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Abstract Accelerating black holes are described by the
so-called C-metric. In this work, we analyse the causal
structure of such black holes by using null geodesics. We
construct explicitly the relevant Penrose diagrams. First,
we recover well-known results associated with the sub-
accelerating black holes. Then, we extend the study to the
super-accelerating case, in which an additional essential sin-
gularity appears. In addition, we consider accelerating black
holes with negative masses. We show that they are equiv-
alent to the geometry described by the black hole metric
beyond conformal infinity. We compare our results with the
Schwarzschild geometry to facilitate understanding and to
highlight the interest of the new features.

1 Introduction

Black holes are exotic objects described by Einstein’s theory
of general relativity [1,2]. They have been a subject of study
in recent decades because there exist astrophysical objects
with that sort of characteristics, and due to their interesting
properties associated with thermodynamics [3,4] or Hawking
radiation [5,6].

Accelerating black holes are described by the C-metric,
which is a vacuum solution to the Einstein equations discov-
ered by Levi-Civita in 1918 [7]. However, it was not until
1970 that Kinnersley and Walker interpreted the C-metric to
describe a pair of black holes uniformly accelerating in oppo-
site directions [8]. Subsequently, Plebánski and Demiánski
obtained a generalized C-metric with charge and rotation that
includes the Kerr-Newman metric [9]. In recent years, vari-
ous studies have been carried out with this type of geometries,
for example in the study of its thermodynamics [10,11].
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In this paper we will focus on the causal structure of the
spacetime described by the C-metric. This is essential in order
to study physical processes in a spacetime. The causal struc-
ture has already been studied before in [12], where the authors
present the Penrose diagrams [13], but they only consider
accelerations with an upper bound 1/(2m) (where m is the
black hole mass) which ensure that the acceleration horizon
lies outside the event horizon.

We aim to generalize the causal structure for any accel-
eration value. We will consider three different situations:
sub-accelerating black holes, where the acceleration is less
than the upper bound 1/(2m); extremal accelerating black
hole, where the acceleration equals it; and super-accelerating
black holes, where the acceleration surpasses 1/(2m). We
will review the construction of the Penrose diagram of the
sub-accelerating case, for completeness and because it will
help us to understand the analysis in the other cases. We
also discuss how the causal structure changes in these three
regimes. Finally, we shall also let the mass parameter take
a negative value, resulting in a drastically different causal
structure of the spacetime.

This paper is structured as follows. Section 2 introduces
the C-metric and its main characteristics. In Sect. 3 we obtain
the Penrose diagrams for this spacetime and for any value of
its defining parameters. Finally, we summarize and conclude
in Sect. 4.

2 The C-metric

We are interested in static neutral accelerating black holes
in vacuum. It is possible to express the C-metric in pseudo-
spherical coordinates similar to those of the Schwarzschild
metric, so they are centred in one of the two accelerating
black holes [12,14]. The metric is described by:
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ds2 = 1

�2(r, θ)

{
− f (r)dt2 + dr2

f (r)

+ r2
(
dθ2

g(θ)
+ g(θ) sin2(θ)

dϕ2

K 2

)}
, (1)

where the functions f , �, and g are given by

f (r) = (1 − A2r2) (1 − 2m/r) ,

�(r, θ) = 1 + Ar cos θ,

g(θ) = 1 + 2mA cos θ, (2)

m is a parameter related to the mass, A is the acceleration of
the black holes, ϕ ∈ [0, 2π) is an angle, and the constant K is
related to the conical deficit. We can also take t ∈ (−∞,∞)

as the coefficients of the metric do not depend on this variable.
The metric (1) has a singularity when the function g(θ) =

0. If 2mA > 1, then g(θ) on Eq. (2) vanishes for a given
value of θ . For this reason, in the literature there is the usual
restriction 2mA < 1, so that θ ∈ [0, π) [12]. This is the
aforementioned sub-accelerating case. However, as we will
see later, when 2mA ≥ 1, then θ ∈ [0, θ0) with g(θ0) = 0.

The C-metric presents (in case of 2mA < 1) conical sin-
gularities at the north pole θ+ = 0, and the south pole θ− = π

associated with the presence of a cosmic string with tension
δ/8π , where δ = 2π [1 − g(θ±)/K ] is the conical deficit
[15–17]. In the literature, it is common to use K = 1+2mA,
so that the conical singularity at the north pole is removed,
and a conical deficit remains only at the south pole. This is
done because at the north pole the tension of the string, which
is proportional to the energy density, would be negative, that
is, it would provide a pressure [10,12].

