report the result in the next section,
where we will calculate |amax |. We will confirm that indeed
|amax | is allowed to be greater than unity in modified gravity
and also varies approximately linearly with B.

6.2 Analytical approximation

In order to assure the possibility of analytical solutions, we
consider very small modifications to GR and hence we take
B/r � 1. Thus we take only terms up to r−2, the functions
s(r, θ) and p(r, θ) can then be written as

s (r, θ) = 1 − 2r

r2 + a2cos2θ
− (−6 + B) B

2
(
r2 + a2cos2θ

)
+O[r−3], (43)

p (r, θ) = 1 + (2 − 2B)r

r2 + a2cos2θ

+ (−1 + B)(−4 + 3B)

r2 + a2cos2θ
+ O

[
r−3

]
. (44)

Taking terms upto r−2, in Boyer–Lindquist coordinate sys-
tem, the metric can be recast from Eqs. (32), (43), (44) and
taking further B � 1 and having X ≈ 1, the nonzero com-
ponent of the metric comes out to be

gμν =

⎛
⎜⎜⎜⎝

1 − 2r
�

− β
�

0 0 2asin2θ
�

(2r + β)

. −�
�

0 0
. . −� 0

. . . −sin2θ
(
r2 + a2 + a2 sin θ(2r+β)

�

)

⎞
⎟⎟⎟⎠ ,

(45)

where � ≈ r2 + a2 − 2r − β, and β = (−6 + B) B/2 ≈
−3B. 2 Thus the line element is of the form

ds2 =
(

1 − 2r

�
− β

�

)
dt2 +

(
4asin2θ

�
(2r + β)

)
dtdϕ

−�

�
dr2 − �dθ2 − sin2θ

×
(
r2 + a2 + a2 sin θ(2r + β)

�

)
dϕ2. (46)

2 Note, B ≤ 0 → β ≥ 0 as B = −β/3.

123



Eur. Phys. J. C (2022) 82 :939 Page 7 of 11 939

Table 2 Numerical values of rH for varying B and a, with a > 1

r H a

1.1 1.2 1.3 1.4

B 0 – – – –

− 0.1 – – – –

− 0.2 1.24 – – –

− 0.3 1.63 – – –

− 0.4 1.87 1.44 – –

− 0.5 2.08 1.84 – –

− 0.6 2.27 2.08 – –

− 0.7 2.46 2.29 2.03 –

− 0.8 2.63 2.48 2.28 –

− 0.9 2.80 2.67 2.49 2.20

− 1 2.97 2.85 2.69 2.46

Fig. 1 Variation of event horizon rH as a function of spin of black hole
a for different modified gravity parameter B

This line element matches exactly with the results of black
hole theories with higher-dimensional branes [21,22]. This
shows that the work presented here gives a more general met-
ric and includes the results from higher-dimensional branes.
The effects of higher-dimensional branes come from a spe-
cialized case where the modification to gravity has been taken
to be very small.

Now to find the horizons in this case, the equation � = 0
has to be solved which approximately becomes, from Eq.
(42),

� = �

(
1 − 2r

�
− β

�

)
+ a2sin2θ ≈ 0, (47)

which gives

� = r2 − 2r +
(
a2 − β

)
= 0. (48)

Thus, to the first order in B, we obtain � = r2 +a2 −2r−β.
Now solving the quadratic equation (48) gives two three-

Fig. 2 Variation of maximum possible spin of black hole amax as a
function of modified gravity parameter B

Fig. 3 Approximate analytic solution for rH with the change of a for
different B

surfaces of constant r as

r± = 1 ±
√

1 − (
a2 − β

)
.

These surfaces give the outer (r+) and inner (r−) horizons.
Thus, the event horizon takes the form as

rH = r+ = 1 +
√

1 − a2 + β. (49)

It can be easily seen that by setting B = 0, we recover
the well-known results of the event horizon in Kerr metric,
rH0 = 1+√

1 − a2 , which confirms the validity of analytical
solutions.

