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Abstract We establish new constraints on f(T) gravity
models by using cosmological data. In particular, we inves-
tigate the restrictions given by the gas mass fraction mea-
surements of galaxy clusters and transversal BAO data. Both
data sets are regarded as weakly dependent on a fiducial cos-
mology. In addition, we also include a CMB measurement
of the temperature power spectrum first peak, along with
H(z) values from cosmic chronometers and supernovae data
from the Pantheon data set. We also perform a forecast for
future constraints on the deviation of f(T) models from the
�CDM scenario by following the specifications of the J-PAS
and Euclid surveys and find significant improvements on the
constraints of the b-parameter, when compared to the results
of the statistical analysis.

1 Introduction

The �CDM model has become the standard model to
describe the evolution of the Universe at large scales since
the discovery of its late-time cosmic acceleration [1,2].
This model is based on the existence of a fluid with neg-
ative pressure described by a cosmological constant (�)
added to the Einstein field equations, the so-called dark
energy. The model also assumes the presence of pressureless
non-baryonic matter comprises most of galaxies composi-
tion denominated cold dark matter (CDM). This model is
the one that best describes data from type Ia supernovae,
and other astrophysical objects to the cosmic microwave
background (CMB) temperature power spectrum [3]. How-
ever, the increasing measurements of the late-time Uni-
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verse might suggest that the framework described by gen-
eral relativity (GR) is not the most general for describing
gravity, which motivates the idea of extensions of the stan-
dard model, for instance, through modified theories of grav-
ity [4,5]. Such possibility is motivated by recent measure-
ments that have made explicit a tension between cosmo-
logical data from early and late eras of the Universe, in
particular the H0 (see [6] for a review) and S8 estimates.
While the Hubble constant value inferred by Planck Collab-
oration is H0 = 67.4 ± 0.5 km/s/Mpc [3], the local mea-
surements from astrophysical objects seem to prefer higher
values, such as the one given by the SH0ES Collaboration
[7], of H0 = 73.04 ± 1.04 km/s/Mpc, and the H0LiCOW
inference, which estimates the present Hubble parameter as
H0 = 73.3+1.7

−1.8 km/s/Mpc [8]. Another discrepancy also
arises when we analyze the growth of structures. A tension
between Planck and low-redshift data have been observed in
the S8 = σ8

√
�m/0.3 parameter, as Planck reports a value of

S8 = 0.834 ± 0.016 by considering a �CDM model, while
low-redshift data from cosmic shear measurements infer a
significant lower value, such as the DES-Y3 estimate [9,10],
of S8 = 0.759+0.025

−0.023. We refer to [11] for a review of the H0

and S8 tensions in which several measurements are listed.
In this manner, several modifications to GR were consid-
ered in recent years to explain why such tensions appear and
to answer other questions that the �CDM model does not
address [12–16]. One of the most studied theories involves a
function of the Ricci scalar f (R) [17–23] in the field equa-
tions that could account for phenomena not explained by the
cosmological standard model. More profound modifications
from the standard picture lead to alternative options. Suppose
one considers that instead of the metric, the gravitational field
is described by tetrads, where the Riemann tensor, the main
ingredient for the dynamics of GR, is replaced by a non-
zero torsion. A change of this kind allows us an alternative
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description of gravity so that the resulting field equations
could lead to relevant effects in the observables. Develop-
ments in this way led to the Teleparallel Equivalent General
Relativity (TEGR), in which the torsion scalar T is related to
the Ricci scalar as R̄ = −T + B, with B being a boundary
term, meaning that it is equivalent to GR at the level of field
equations. A natural extension of this picture can be realized
when we look at how f (R) theories are constructed, giving
rise to f (T ) theories [24–28], with a function of T being
added to the gravitational action.

A number of forms for the f (T ) function were proposed in
the literature [24,29–33] where they have been proved to be
viable models. In Refs. [34–40], statistical analyses were per-
formed to find constraints on cosmological parameters when
the models are confronted with various data sets. In Ref. [41]
it is seen that a power-law dependence on T can greatly alle-
viate the Hubble tension by increasing the associate error
in the parameter, and in [38], an exponential f (T ) form was
statistically preferred over the standard �CDM model. More
recently, the impact on f (T ) constraints by different H0 pri-
ors was investigated in [42]. In Ref. [43], a f (T ) model with
exponential form was introduced as an infrared (IR) correc-
tion to GR. Through complete analysis in Refs. [44,45], the
Hubble tension is alleviated at the background and linear per-
turbation level. In recent work, [40], the study of concordance
with the Big Bang Nucleosynthesis helped constrain the free
parameters of f (T ) models with great precision, with a devi-
ation from the standard model at 3σ confidence level. It is
also worth noting that the extension f (T, B) [46–50] showed
new possibilities. Here, the boundary term B contributes to
the equations of motion as part of an arbitrary function. It
makes the construction of many different models possible,
and the equations of motion are generally more complicated.