Finally, we must discuss the range of the r coordinate.
The spacetime of the C-metric has different horizons where
the function f (r) vanishes, giving rise to several coordinate
singularities. This occurs for r = 2m,±1/A. The function
� also depends on r . The points at which it vanishes, i.e. r =
−1/(A cos θ), define the conformal infinity. We are going to
consider 2mA < 1 for our discussion, but we will see later
that the same considerations apply to other values of 2mA.

We start from r = 0 to rE = 2m. We name this the event
horizon similar to the Schwarzschild metric. The r coor-
dinate can continue from the event horizon to rA = 1/A,
where it reaches the acceleration horizon. This is related to
the fact that a uniformly accelerated observer asymptotically
reaches the speed of light, and therefore losses causal con-
tact beyond this asymptotic light cone [10]. From here, the
conformal infinity is reached for a value of r depending on
θ . For θ = π , the conformal infinity is just at the accelera-
tion horizon r = 1/A and, for π/2 < θ < π , it is reached
for a positive finite value of r . For θ = π/2, it is reached
at r = ±∞; but for θ < π/2, the conformal infinity is not

reached for any positive value of r and the affine parameter
remains finite at r = ∞. Actually, the conformal infinity is
reached for a negative value of r ∈ (−∞,−1/A], being
placed at r = −1/A for θ = 0. Then, the region from
r = −1/A to 0 corresponds to a different spacetime, and
we can take r ∈ [0,∞)∪ (−∞,−rA], having only the event
and acceleration horizon. The hypersurface r = −1/A is
reached at the conformal infinity and only for a single value
of θ .

The presence of the acceleration horizon could be elimi-
nated by introducing a negative cosmological constant, which
has been discussed, for example, in [10,11] to study the ther-
modynamics. Indeed, the existence of two horizons originate
two different temperatures. In this work, we will focus on the
study of the structure of spacetime in the presence of both
horizons.

In the following sections we will review the causal struc-
ture of the sub-accelerating case, and later we will see what
happens in the extremal (2mA = 1) and super-accelerating
(2mA > 1) cases, where we deal with this new singularity
at θ0 with g(θ0) = 0.

3 Causal structure of accelerating black holes

Once we have presented the C-metric, we will obtain the
causal structure of the mentioned accelerating black holes,
also distinguishing the case of a positive mass parameter from
a negative one. We will therefore see how the causal struc-
ture changes with these parameters, comparing with previous
studies in the literature [12].

Before starting, we must verify which sections with con-
stant θ and ϕ are totally geodesic, in other words, whether
a geodesic tangent to one of these sections at some point is
tangent to it at any other. If we calculate the geodesic equa-
tions and fix θ and ϕ as constants, in the equation for θ we
get:

f (r)ṫ2 = ṙ2/ f (r), (3)

which is the equation for radial null geodesics. In other words,
only null geodesics can be purely radial, and hence Penrose
diagrams for constant θ and ϕ are totally geodesics only for
null geodesics. Thus, we can use the null radial geodesics
to construct the diagrams, keeping in mind that time-like
geodesics will not remain tangent to these sections.

3.1 Sub-accelerating black hole: 2mA < 1 and m > 0

We will briefly review the construction of Penrose diagrams
for the case 2mA < 1 and m > 0, which can be found in
[12], as it will be helpful when comparing with the other
cases later. We start determining the regions and horizons of
the spacetime in this case. Since the event horizon is located
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Fig. 1 Different structures for accelerating black holes as a function
of acceleration. The vertical and horizontal axes represent r cos θ and
r sin θ , respectively. The north semiaxis corresponds to θ = 0 and the
south semiaxis to θ = π . The thick (green) line is the conformal infin-
ity reached for finite and positive r , the dashed (orange) line gives the

values of θ such that g(θ) = 0, and the solid circles are the event (blue)
and acceleration (red) horizons at rE and rA, respectively. Note that
only positive values of r are considered, and recall that in the north
hemisphere the conformal infinity is reached for negative values of r