Figure 3 shows how rH varies with a based on analytical
approximate solution. It can be seen from Table 1 that for
a = 0 the results match quite well with the analytical results
presented here. However, as |B| increases, the value deviates
a lot from the actual solution, which is because we have taken
only terms up to r−2 in s (r) and p (r) in analytical calcula-
tion. Quantitatively, when B ≈ − 0.1, very small compared
to r , the numerical solution matches with the approximate
analytical solution; thus, the analytical approximation is valid
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for the B ≥ −0.1 realm, so that
(
rHanalytical

)
B≥−0.1

≈ (
rHnumerical

)
B≥−0.1.

From Eq. (49), for rH to be real we must have

1 −
(
a2 − β

)
≥ 0,

→ |a| ≤ √
1 + β.

Thus,

|amax | = √
1 + β, (50)

|amax | ≈ 1 + β/2 ≈ 1 − 1.5B ≥ |amax |kerr . (51)

From Eq. (50) the maximum value of |amax | obtained to
be different from that obtained from Kerr metric and because
β ≥ 0, black holes can have spin parameter of value more
than unity, i.e. |a| ≥ 1. The linear dependence of spin on
modified gravity parameter can also be seen from Eq. (51)
which nearly matches with Fig. 2.

Interestingly, this approximate analytical solution matches
exactly with the Kerr–Newman metric if we replace β with
−Q2, where Q is the charge of the black hole. However, we
know that the Kerr-Newman solution is a vacuum solution of
the Einstein’s field equation when the integrand of action is a
scalar curvature (Ricci scalar) dependent on the parameters
M , a and Q. Hence, this approximate solution due to the
perturbative correction to GR can be treated as the solution
of Einstein’s field equation itself with appropriate redefini-
tion of the action and parameter(s). However, in general the
solution (gμν) obtained in Sect. 4 can be understood as the
one corresponding to an appropriate choice of f (R) and then
F(R) satisfying Eq. (5).

7 Orbits in equatorial plane

Due to the source having an angular momentum, the system’s
geometry is no longer spherical and is only axisymmetric.
Only the components of the angular momentum along the
symmetry axis are conserved. There are orbits confined to
the equatorial plane (θ = π/2), but the general orbit is not
necessarily on the plane. However, to present a manageable
solution, we consider the equatorial plane in this section.
Thus, from Eqs. (32), (38)–(40) we can construct two Killing
vectors corresponding to energy and angular momentum. The
energy arises from the timelike Killing vector Kμ = ∂t , and
the Killing vector whose conserved quantity is the magnitude
of the angular momentum is given by L = ∂ϕ . Thus, we
can construct the conserved quantities as E and L as the
conserved energy per unit mass and angular momentum per
unit mass along the symmetry axes, which can be expressed
as [23]

E = −Kμ uμ (52)

and

L = Lμu
μ. (53)

Now by inspecting the metric we have

E = −gttu
t − gtϕu

ϕ, (54)

L = gtϕu
t + gϕϕu

ϕ. (55)

These Eqs. (52)–(55) can be solved for ut and uϕ to find

ut = 1

�

(
gϕϕE + gtϕL

)
, (56)

uϕ = − 1

�

(
gtt L + gtϕE

)
, (57)

where � = (
gtϕ

)2 − gϕϕgtt .

7.1 Marginally bound circular orbit

From normalization condition of four-velocity u · u = 1,
together with uθ = 0, we obtain a radial equation for ur =
dr/dτ as

gtt
(
ut

)2 + grr
(
ur

)2 + 2gtϕu
tuϕ + gϕϕ

(
uϕ

)2 = 1. (58)

Thus Eqs. (56)–(58) essentially calculate ur as a function of
E , L , r , a and B. The effective potential can now be defined
as [23,24]

Vef f (E, L , r, a, B) := r3(ur )2
. (59)

Now for circular orbits we must have the radial velocity to
vanish and hence the effective potential must vanish. Thus for
equilibrium condition, we must have an extremum in Vef f .
Therefore, we obtain the relations