In this work, we seek to constrain some of these models
with data generally regarded as being model-independent. In
particular, we want to verify the impact of including measure-
ments of the gas mass fraction of galaxy clusters, which is the
ratio between the baryonic and total mass of a given cluster.
Recently, these data sets have been used to constrain cos-
mological scenarios [51,52], being another way of confirm-
ing cosmic acceleration. Moreover, they are a cosmology-
independent way of determining cosmological parameters,
especially the matter density parameter �m0. In particular,
we use the data set in Ref. [53], which consists of 40 points at
low and intermediate redshift ranges of 0.078 ≤ z ≤ 1.063.
Another data set that we expect to impact our analysis and
produce strong constraints is the 2D baryonic acoustic oscil-
lations (BAO) data due to its cosmological model indepen-
dence [54–56]. Additionally, we also use H(z) values from
the Cosmic Chronometers method compiled in [57,58], the
position of the first peak of the CMB temperature power
spectrum l1 [59,60], and the latest Type Ia supernovae mea-
surements of the Pantheon compilation [61].

This work is organized in the following manner. In Sect. 2,
we review the f (T ) formalism, focusing on the background
dynamics. In Sect. 3, we briefly review the f (T ) models
that will be investigated. Section 4 describes the data and
methodology used in the analysis. In Sect. 5, we discuss the
results of the statistical analysis, while in Sect. 6 we perform
a forecast on the models for future experiments. Finally, in
Sect. 7, we present our considerations.

2 Teleparallel dark energy

In this section we briefly introduce the teleparallel formalism,
the generalization for a f (T ) function, and its cosmological
consequences.

2.1 Formalism

Teleparallel gravity is a way of describing gravity in which
the fundamental object is the tetrad eAμ instead of the usual
metric tensor gμν for GR. Gravity is then described by a non-
zero torsion, while the Riemann tensor, along with the non-
metricity tensor, are both zero (in the teleparallel picture). A
consequence of this approach is that when deriving the field
equations, the Levi-Civita connection (�̄λ

μν) is substituted by
the teleparallel connection �λ

μν [62]. The metric tensor of GR
is related with the tetrad as [25,27]

gμν = ηABe
A
μe

B
ν , (1)

with capital Latin letters corresponding to the tangent space,
while Greek letters correspond to space-time coordinates on
the manifold. The teleparallel connection is written as

�λ
μν = Eλ

A ∂μe
A
ν , (2)

with Eλ
A being the inverse tetrad. In the teleparallel picture,

the connection �λ
μν is related to the Riemannian counterpart

as

�λ
μν = �̄λ

μν + K λ
μν (3)

with

K λ
μν ≡ −1

2

(
T λ

μν − T λ
μν − T λ

νμ

)
, (4)

being the contortion tensor that is defined in terms of the tor-
sion tensor T λ

μν , which has an equivalent role as the Riemann
tensor in GR, and it is written as

T λ
μν = 2�λ[μν]. (5)
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Contraction of the torsion tensor leads to

T = 1

4
T ρμνTρμν + 1

2
T ρμνTνμρ − T ρ

ρμ T νμ
ν, (6)

which can be related to the Levi-Civita Ricci scalar R̄ as

R = R̄ + 2

e
∂ρ

(
eTμρ

μ

) + T

= R̄ − B + T = 0, (7)

where B = − 2
e ∂ρ

(
eTμρ

μ

)
is a boundary term, showing an

equivalence between GR and TEGR at the level of field equa-
tions, allowing us to write a similar gravitational action as the
Einstein–Hilbert one. This way, we can write the field equa-
tions that can be shown to be equivalent to GR by providing
the same equations of motion according to (6). Furthermore,
in an analogous way to f (R) gravity, one can generalize the
action by introducing a function f (T ) to the gravitational
Lagrangian so that the action becomes

S = 1

16πG

∫
d4xe

(
T + f (T ) + Lm

)
, (8)

whereLm is the matter Lagrangian, and e can be identified as
e = det

(
eaμ

) = √−g. Just as in f (R̄) gravity, f (T ) will be
responsible for the deviation from GR, where for instance, if
the function is taken as a constant, we reproduce the �CDM
model.

We can vary this action concerning the tetrad to obtain the
field equations as

e−1∂μ(eeρ
AS

μν
ρ )(1 + fT ) + eρ

AS
μν
ρ ∂μ(T ) fT T

−(1 + fT )eλ
AT

ρ
μλS

νμ
ρ + 1

4
eν
A(1 + f (T )) = 4πGeρ

AT
v

ρ ,

(9)

where the subscript T denotes derivatives with respect to
the torsion scalar, T v

ρ is the energy-momentum tensor, and

S μν
ρ ≡ 1

2

(
Kμν

ρ + δ
μ
ρ T σν

σ − δν
ρT

σμ
σ

)
is a superpotential

that can be used to obtain the tensor scalar as T = S μν
ρ T ρ

μν .