at rE = 2m and the acceleration horizon at rA = 1/A, we
have rE < rA, so the acceleration horizon is further away
from the origin than the event horizon. In Fig. 1 (left panel),
we show the different regions of this spacetime. We have rep-
resented r cos θ on the vertical axis, while on the horizontal
axis we represent r sin θ . In other words, we are plotting the
section with constant t and ϕ. In addition, the thick (green)
line corresponds to the conformal infinity where � = 0.
In the region between horizons, the function f (r) > 0, so
this region is analogous to the one outside the event hori-
zon within the Schwarzschild geometry [18]. However, for
r < rE or r > rA, the function f (r) < 0, so the r coor-
dinate is time-like and the spacetime becomes dynamical.
Then, it is impossible to be at rest, just as happens inside the
Schwarzschild black hole.

To obtain these Penrose diagrams we must find null coor-
dinates in which the metric is regular at the horizons, and the
conformal infinity is brought to a finite value of the coordi-
nates. To do this, we define the tortoise coordinate r∗ such
that dr∗ = dr/ f (r), obtaining:

r∗ = 1

2κ0
log|1 + Ar | + 1

2κA
log|1 − Ar |

+ 1

2κE
log|r − 2m|, (4)

where

κE =
(

1 − 4A2m2
)
/(4m), κA = A (2Am − 1) , (5)

are the surface gravities at the event and acceleration hori-
zons, respectively, and

κ0 = A(1 + 2Am). (6)

We can now define the null coordinates

u = t − r∗, v = t + r∗, (7)

in terms of which the metric becomes

ds2 = 1

�2(r, θ)

[
− f (r)dudv + r2d�̃2

]
, (8)

where r is related to u and v through Eqs. (4) and (7), and
d�̃2 is the angular part of the metric. In order to find the
maximal analytic extensions of this spacetime, we have to
find null coordinates in which the metric is regular at the
horizons. This must be done for each horizon separately, so
that we will obtain a diagram around each horizon with a
region of overlap, which can be merged into one at the end.
The diagrams will correspond to sections with constant θ

and ϕ. Although they are not totally geodesic as we have
discussed, they are valid for null geodesics. In what follows
we write only the radial part of the metric.

Let us start from the region between horizons, and define
there the new pairs of null coordinates

u′
i = −κ−1

i e−uκi , v′
i = κ−1

i evκi , (9)

where the subscript i = A, E refers to each horizon. Also,
given the expression of r∗, each pair of these new null coor-
dinates vanish in their corresponding horizons. To bring con-
formal infinity to a finite value of the coordinates, we use the
coordinates

ũi = arctan(u′
i ), ṽi = arctan(v′

i ). (10)

Let us deal first with the internal horizon, i.e., in this case
the event horizon. In the coordinates u′

E , v′
E , the radial part

of the metric becomes

ds2 = −h(r)

r�2(r, θ)
du′

Edv′
E ,

h(r) = (1 − Ar)[6+(Am)−1]/4(1 + Ar)[6−(Am)−1]/4, (11)

so that it is perfectly regular at the event horizon rE = 2m
(but not at rA = 1/A). Outside this horizon we have
u′
E < 0 and v′

E > 0. On the other hand, the radial null
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Fig. 2 Penrose diagram of the sub-accelerating black hole with 2mA <

1. HE refers to the event horizon, HA to the acceleration horizon, and I
to the conformal infinity. The plus superscript means future, while the
minus superscript means past. The diagram is actually a superposition
of different diagrams for each value of θ . The location of the confor-
mal infinity depends on θ . It is placed at the acceleration horizon for

θ = π , and closes the diagram with a diamond shape for θ = 0. Since
the metric is singular for θ = 0, π , the diagrams for those values do
not represent the spacetime, so the conformal infinity in those cases has
to be understood as a limit when θ → 0, π . The diagram is invariant
under ϕ rotation

geodesics parametrised by u′
E or v′

E reach the horizon at
finite affine parameter. Therefore, we can extendu′

E and v′
E to

(−∞,+∞), so that we will have four regions. These regions
are associated with regions I, II, III, and IV on the Penrose
diagram of Fig. 2. The coordinates r and t in each region are
related with the coordinates u′

E and v′
E by

|u′
Ev′

E |=(κE )−2e2κEr∗(r), t=(2κE )−1 log|v′
E/u′

E |. (12)

We can see in the diagram the curves corresponding to con-
stant r . In this figure, the past and future event horizons H±

E
correspond to the axes u′

E = 0 and v′
E = 0.