Vef f = 0,
∂Vef f

∂r
= 0. (60)

It can be shown that unbound circular orbits have E > 1.
Given an infinitesimal outward perturbation, a particle in
such an orbit will escape infinity. Bound orbits exist for
r > rmb, where rmb is the radius of the marginally bound
circular orbit with E = 1. Thus, solving Eq. (60) with con-
dition E = 1, we obtain the value of r = rmb. From Fig. 4
the effect of B on rmb can be seen, and that rmb increases
with increasing |B| for a fixed a, and rmb decreases with the
increase of a for a fixed B. It also can be seen that setting
B = 0 gives the same results as in GR.

7.2 Innermost stable circular orbit

To find the innermost stable circular orbit, we opt for the
same Vef f as defined in Sect. 7.1. Since we are considering
circular orbits, Eq. (60) is still valid. All the bound circular
orbits are not stable. For stability condition, we must have

123



Eur. Phys. J. C (2022) 82 :939 Page 9 of 11 939

Fig. 4 Variation of marginally bound orbit as a function of spin of
black hole for different B

Fig. 5 Variation of marginally stable circular orbit as a function of spin
of black hole for different B

the condition

∂2Vef f
∂r2 ≤ 0. (61)

Now, the minimum radius (innermost orbit) that satisfies Eqs.
(60) and (61) is termed as Innermost Stable Circular Orbit
(ISCO) and the radius named as rI SCO . Numerically solving
these three equations simultaneously we obtain the variation
of rI SCO shown in Fig. 5. Similar to the case of rmb, here
we see rI SCO increases with increasing |B| for a fixed a, and
rI SCO decreases with the increase of a for a fixed B. Also,
it can be easily verified that as B = 0, the results of GR are
preserved.

8 Epicyclic frequency in modified gravity

In this section we will briefly describe the deriva-
tion of epicyclic oscillation frequencies for the stationary,
axisymmetric metric from the effective potential for circular
geodesics, depicting the spacetime around a rotating black

hole. From Eqs. (32)–(40) the line element can essentially
be expressed as

ds2 = gtt dt
2 + 2gtϕdtdϕ + gϕϕdϕ2 + grr dr

2 + gθθdθ2, (62)

with gμν as a function of r and θ and a symmetry along
φ and t . It is most straightforward to obtain the epicyclic
frequencies for a metric that can be expressed in this form.
Epicyclic frequencies originate from the the relaxation of
the circular orbits under external perturbation and it must be
that this frequencies solely depend on the structure of the
spacetime.

Now the similar normalization condition as in Eq. (58)
along with Eqs. (56) and (57) but without a fixed θ , hence
with uθ , can be rewritten as

grr
(
ur

)2 + gθθ

(
uθ

)2 = Ve f f , (63)

where the effective potential can be defined as

Ve f f =
(
E2 − gtt

)
gϕϕ + (

2LE + gtϕ
)
gtϕ + L2gtt(

g2
tϕ − gtt gϕϕ

)
�

. (64)

For circular orbits in the equatorial plane we have ur = uθ =
0, which implies Ve f f = 0, and u̇r = u̇θ = 0 give ∂rVe f f =
∂θVe f f = 0. From these three conditions E and L can be
obtained as [25]

E = − gtt + �gtϕ√−gtt − 2gtϕ� − gϕϕ�2
, (65)

L = − gtϕ + �gϕϕ√−gtt − 2gtϕ� − gϕϕ�2
(66)

and the orbital angular frequency is given by [25]

� ≡ 2πνϕ = −∂r gtφ ±
√(

∂r gtϕ
)2 − ∂r gϕϕ∂r gtt

∂r gϕϕ

, (67)

where the positive (negative) sign in Eq. (67) refers to the
co-rotating (counter-rotating) orbits with respect to the black
hole spin. Equation (67) also defines the quantity νϕ which is
the frequency in which the particles move around the black
hole in circular orbits. Now the proper angular momentum
(�) can be derived to be

� = −gtϕ + �gϕϕ

gtt + �gtϕ
. (68)