2.2 Background dynamics

To study the cosmological implications of f (T ) gravity in
the context of a homogeneous, isotropic, and spatially flat
universe, characterized by eAμ = diag(1, a, a, a), we see
that this corresponds to the FLRW geometry characterized
by the line element

ds2 = dt2 − a2(t)δi j dx
i dx j , (10)

so that the Friedmann equations become, from (9) [25,27]

3H2 = 8πG(ρm + ρr ) − f

2
+ T fT (11)

and

Ḣ = −4πG(ρm + Pm + ρr + Pr )

1 + fT + 2T fT T
, (12)

with H ≡ ȧ
a being the Hubble parameter, and ρ, P being the

energy density and pressure that come from the total energy-
momentum tensor, respectively. We note that if f = 0, the
f (T ) formulation is equivalent to GR, while the dynamics
can be modified entirely by assuming a different f (T ) func-
tion since we in the FLRW geometry have that T = −6H2.

Before solving the equations, we should define some quan-
tities. Since, in general, we can interpret the r.h.s. of Eq. (11)
as corresponding to the contribution of all matter compo-
nents, while the Eq. (12) contains the contributions from the
pressures + densities of the fluids, it is possible to make the
following definitions for the dark energy density and pres-
sure, respectively:

ρDE ≡ 1

16πG
[2T fT − f ] and

PDE ≡ 1

16πG

[
f − fT T + 2T 2 fT T

1 + fT + 2T fT T

]
. (13)

Then, the dark energy equation of state can be written as

wDE ≡ PDE

ρDE
= f − fT T + 2T 2 fT T

(2T fT − f )(1 + fT + 2T fT T )
. (14)

The cosmological fluids considered will have their evolu-
tion dictated by the conservation of the energy-momentum
tensor, so

ρ̇m + 3Hρm(1 + wm) = 0 and

ρ̇r + 3Hρr (1 + wr ) = 0, (15)

with wm and wr being the equation of state parameters of
matter and radiation, respectively; and we can find that the
defined dark energy density will also follow the same con-
servation equation:

ρ̇DE + 3HρDE (1 + wDE ) = 0, (16)

with ρDE and PDE defined by (13). Since T = −6H2,
the normalized Hubble parameter E(z) can be written as
E2(z) ≡ H2(z)/H2

0 = T (z)/T0, with H0 is the present value
of the Hubble parameter, and T0 = −6H2

0 . Also, assuming
that ρm is pressureless dust, so wm = 0, and that radiation
follows wr = 1/3, we can write the Friedmann equation (11)
as

E2(z, r) = �m0(1+z)3+�r0(1+z)4+�dark0y(z, r), (17)
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with y(z, r) being

y(z, r) ≡ 1

6H2
0 �dark0

[2T fT − f ] , (18)

and �dark0 being the dark energy density parameter today,

�dark0 = 1 − �m0 − �r0, (19)

produced by the modifying f (T ) term. Note the distortion
function y(z, r) that controls the effect from the modified
dynamics of teleparallel gravity, where r corresponds to the
free parameters of the specific model considered. The main
characteristics of this function are that GR must (preferen-
tially) be reproduced for some limit of parameter, while at
the cosmological level, the concordance model �CDM can
also be achieved (when y = 1). Numerical analysis of the
main f (T ) models indicate that deviations from the standard
model are generally small [38], when the model in question
can reproduce the �CDM one, showing that different f (T )

scenarios are concordant with the standard model, and might
even compete with it.

3 f (T ) models

We present the f (T ) models investigated in this work. The
three selected functions are well studied in the literature. Pre-
vious numerical analyses have shown that they are among the
best ones preferred by data compared to the �CDM model.
We will see how different data can affect the predictions for
each model while verifying the consistency with previous
works.

• Power-law model
Currently, one of the most favored by data f (T ) models
is the power-law form given by [24]

f1(T ) = α(−T )b, (20)

where α and b are the two free parameters that can be
related through

α = �dark0(6H2
0 )1−b

2b − 1
, (21)

by taking z = 0, H(z = 0) = H0 in Eq. 17. The distor-
tion factor becomes simply

y(z, b) = E2b(z, b), (22)

and then the Friedmann equation is

E2(z, b) = �m0(1 + z)3 + �r0(1 + z)4

+ �dark0E
2b(z, b), (23)

We can easily see that b = 0 reproduces the �CDM cos-
mology. This model gives a de-Sitter limit for z = −1,
and deviations from the standard model are more evi-
dent for a b distant from zero. However, these deviations
are generally small, as verified by numerical analyses
performed in past years [34,35,38]. Also, the power-law
model can alleviate the Hubble tension [41]. The param-
eter b is anti-correlated with H0, meaning that a larger H0

is achieved for a negative b, a feature that does not hap-
pen with the other models investigated due to a strong
degeneracy between parameters.

• Exponential model
Another model investigated is inspired by f (R) gravity,
where an exponential dependence exists, and the f (T )

function takes the form [34]

f2(T ) = αT0

(
1 − e−pT/T0

)
, (24)

where, again, α and p are dimensionless parameters that
can be related though the Friedmann equation as

α = �dark0

1 − (1 + 2p)e−p
, (25)

so the distortion term is

y(z, b) =
1 −

(
1 + 2E2

b

)
e− E2

b

1 − (
1 + 2

b

)
e− 1

b

. (26)

Consequently, the Friedmann equation for this model
becomes

E2(z, b) = �m0(1 + z)3 + �r0(1 + z)4

+�dark0

1 −
(

1 + 2E2

b

)
e− E2

b

1 − (
1 + 2

b

)
e− 1

b

, (27)

where we can define b ≡ 1/p, so the �CDM model is
recovered for b → 0+, while the GR limit is achieved
for b → +∞.