The extension through the acceleration horizon H±
A , can

be carried out in an entirely analogous way. The coordinates
r and t and the corresponding null coordinates u′

A and v′
A are

now

|u′
Av′

A|=(κA)−2e2κAr∗(r), t=(2kA)−1 log|u′
A/v′

A|, (13)

valid in regions I, IV, V and VI of the Penrose diagram of
Fig. 2. The two sets of coordinates overlap in region I and
region IV. Then, the resulting Penrose diagram is the result of
infinitely concatenating the two extensions described above
via these overlaps.

Figure 2 actually shows a superposition of diagrams for
all angles θ . For each value of θ , the conformal infinity I± is
reached at r = −(A cos θ)−1, so its location on the diagram
depends on θ . For θ = π , it is reached just at the acceleration
horizon. So there would be no regions V and VI. For 0 <

θ < π , it is reached for a value of r ∈ (rA,∞)∪(−∞,−rA)

as we discussed above. In this case, conformal infinity is
represented by a dashed curve that closes the regions V and
VI before forming the diamond structure. Finally, for θ = 0,
conformal infinity is placed at r = −rA, closing the diagram
with a diamond shape. We must take into account that the
spacetime is singular in the axes θ = 0, π due to the conical
singularity (although one but not both can be regularized), so
the Penrose diagrams in these cases have to be understood as
a limit when θ → 0, π .

In the diagram of Fig. 2, we have represented a null
geodesic with a dash-dotted (green) line that starts from con-
formal infinity in the past, crosses the past acceleration hori-
zon and the future event horizon, and ends at the singularity
r = 0. In region VI, f (r) < 0 and any observer would be
forced to move towards the acceleration horizon and cross it.
In region I, f (r) > 0, and therefore the coordinate r is space-
like, and an observer could remain between both horizons in
a similar way to the region outside the Schwarzschild black
hole. In region II, f (r) < 0 and every observer is forced to
move towards the singularity at r = 0. However, we must
take this discussion with care, since we have discussed that
timelike observers are not totally geodesic for constant θ and
ϕ, and therefore their movement could go out of the diagram
towards other sections of constant angles. In [12], 3D Pen-
rose diagrams that allow to study the dependence with the
angle θ can be found. We also have a white hole in III, from
which any observer exits through the past horizon. In region
V the null geodesics exit through the acceleration horizon to
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necessarily reach conformal infinity. Region IV is similar to
region I.

Many of these areas, such as the white hole or past con-
formal infinity, appear because we are not considering the
dynamical formation of the black hole. To better understand
the physics of these objects, it will be necessary to study in
future works the causal structure of accelerating black holes
formed by gravitational collapse of stars.

3.2 Super-accelerating black hole: 2mA > 1 and m > 0

The super-accelerating black hole is obtained when we
choose an acceleration value such 2mA > 1. The horizons
and regions of the spacetime are represented in the Fig. 1
(right panel). In this case, the acceleration horizon is inside
the event horizon. However, again the function f (r) > 0
between both horizons, and f (r) < 0 on the rest of the
spacetime. In this case a singularity associated with g(θ) = 0
appears. This is reached at a value θ0 ∈ (π/2, π) of the polar
angle which depends on the value of 2mA. This gives rise
to a possibly singular area represented by a dashed (orange)
line which, having revolution symmetry, determines a cone.

In order to analyse the nature of this singularity, we make
the change x = cos θ , so the metric reads:

ds2 = 1

�2(r, θ)

[
− f (r)dt2 + dr2

f (r)
+ r2d�̃2

]
,

d�̃2 = dx2

G(x)
+ G(x)dϕ2, (14)

whereG(x)(1−x2)(1+2mAx). This functionG(x)has roots
at x = ±1, and another one in x = −1/2mA, which is inher-
ited from the function g(θ) in (2) and causes the singularity
we are dealing with. We call this last root x0 = cos θ0. We
expand the metric around the singularity x = x0, at a value of
the radial coordinate r = r0 such that f (r0) > 0 (this point
is marked in the right panel of Fig. 1 with a cross). We shall
expand on each side of the singularity, so that x = x0(1±ζ 2),
with 0 ≤ ζ 
 1. The positive sign is taken to expand in the
region θ < θ0, and the negative sign for the region θ > θ0.
Then, G[x0(1 ± ζ 2)] � ±Cζ 2, since G(x0) = 0, with C
being a positive constant. On the other hand, in terms of the
new coordinate ζ the angular metric d�̃2 reads:

d�̃2 = ±
(
K1dζ 2 + K2ζ

2dϕ2
)

, (15)

where K1 and K2 are two positive constants depending on
C , whose particular values are irrelevant for our discussion.