For finding the epicyclic frequencies, we first consider the
perturbation to the radial (r) and vertical (θ) coordinates so
that

r(t) ≈ r0 + δr(t), θ(t) ≈ θ0 + δθ(t), (69)

where the perturbations are considered to be δr(t) ∼ ei�r t

and δθ(t) ∼ ei�θ t , so as to have equations for harmonic
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(a) (b)

(c) (d)

Fig. 6 Profiles of the Keplerian frequency νϕ and the epicyclic fre-
quencies νr (radial) and νθ (vertical) in the modified theory with spin
parameter set to a = 0.8. The modified gravity parameter B has been

set to 0.0, − 0.3, − 0.5, − 1.0 in a–c. In d B = 0 and − 1.0 for bottom
and top curves respectively for νϕ and νθ , while for top and bottom
curves for νr

oscillator of the form

d2δr

dt2 + �2
r δr = 0, (70)

d2δθ

dt2 + �2
θ δθ = 0. (71)

Here r0 is the radius of the circular orbit and θ0 = π/2, is
the angle at which the equatorial plane exists. Now expanding
the R.H.S. of Eq. (63) into second-order Taylor series along
with the radial (r) and vertical (θ) components, replacing r
and θ from Eq. (69), using Eqs. (70) and (71), and after some
simple algebra we obtain [25,26]

�2
r = (2πνr )

2 = − 1

2grr (ut )2

∂2Ve f f

∂r2 , (72)

�2
θ = (2πνθ )

2 = − 1

2gθθ (ut )2

∂2Ve f f

∂θ2 . (73)

The dependence of the frequencies on B arises from vari-
ous metric components. The explicit forms of the frequencies
are huge and hence are not included in this work. Rather, we

shall provide a numerical estimations of these frequencies. It
should also be noted that these frequencies are observables
and will be the key in estimating the most favored value of
B from observational data.

The behaviors of νr and νθ are shown in Fig. 6a, b with
a fixed spin parameter a = 0.8. From Fig. 6 it can be seen
that νr decreases, while νθ and νφ increase, with the increase
of |B|, at a given r (particularly away from the black hole).
However, the peak of νθ decreases with increasing |B|. Also
νr vanishes at a larger radius with a smaller peak with increas-
ing |B|. It can be easily seen from Eq. (67) that the GR result,
i.e. � ∼ (r3/2 ± a)−1, can be found by setting B = 0.

9 Conclusion

The idea of modified GR is in the literature for sometime,
but its indispensable usefulness was not very clear. Although
Starobinsky argued for R2-gravity (a kind of f (R)-gravity)
to explain inflation [27], it was not clear if all the gravity theo-
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ries are the same. In last one decade or so, the authors however
showed that R2-gravity could be useful to sort out problems
lying with neutron stars and white dwarfs [2,3,28,29] as well.
Nevertheless, none of these solutions is black hole (vacuum)
solution. In this work, we establish an asymptotically flat
vacuum solution of the axially symmetric field equation in
a modified GR, more precisely f (R)-gravity. The solution
particularly describes the spacetime geometry around a rotat-
ing black hole, i.e. the modified Kerr black hole solution, for
the first time of this kind to the best of our knowledge.

It shows that depending on the modified gravity parame-
ter, all the fundamental properties of the black hole change,
e.g. the radii of black hole, marginally stable and bound cir-
cular orbits increase. Therefore, based on the observed size,
e.g. by Event Horizon Telescope (EHT) image, the inference
or estimate of spin of black hole would be incorrect unless
proper theory is used. If indeed the gravity theory is based
on an f (R)-gravity, the GR based inference of spin of the
black hole would actually underestimate it. This has many
far reaching astrophysical implications.

The solution also implies that the naked singularity, as
formed at the Kerr parameter a > 1, need not necessarily
produce in modified GR. This naturally has important impli-
cations to the cosmic censorship hypothesis [30,31]. There-
fore, black holes, according to this gravity theory, can spin
faster without forming naked singularity depending on the
modified gravity parameter.
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