• The square-root exponential model
The last f (T ) model we consider here is the exponential
form studied in [29], with functional form

f3(T ) = αT0

(
1 − e−p

√
T/T0

)
, (28)

where the α and b parameters are related as

α = �dark0

1 − (1 + p)e−p
, (29)
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and the distortion factor becomes

y(z, b) = 1 − (
1 + E

b

)
e− E

b

1 − (1 + 1
b )e− 1

b

. (30)

with p = 1/b. In a similar manner to the f2 model, one
can see that the limit b → 0+ reproduces the �CDM
model, while b → +∞ corresponds to the pure GR limit.
The Friedmann equation for the model is

E2(z, b) = �m0(1 + z)3 + �r0(1 + z)4

+�dark0
1 − (

1 + E
b

)
e− E

b

1 − (1 + 1
b )e− 1

b

. (31)

4 Observational data and methods

To check the viability of these models, we will perform a
statistical analysis using the Monte Carlo Markov Chain
(MCMC) method, where we compare the predictions with
different data sets of the cosmological observables.

4.1 Data sets

• Gas mass fraction data
The first data used in this work is the cluster mass gas frac-
tion fgas ≡ Mgas

Mtotal
[63–67] (one can check [53] for further

references). Since these clusters can be assumed as con-
taining a good part of the total content of non-relativistic
matter in the Universe, we can initially, approximate fgas
as

fgas = bgas(z)
�b

�m
, (32)

where �b is the total fraction of baryonic matter, while
bgas(z) is some function that expresses how different
the cluster mass gas fraction is from the cosmic one. As
fgas ∝ dLd

1/2
A and following the Refs. [53,68], we can

use the cosmic distance duality relation dA = dL/(1+z)2

to write fgas in terms of the angular diameter distance

fgas ≡ A(z)K (z)γ (z)
�b0

�m0

(
D f id

A (z)

DA(z)

)3/2

, (33)

where DA(z) is the angular diameter distance for a given
model, normalized by a fiducial model that is taken as a
�CDM one with �m0 = 0.3 and H0 = 70 km/s/Mpc
for the data we are using. The A(z) factor is the angular
correction between two models, which is usually close to

one, but can be modeled as

A(z) =
(

H(z)DA(z)

H f id(z)D f id
A (z)

)η

, (34)

where η is estimated as η = 0.442±0.035 [53]. K (z) and
γ (z) are respectively the calibration bias and the deple-
tion factor, where the former takes into account instru-
mental inaccuracies as well as astrophysical effects in
the cluster mass, while the latter measures the depletion
of hot gas in the cluster relative to the baryon cosmic
fraction. Some works in the literature have investigated
the possible variation of these quantities with redshift (in
particular γ ) [69,70], but in this analysis, we take them as
constants, as estimated by hydrodynamical simulations;
therefore, we use the values γ = 0.848 ± 0.085 [71],
and K = 0.96 ± 0.09 ± 0.09 [72]. By using these three
parameters (η, K , γ ) as discussed, the χ2 function for
gas mass fraction measurements is given by

χ2
f gas =

40∑

i=1

(
fgas(zi ) − f obsgas

σ f gas,i

)2

. (35)

In this expression, fgas(zi ) represent the theoretical pre-
dictions given by Eqs. 33, 34, f obsgas are the observational
values; the uncertainties σ fgas,i have the effective form

σ 2
f gas,i = σ 2

obs,i +
[
f thgas(zi )

]2
[ (σK

K

)2 +
(

σγ

γ

)2

+ ln2

(
H(zi )DA(zi )

H f id(zi )D
f id
A (zi )

)

σ 2
η

]
, (36)

where σ 2
obs,i are the uncertainties associated with the

data. We use the following data set for the analysis. In
[53], the fraction was derived for 40 cluster measure-
ments at the radius r2500

1 improving the previous work
done in Ref. [68]. These points cover the redshift inter-
val of 0.078 ≤ z ≤ 1.063. A recent application of these
data points in constraining cosmological parameters is
described in [52] for the �CDM and wCDM models, in
a way that we can compare our results with theirs, espe-
cially in the determination of the Hubble parameter H0.
It is good to mention that other measurements of fgas are
available in the literature [73–76], from lower to higher
redshifts (0.0473 ≤ z ≤ 1.235), but measured in the
radius r500, which will not be used in the present work.