We also expand the r coordinate around the value r0 so
that r = r0 + ρ. The function f (r) � f0 = constant > 0 at
lowest order in ρ, so it can be reabsorbed in the coordinates t
and ρ. On the other hand, the factor �2(r0, θ0) = constant �=
0 can also be absorbed in t and ρ. For the r2 factor that

multiplies d�̃2, we take it as r2
0 . So, this constant r2

0 , the
constant � factor, and the positive constants K1 and K2 can
be reabsorbed in ζ and ϕ respectively, leaving the metric as:

ds2 = −dt2 + dρ2 ± dζ 2 ± ζ 2dϕ2. (16)

Finally, we can analyse the null geodesics near the singu-
larity by taking ρ and ϕ constants. The metric for θ < θ0,
is simply the Minkowski metric in two dimensions, ds2 =
−dt2 +dζ 2. Then, the null geodesics reach the singularity at
ζ = 0 with a finite affine parameter. However, it is not possi-
ble to continue the geodesics due to the change of signature
in the angular coordinates, so this singularity is an essential
singularity. Then, for the super-accelerating case we have
θ ∈ [0, θ0). Note that although the conformal infinity can
be placed inside the event horizon, that would correspond
to θ > θ0, so again the conformal infinity is only reached
outside the outer horizon, and the discussion for the range of
r is equivalent to that in the case 2mA < 1.

Once we have analysed the regions and singularities for the
super-accelerating case, we can determine the causal struc-
ture, with the help of the calculations made for the sub-
accelerating black hole. In this case we obtain the same
tortoise coordinate (4). We use the same definition of the
Kruskal-Szeckeres-type coordinates than in Eq. (9) to reg-
ularize the horizons. Beginning again in the area between
horizons, in this case rA < r < rE , extending the coordi-
nates to the entire real line and performing a conformal com-
pactification according to the changes of coordinates given
by Eq. (10), we obtain the diagrams for each horizon. Con-
catenating them, we obtain the Penrose diagram of Fig. 3.

To represent the curves of constant r , we define this coor-
dinate from u′ and v′ for the regions surrounding each hori-
zon as in Eqs. (12) and (13). The diagram is similar to the
one in the sub-accelerating case with 2mA < 1. Again, we
show a superposition of different diagrams for each value of
θ . The location of the conformal infinity depends on θ . How-
ever, there are two major differences. The first one is that the
event horizon H±

E is interchanged with the acceleration hori-
zon H±

A . The second one is that whereas in the previous case
the conformal infinity was reached at the outer horizon for
θ = π , now it is reached at θ0. This is the maximum value of
θ with cos θ0 = −1/2mA, which makes the metric singular.
Then the conformal infinity is placed at the event horizon as
it can be seen in Fig. 1 (right panel). Both horizons play the
role of point of no return as it is shown by the dash-dotted
(green) null geodesic. Then, although they are interchanged
with respect to the sub-accelerating case, the discussion for
the causal structure in each of the regions is the same. We
obtain again that for θ = 0 conformal infinity is reached at
r = −rA. Again the metric is singular at the two extreme
values of θ (θ = 0, θ0), so their diagrams do not represent
the spacetime, but are limiting cases.
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Fig. 3 Penrose diagram of the super-accelerating black hole with
2mA > 1. HE refers to the event horizon, HA to the acceleration
horizon, and I to the conformal infinity. The diagram is actually a
superposition of different diagrams for each value of θ . The location of
the conformal infinity depends on θ . It is placed at the event horizon for

θ = θ0, and closes the diagram with a diamond shape for θ = 0. Since
the metric is singular for θ = 0, θ0, the diagrams for those values do
not represent the spacetime, so the conformal infinity in those cases has
to be understood as a limit when θ → 0, θ0. The diagram is invariant
under ϕ rotation

3.3 Extremal accelerating black hole: 2mA = 1 and m > 0

If we take 2mA = 1, the event and acceleration horizons
are located at the same position, becoming an extremal black
hole. This is shown in Fig. 1 (central panel). The function
f (r) < 0 both inside and outside the horizon, so an observer
could never be at rest. In this case, for the axis θ = π , the sin-
gularity associated with g(θ) = 0 appears. It is represented
with a dashed (orange) line.