1 r2500 refers to the radius of spherical shells in which the matter of
the cluster is contained. For these data, it means that the mean density
inside is 2500 higher than the cosmic critical density at the cluster’s
redshift.
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• BAO2D data
As in the case of gas mass fraction data, the BAO data
we will use in this analysis is computed in a way that can
be regarded as almost model-independent. The method
presented in Refs. [54–56], involves the 2-point correla-
tion function for a distribution of galaxies, where only
the angular separation is considered in redshift shells of
the order δz � 10−2. This allows one to obtain informa-
tion on the BAO transversal signal without the effect of
a fiducial cosmology,2 and can be used to test different
cosmological scenarios. The expression below gives the
BAO angular scale θBAO

θBAO = rs
(1 + z)DA(z)

, (37)

where rs is the comoving sound horizon, obtained as3

[77]:

rs(z) =
∫ ∞

zd

(
3 + 9�b0a′

4�γ 0

)−1/2 da′

a′2H(a′)
, (38)

where �b0 is the present baryon density parameter, and
�γ 0 is the present photon density parameter. The redshift
at the drag epoch zd is estimated by the fitting formula
[77]

zd = 1291(�m0h2)0.251

1 + 0.659(�m0h2)0.828

[
1 + b1(�bh

2)b2
]
, (39)

with

b1 = 0.313(�m0h
2)−0.419

[
1 + 0.607(�mh

2)0.674
]

and b2 = 0.238(�m0h
2)0.223. (40)

The total BAO χ2 function (χ2
BAO ) is then

χ2
BAO =

14∑

i=1

[
θ thBAO(zi ) − θobsBAO(zi )

σθ,i

]2

. (41)

These data points have been used previously in differ-
ent investigations. For instance, in [78], the �CDM and
CPL models were analyzed along with Planck data. It was
shown that a dynamical dark energy scenario in this con-
text provides a value for H0 that is compatible with local
measurements. The same data was used with H0LiCOW

2 To obtain the BAO-2D signal it is used a fiducial cosmology, however,
the final angular distance estimates are weakly model dependent [54].
3 To compute the integral in Eq. (38), we have used the expression
for E(z) in (17) for each model, while approximating an universe with
matter and radiation at the right-hand side of said equation, allowing us
to account for the effect of the f (T ) function at high redshifts.

data [79] to obtain constraints on the H0 −rd plane inde-
pendently of CMB data to investigate the impact of spa-
tial curvature; also, in [80] cosmological constraints were
obtained by imposing observational and thermodynamics
limits on interacting dynamical dark energy models.

• Type Ia Supernovae (SNe) data
We also use in this analysis the SNIa Pantheon compi-
lation [61]. In particular, we consider the binned version
where the 1048 points are compacted to 40, which span
the redshift interval 0.01 ≤ z ≤ 1.6. The χ2 function is
given as

χ2
SNe = �μC−1

SNe�μT , (42)

where C−1
SNe corresponds to the inverse covariance matrix

of the data, and �μ = μi − μi,th is a vector with
the difference between the observational and theoreti-
cal distance modulus. The distance modulus is defined
as μ = mB − M , where mB is the observed apparent
magnitude at a given redshift, while M is the absolute
magnitude which is treated as a nuisance parameter in the
statistical analysis. This is compared with the theoretical
form calculated via

μth = 5 log
DL(z)

Mpc
+ 25, (43)

where DL(z) = (1 + z)
∫ z

0
dz′
H(z′) is the luminosity dis-

tance.
• H(z) data

We use measurements of the Hubble parameter obtained
from the differential age method, also known as cosmic
chronometer (CC) data. This method of measuring the
differential age of galaxies allows us to determine the
Hubble parameter at a certain redshift without assuming
a specific model. Here, we will consider 31 points cata-
loged in [57], and compiled in Table 1 of [58] spanning
the redshift range of 0.07 ≤ z ≤ 2. The χ2 function is
constructed as

χ2
CC =

31∑

i=1

(
H(zi ) − Hobs(zi )

σH,i (zi )

)2

. (44)

• CMB data
The last data set used in this work is the Planck CMB
data encoded on the first peak of the temperature power
spectrum, indicated by l1, expressed as [59]

l1 = lA

[

1 − 0.267

(
ρr (zdec)

0.3(ρb(zdec) + ρc(zdec))

)0.1
]

,

(45)
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with lA = π(1 + zdec)
dA(zdec)
rdec

being the acoustic sound
scale, and all quantities are evaluated at the decoupling
redshift zdec [81]. The measured value of the peak we use
is l1 = 220.6 ± 0.6 [82].

Finally, we also assume a Gaussian prior on the baryon
parameter density as �bh2 ≡ ωb = 0.02260 ± 0.00034
[83], from Big Bang Nucleosynthesis (BBN) measurements.
Therefore, to analyse the impact of the fgas and BAO data, we
consider four total χ2 functions: χ2 = χ2

Base+χ2
fgas

+χ2
BBN ,

χ2 = χ2
Base +χ2

BAO +χ2
BBN , χ2 = χ2

Base +χ2
fgas

+χ2
BAO +

χ2
BBN and χ2 = χ2

Base + χ2
fgas

+ χ2
BAO + χ2

BBN + χ2
CMB ,

where χ2
Base ≡ χ2

SNe + χ2
CC . We assume uniform priors on

H0, b, �m0 and to perform the MCMC analysis, we use the
emcee sampler [84], and the GetDist [85] Python module to
plot the results.