We fix the acceleration as A = 1/(2m), so both horizons
merge at rE = rA = 2m. The tortoise coordinate for this
case can then be defined as

r∗ = 2m2

r − 2m
− m

2
log|r − 2m| + m

2
log|r + 2m|. (17)

As the function f (r) < 0 in any region of spacetime
of this metric, the r coordinate is globally timelike, and in
the same way so is the coordinate r∗. In order to construct
null coordinates oriented towards the future, we must take
into account the orientation of the tortoise coordinate, which
depends on whether we describe a black hole or a white hole.

In the case of a black hole, the singularity r = 0 is placed
in the future, so the r coordinate is oriented towards the past.
Over the entire range of the r coordinate we are considering,
that is r ∈ [0,∞)∪(−∞,−rA], the r∗ coordinate is decreas-
ing with r and, therefore, it is oriented to the future. Thus,
if we want null coordinates oriented towards the future, we

can take:

u = r∗ − t, v = r∗ + t. (18)

The metric in these coordinates takes the form of Eq. (8)
except for a sign in the radial part. Then, these coordinates
allow us to construct the Penrose diagram, after performing
the conformal compactification according to the coordinates
ũ and ṽ defined by:

ũ = arctan(u), ṽ = arctan(v). (19)

In these coordinates the radial part of the metric reads:

ds2 = h

�2(r, θ)
dũd ṽ,

h = (1 − r2/(4m2))(1 − 2m/r)

cos2(̃u) cos2(̃v)
, (20)

where h is a negative function that never vanishes. Indeed,
the numerator only vanishes at r = 2m and so does the
denominator, so that its limit when r → 2m remains finite.

The curves r = constant are obtained fromu+v = 2r∗(r).
We represent the Penrose diagram in Fig. 4. In this case, given
the periodicity of the tangent function, we obtain an infinite
series of zones in the diagram, although only of two different
types, named as I and II. Region II corresponds to the interior
of the black hole, while region I is the exterior, in which
the past conformal infinity is located. As in previous cases,
we show a superposition of different diagrams for different
constant values of θ . In these diagrams, the conformal infinity
depends on the chosen value of θ .
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Fig. 4 Penrose diagram of the extremal accelerating black hole
(2mA = 1). In this case the singularity r = 0 is only in the future.
H+ refers to the future horizon, and I− to the past conformal infinity.
The diagram is actually a superposition of different diagrams for each
value of θ . The location of the conformal infinity depends on θ . It is

placed at the horizon for θ = π , and closes the diagram with a diamond
shape for θ = 0. Since the metric is singular for θ = 0, π , the diagrams
for those values do not represent the spacetime, so the conformal infin-
ity in those cases has to be understood as a limit when θ → 0, π . The
diagram is invariant under ϕ rotations

Since there is only one horizon H, and on each side the
coordinate r is timelike because f (r) < 0, every observer is
forced to enter the black hole, and continue moving towards
the singularity. Thus, in this case it is not possible for an
observer to move away from the black hole. Regarding the
past of the spacetime, it should be noted that we are not
considering the dynamical formation of the black hole, so it
should be taken with care as in the non-extremal cases.

As in the previous cases, this metric could also represent
a white hole. To get the diagram in that case, the coordinate r
should be oriented towards the future, leaving the singularity
r = 0 in the past. Thus, −r∗ would be the future oriented
coordinate and we would define the null coordinates as u =
−r∗ − t and v = −r∗ + t . This is nothing more than a
temporal reflection of the discussed black hole in Fig. 4.

3.4 Accelerating black hole with m < 0

In the Schwarzschild black hole a negative mass parameter
makes the event horizon disappear, so that the curvature sin-
gularity is naked, affecting the predictability of spacetime
[19]. In this section we would like to discuss how accelerat-
ing the black hole protects from this singularity.