4.2 Model selection

After determining the parameters’ posteriors distributions for
each model, we must use a way to compare them, which will
help us to determine which model is more favored by the
data used. The most robust estimator used in cosmology for
statistical comparison is the Bayes factor, the ratio between
the Bayesian evidence of a model of interest and a reference
model. We also compute the value of the Akaike Information
Criteria (AIC) [86], which, under the assumption of at least
near Gaussianity of the posterior distribution, it is given as
[87]

AIC ≡ −2 lnLmax + 2k(k + 1)

N − k − 1
. (46)

In (46), Lmax is the value of the maximum likelihood for
a given model. At the same time, k and N are the numbers
of free parameters of the model and the total number of data
used in the analysis, respectively. The criterion for model
comparison is as follows: Smaller AIC corresponds to a better
model, and a more significant number of free parameters
k penalizes the model, resulting in a larger criterion value.
For two competing models, one can define the difference
�IC ≡ ICmodel − ICre f , where ICre f represents the AIC
of the reference model. We use the same classification as
[38], where �IC ≤ 2 corresponds to statistical compatibility
between models, 2 < �IC < 6 represents a tension between
them, while �IC ≥ 10 represents robust evidence against
the model we want to compare with the reference one.

We also use the Bayes’ factor as an evidence-based statis-
tical estimator for model selection. This quantity considers
not only the best-fit point (the minimum χ2 parameters val-
ues) but also the entire probability distribution. The definition
of the Bayes’ factor, B01, is the evidence ratio between two
models:

B0i = E0

Ei
, (47)

being Ei the evidence in the Bayes’ theorem for the i−model
and E0 the evidence for a reference one. As in the AIC cri-
terion, the comparison is performed with a reference model
and a qualitative inference is interpreted by the Jeffreys’ log-
arithmic scale [88]. In this scale, the logarithm of the Bayes’
factor determines the preference for a model with the higher
Bayesian evidence. The characteristic values of the scale are:
| ln B0i | < 1, 1 < | ln B0i | < 2.5, 2.5 < | ln B0i | < 5, and
| ln B0i | > 5 for inconclusive, weak, moderate and strong
evidence, respectively.

5 Results

The results of the statistical analysis for all models considered
are displayed in Figs. 1, 2, 3 and 4 and Tables 1 and 2, where
the values for the statistical criteria in Table 2 correspond
to the combination of all data sets. For the standard �CDM
model, we realize the following: When using the combina-
tion Base+ fgas+BBN we have the lowest value for H0, of
69.0+1.7

−1.7 km/s/Mpc, compatible with the value of Planck [3]
of 67.36 ± 0.54 km/s/Mpc at 1σ confidence. This value is
also considerably higher than the one obtained in [52]. The
present matter density, on the other hand, is the highest, of
�m0 = 0.301+0.012

−0.011, as suggested by the anti-correlation of
the parameters in Fig. 1 (grey contour). When we consider

Fig. 1 1σ and 2σ confidence contours and posterior distributions
for the �CDM model. The grey contours represent the analy-
sis with SNe+CC+ fgas+BBN data, the purple contours correspond
to SNe+CC+BAO2D+BBN data, the green contours correspond to
SNe+CC+ fgas+BAO2D+BBN, and the blue contours are referent to
all data combined, SNe+CC+BAO2D+ fgas+BBN+CMB
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Fig. 2 Same as Fig. 1, but for the f1 power-law teleparallel model

Fig. 3 Same as Fig. 1, but for the f2 exponential teleparallel model

Base+BAO2D+BBN, we note a considerable increase in H0

and a decrease in �m0, where H0 goes more towards the R19
value [89], and there is an improvement in the error bars,
when considering BAO2D data. For the third combination,
Base+ fgas+BAO2D+BBN, we note a slight increase in H0,
but with the uncertainties essentially preserved, with respect
to the Base+BAO2D+BBN results. However, there is now a
significant improvement in the uncertainties of �m0. Finally,
for all data sets combined, there is a great decrease in the
error bars for H0, with similar results as in [38], but in our

Fig. 4 Same as Fig. 1, but for the f3 square-root exponential telepar-
allel model

case, the values of parameters remain almost the same, except
for H0, where we notice a slight decrease. It is worth men-
tioning that the H0 values obtained when using the BAO2D

data are higher than those obtained when the BAO3D signal
is considered, which has been shown in Refs. [78,90,91].

We note similar behaviors in the constraints of the f (T )

models, where the lowest value of H0 is always obtained
when we consider the combination Base+ fgas+BBN, while
the highest is achieved for Base+ fgas+BAO2D+BBN. For
the f1 power-law model, we have H0 = 69.6+1.6