Let assume |2mA| < 1 for simplicity, so that the singu-
larity at g(θ) = 0 does not appear. Having m < 0 the event
horizon could be at r = −2|m|, but as this is further from
the conformal infinity, this horizon disappears. Then, we only
have the acceleration horizon. To obtain the Penrose diagram,
it is simply necessary to change m to −|m| in the calculus for
the acceleration horizon with 2mA < 1. Thus, we obtain the
diagram in Fig. 5. The change in the mass parameter only
affects the structure inside the acceleration horizon, so we
can conclude that the causal structure beyond this horizon is
the same as in the positive mass case shown in Fig. 2.

Fig. 5 Penrose diagram of the accelerating black hole with |2mA| < 1
andm < 0.HA refers to the acceleration horizon, andI to the conformal
infinity. The plus superscript means future, while the minus superscript
means past. As in previous figures, we show a superposition of different
θ = constant diagrams, whose conformal infinity depends on the chosen
value of θ . The diagram is invariant under ϕ rotation

We can observe that in this case the singularity r = 0 is
timelike, so an observer in region I or IV inside the horizon is
not forced to go towards it (the coordinate r is spacelike). This
singularity is unprotected in regions I and IV as would happen
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in the Schwarzschild black hole. However, regions II and III
are protected by the acceleration horizon. So, for r > rA,
the curvature singularity does not affect to the predictability
of the spacetime, although the conical singularity at the axis
does.

The causal structure in this case is similar to the one
obtained for two objects accelerating in opposite directions in
flat spacetime [12], with the exception that there is a singular-
ity at the origin of each of these two objects, located at r = 0.
This reminds the case of the Schwarzschild black hole with
negative mass, whose Penrose diagram is like Minkowski
with a singularity at the origin [20].

Had we taken |2mA| ≥ 1, a similar diagram would be
obtained. However, in this case there appears a singularity at
θ0 as happened in the super-accelerating positive-mass case.
Therefore θ must be restricted to the interval θ ∈ (θ0, π ]. The
hypersurface r = −2|m|, which would give rise to another
horizon, lies at the conformal infinity for θ = θ0 and beyond
it for all other values of θ . Then, we would have only an
acceleration horizon again.

In this work, for positive mass m, we have considered
the radial coordinate r ∈ [0,+∞) ∪ (−∞,−rA], but if we
did the discussion for the range of r starting from r = 0−
towards negative values until we reach conformal infinity,
then we would describe the spacetime at the other side of the
conformal infinity. If we then do the change of coordinates
r → −r , θ → π −θ and consider the new r coordinate from
0+ towards positive values until reach conformal infinity,
we obtain the C-metric with −m instead of m. Thus, the
spacetime of the accelerating black hole with negative mass is
equivalent to the spacetime that the C-metric would describe
with m > 0 in the region that goes from conformal infinity
up to r = 0−.

4 Conclusions

We have studied the properties of the C-metric, which
describes the spacetime of accelerating black holes, in order
to focus in its causal structure. This metric has a conical
singularity associated with a cosmic string responsible for
the acceleration. Also, this metric has both an event horizon
related to a black hole, and an acceleration horizon.

While in the literature the value of the acceleration is usu-
ally restricted such that 2mA < 1, we have allowed the accel-
eration to take any value in our work. Thus, we have studied
the singularity that appears at a certain value of the angular
coordinate θ = θ0 when 2mA ≥ 1, observing that it is an
essential singularity of the metric.

We have obtained that purely radial geodesics can only
be null, and from them we have constructed the Penrose
diagrams for accelerating black holes with any value of the
acceleration. In the super-accelerating case (2mA > 1), the

acceleration and event horizons exchange their roles. In addi-
tion, an unprotected singularity appears for 2mA > 1 at an
angle θ0 ∈ (π/2, π). On the other hand, for the extremal case
with 2mA = 1, we have obtained independent Penrose dia-
grams describing either a black hole or a white hole, where
an observer can never be static and either enters in a black
hole or go out from a white hole.

We have also studied the accelerating black hole with
m < 0, observing that the acceleration protects the curva-
ture singularity at r = 0 unlike the Schwarzschild case. We
have observed that the spacetime is like Minkowski’s for two
objects accelerating in opposite directions, but with a singu-
larity at the origin of each of them. Furthermore, we have
also shown that the positive-mass C-metric on the other side
of conformal infinity is equivalent to the accelerating black
hole with negative mass.
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