−1.6 (for the

Base+BAO2D+BBN combination) and H0 = 71.0+1.1
−1.2 (for

the Base+ fgas+BAO2D+BBN combination), being quite dif-
ferent from the results in Ref. [42], where the ‘Base’ data set
was used, but with another BAO data, and closer to Ref. [38],
where Base+ f σ8 was used. A good improvement in the
H0 constraint was obtained by adding CMB data. As for
the parameter b, the combination Base+ fgas+BAO2D+BBN
leads to 1σ concordance with the �CDM scenario; such con-
clusion was also obtained from previous analyses in the lit-
erature. One interesting feature of the power-law model is
the ability to greatly alleviate the H0 tension due to its anti-
correlation with b. In our results (Fig. 2), this anti-correlation
is preserved, while there is an inversion of correlations in the
H0 − �m0 plane, when we consider Base+ fgas+BBN and
Base+BAO2D+BBN data sets. For all data sets combined,
we note that this specific correlation is not as evident, so the
value of �m0 is better determined. In addition, the value of b
agrees even more with the standard model, where this time,
we obtain a small negative value.
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Table 1 Cosmological constraints for all models investigated with 1σ uncertainties. We divide the results into Base+ fgas+BBN,
Base+BAO2D+BBN, Base+ fgas+BAO2D+BBN and Base+ fgas+BAO2D+BBN+CMB data sets

Model H0 [Km/s/Mpc] �m0 b ωb MB

Base + fgas + BBN

�CDM 69.0+1.7
−1.7 0.301+0.012

−0.011 − 0.0225+0.0003
−0.0003 −19.382+0.049

−0.052

f1(T ) 69.1+1.7
−1.7 0.302+0.012

−0.011 −0.067+0.13
−0.14 0.0226+0.0004

−0.0004 −19.384+0.050
−0.049

f2(T ) 68.8+1.6
−1.7 0.302+0.012

−0.011 0.098+0.058
−0.064 0.0226+0.0003

−0.0003 −19.381+0.047
−0.049

f3(T ) 68.8+1.6
−1.6 0.301+0.011

−0.012 0.111+0.091
−0.076 0.0225+0.0003

−0.0004 −19.384+0.047
−0.047

Base + BAO2D + BBN

�CDM 70.7+1.2
−1.1 0.280+0.013

−0.013 − 0.0225+0.0003
−0.0004 −19.337+0.036

−0.036

f1(T ) 69.6+1.6
−1.6 0.268+0.015

−0.015 0.16+0.13
−0.14 0.0226+0.0003

−0.0004 −19.364+0.045
−0.044

f2(T ) 70.4+1.4
−1.5 0.277+0.014

−0.012 0.131+0.061
−0.090 0.0226+0.0004

−0.0003 −19.341+0.043
−0.040

f3(T ) 70.0+1.3
−1.5 0.274+0.015

−0.014 0.22+0.12
−0.14 0.0226+0.0003

−0.0004 −19.351+0.040
−0.041

Base + fgas + BAO2D + BBN

�CDM 71.0+1.1
−1.2 0.288+0.009

−0.009 − 0.0224+0.0003
−0.0003 −19.325+0.034

−0.036

f1(T ) 70.9+1.5
−1.3 0.288+0.009

−0.008 0.01+0.11
−0.12 0.0224+0.0003

−0.0003 −19.326+0.040
−0.037

f2(T ) 70.8+1.1
−1.2 0.290+0.008

−0.008 0.104+0.064
−0.071 0.0224+0.0004

−0.0003 −19.323+0.034
−0.033

f3(T ) 70.7+1.2
−1.2 0.289+0.008

−0.008 0.156+0.095
−0.098 0.0224+0.0003

−0.0003 −19.330+0.035
−0.035

Base + fgas + BAO2D + BBN + CMB

�CDM 70.37+0.61
−0.64 0.287+0.009

−0.008 − 0.0224+0.0003
−0.0003 −19.344+0.017

−0.018

f1(T ) 70.2+1.1
−1.1 0.286+0.009

−0.008 −0.009+0.105
−0.12 0.0224+0.0003

−0.0003 −19.350+0.026
−0.026

f2(T ) 70.0+0.79
−0.8 0.289+0.009

−0.008 0.146+0.05
−0.084 0.0224+0.0003

−0.0003 −19.350+0.02
−0.017

f3(T ) 69.9+0.72
−0.72 0.288+0.008

−0.008 0.156+0.094
−0.104 0.0224+0.0003

−0.0003 −19.353+0.018
−0.019

As shown in Figs. 3 and 4, the results are also similar
for both exponential f2 and f3 models. For all data sets
combined, H0 is better constrained when compared with
the power-law model, while the parameter b does not have
the �CDM limit at 1σ level. These general results are also
present in the literature and are part of the explanation as to
why the power-law model could solve the H0 tension, while
the f2 and f3 models cannot [41], due to an increased uncer-
tainty in the f1 model estimate. We then see that using these
data for constraining f (T ) models leads to results consistent
with recent previous studies. We also achieve a similar level
of restriction as other data sets available, despite the larger
associated error bars, as it is in the case of fgas and BAO2D

data.
It is helpful to add a note on the use of CMB data. In our

analysis, we have only used the position of the first peak of the
temperature power spectrum, which significantly increases
the correlation between parameters in the H0 − �m plane,
but still keeps their mean values almost the same. The use
of other peaks would require a proper correlation between
them, which we have not found in the literature. In Ref. [40],
the impact of f (T ) in the TT, EE spectrum analyzed the
same models considered here, in which the extra parameter
controls the position of the peaks by a shift while keeping

the amplitude preserved. Moreover, the authors of Refs. [44,
45] presented a discussion on the linear perturbation regime,
where they introduced a f (T ) model whose form does not
reduce to that of �CDM for any choice of parameters. It was
found that the model can approximate the �CDM behavior
very well and that the H0 tension is greatly relieved.

To conclude, we discuss the statistical results from
the Bayes factor and AIC, when using the combination
CC+SNe+ fgas+BAO2D+BBN+CMB. The AIC criterion indi-
cates the �CDM model as the best one, followed by f1, f2
and f3 models, which is consistent with the previous results
in the literature, in which the power-law model performs best
among the f (T ) models. From the scale described in the last
section, all models are in mild tension with �CDM for these
data. Also, in comparison with the results in Ref. [38], a slight
difference of �IC between models makes it difficult to estab-
lish which of the competing models is the best. Hence, we
also have a statistical equivalence among the f (T ) models.
As for the Bayes factor, we have different results. Although
the �CDM is still preferred, we note a significant preference
for the f3 model. When we look only at the f (T ) models,
the f1 models seem to be performing the worst in light of
this criterion.
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Table 2 Values of χ2
min , AIC and the logarithm of the Bayes’ factor for

the analysis performed with the Base+ fgas+BAO2D+BBN+CMB data
set

Model χ2
min AIC �AIC ln B0i

�CDM 88.42 96.75 – –

f1 89.35 99.85 3.10 2.19

f2 89.53 100.03 3.28 0.84

f3 89.62 100.12 3.37 0.63

6 Forecast

The next generation of surveys mapping the Large Scale
Structure of the Universe will obtain tighter constraints on
cosmological models. These surveys will be important to dis-
tinguish between modified gravity theories and dark energy
models by considering precise data from a wide range of cos-
mic history. In this section we follow the specifications of the
J-PAS and Euclid surveys to quantify the future constraints on
f (T )-gravity that will be obtained from the radial BAO signal
[92–97].4 For this purpose, we use the expected H(z) rela-
tive errors to simulate Hubble parameter data considering the
fiducial cosmology given by the results presented in Table 1
(Base + fgas + BAO2D + BBN + CMB). We replace the
BAO2D real data with the simulated H(z) data in the statisti-
cal analysis to avoid double counting of the same observable
and maintain the rest of the data sets. It is worth mentioning
that this approach considers the constraints obtained from the
distribution of galaxies and their effect in conjunction with
the other observables used in this work in their current state.

In Table 3, we present the results of the f (T )-gravity
parameter constraints using the J-PAS-like and Euclid-like
H(z) estimates. As is shown, the most essential improve-
ments on the b-parameter constraints occur for the f1 and f3
models in comparison with the results presented in Table 1.
Such results are particularly relevant for the f3 model because
it would be possible to measure deviance of the �CDM
model in ∼ 2σ . Another important point is that the con-
straints for these two surveys are similar, being the Euclid
H(z) estimates are more precise while the J-PAS estimates
cover a wider redshift range. Other forecasted constraints for
the f1(T )-model using GW generated mock data from the
Advanced LIGO [99] and the Einstein Telescope [100] are
presented in Ref. [101]. It was found that while the Advanced
LIGO could constrain the b uncertainty with a similar esti-
mate as the one shown in Table 3, the Einstein Telescope
could improve these constraints by two orders of magnitude.

4 A brief description of these data can be found in Ref. [98].

Table 3 Results of the future constraints for each f (T )-gravity param-
eter model using the J-PAS-like and Euclid-like H(z) estimates and real
data

Model σb

J-PAS Euclid

f1 0.056 0.049

f2 0.054 0.053

f3 0.079 0.071

7 Conclusions

This work has explored the statistical viability of some f (T )

gravity models with the essential cosmological datasets. The
analysis considered the H(z) from Cosmic Chronometers,
Type Ia supernovae from the Pantheon set, and the first peak
of the CMB temperature power spectrum, with the addition
of other data regarded as being model-independent, in our
case, the gas mass fraction of galaxy clusters and radial BAO
data. Our main goal was to study the impact of these data
in constraining the cosmological parameters, especially the
b parameter present in the f (T ) functions that control the
deviation from the standard �CDM scenario. We have found
that the free parameters can be constrained with similar accu-
racy as previous works. Although the associated error bars in
the fgas and BAO2D data are considerably large, it would be
interesting then to observe the impact of using such data in
the constraints of other modified gravity models. From a sta-
tistical point of view, we have seen that the AIC/Bayes’ factor
criteria prefer the standard scenario, so the �CDM remains
the best model. However, among the f (T ) models, the AIC
indicates a statistical equivalence, especially between the f1
and f3 models, while the Bayes’ factor shows the f3 model
as the best one.

Finally, we have performed a forecast for the statistical
analysis using two next-generation galaxy surveys: J-PAS
and Euclid, to predict the improvement in the measurements
of the b-parameter of the three f (T ) models. Compared with
Table 1, we have found a significant improvement in the error
bars of b, especially for the f1 model. We also note that for
both J-PAS and Euclid, similar constraints with the simulated
H(z) measurements are found, and in the context of the f3
model, a ∼ 2σ deviance from the standard �CDM model is
observed.
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