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Abstract The eigenvector-eigenvalue identities are
expanded to include general mixing parameters. Some simple
relations are obtained and they reveal an intricate texture of
connections between the eigenvalues and the mixing parame-
ters. Permutation symmetry (S3 × S3) plays an indispensable
role in our analysis. It is the guiding principle for the under-
standing of our results – all of them are tensor equations
under permutation.

1 Introduction

The diagonalization of hermitian matrices follows a well-
established procedure. One solves for the eigenvalues and
eigenvectors. The latter are then collected as a unitary matrix,
which becomes the mixing matrix for the diagonalization.
It is thus very interesting, and surprising, that an alterna-
tive method, building on earlier researches, was discovered
[1,2] recently. It was found that the mixing matrix ele-
ments (squared, |Vαi |2) can be elegantly expressed in terms
of the eigenvalues of the hermitian matrix and those of its
minors (also hermitian) along the diagonal. These results
were proved for n × n matrices.

In this paper we will examine in detail the specific case of
3 × 3 hermitian matrices, which, as fermion mass matrices,
are fundamental elements in flavor physics. There are several
considerations which suggest this investigation. Mathemati-
cally, the intricacy of the problem starts to show up for n ≥ 3,
while the cases n = 2 may be regarded as a degenerate case
of the full-fledged problem. Physically, in actual applications
our knowledge about |Vαi |2 and the matrix itself is often
piecemeal and uneven. And one frequently employs mixing
variables instead of the matrix elements. It is thus useful to
find relations directly between eigenvalues and mixing vari-
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ables. Given the wealth of existing informations about flavor
physics, it seems interesting to investigate the detailed roles
played by the various concrete physical parameters. As we
will find out, in a diagonalization problem, there are three
classes of variables: (1) Those related to flavor, with labels
(α, β, γ ); (2) Those with indices (i. j.k), which belong to
mass-eigenstates; (3) Mixing parameters which carry both
sets of indices. The eigenvector-eigenvalue identities man-
age to express the mixing parameters directly in terms of the
first two, where the mixing parameters include not just |Vαi |2,
but also other interesting combinations constructed out of the
Vαi ’s. Some of our results are simple and suggestive, and may
lead to new insights about flavor physics.

2 Notations and mathematical preliminaries

Although the diagonalization of hermitian matrices applies
to the general problem of the mixing of quantum states, for
definiteness, we will use the concrete example of neutrino
mixing in this paper. Thus, we concentrate on the (effective)
neutrino mass matrix, [M]αβ ((α, β) = (e, μ, τ)), which
is diagonalized by the mixing matrix Vαi , V †MV = MD ,
where the diagonal matrix has eigenvalues λi (i = 1, 2, 3).
With rephasing invariance, the physical observables are con-
structed out of the combinations of Vαi . It was found [3] that
a set of basic, rephasing invariant combinations (RIC) are
given by

�ABC
I J K = EABC EI J K VAI BBJ VCK (no sum), (1)

where EI J K (EABC ) is the symmetric Levi–Civita symbol
[4] which is symmetric under index exchanges, and

EI J K =
{

1, I �= J �= K
0, otherwise

(2)
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Also, without loss of generality, we demand that det V = +1,
and thus

V ∗
αi = 1

2
eαβγ ei jkVβ j Vγ k . (3)

These �′s have a common imaginary part (−J ), with J
the Jarlskog invariant [5], while their real parts are defined
by (x1, x2, x3; y1, y2, y3) = (�

e,μ,τ
123 , �

e,μ,τ
231 , �

e,μ,τ
312 , �

e,μ,τ
132 ,

�
e,μ,τ
213 , �

e,μ,τ
321 ). Thus, e.g., �eμτ

123 = x1−iJ , etc. The notation
[3] used here for (xi , y j ) is unfortunate. The index “i” does
not indicate their transformation properties under S3 × S3.
They can, however, be inferred from Eqs. (60–65).

The absolute squares of Vαi are defined as

Wαi = |Vαi |2, (4)

which are given by the differences of two �′s, so that

[W ] =
⎛
⎝ x1 − y1 x2 − y2 x3 − y3

x3 − y2 x1 − y3 x2 − y1

x2 − y3 x3 − y1 x1 − y2

⎞
⎠ . (5)

It is also found that W ′s cofactor matrix, wT W = WwT =
det W , is given by

[w] =
⎛
⎝ x1 + y1 x2 + y2 x3 + y3

x3 + y2 x1 + y3 x2 + y1

x2 + y3 x3 + y1 x1 + y2

⎞
⎠ . (6)

The unitarity condition on W is satisfied by the consistency
condition:

�xi − �y j = det V = +1, (7)

while another consistency condition is

�′xi x j = �′yi y j , (�′ = �i< j ), (8)

so that there are four independent parameters in the set
(xi , y j ).

Other interesting physical variables can be constructed out
of (xi , y j ). E.g., to evaluate det W , one can replace any row
or column in the determinant by (1, 1, 1) from unitarity, thus

D = det W = �αwαi = �iwαi

= �xi + �yi . (9)

Some other interesting combinations are

�xi = 1

2
(D + 1), (10)

�yi = 1

2
(D − 1), (11)

and, in particular,

J 2 = 	xi − 	yi . (12)

We now turn to summarizing the behavior of these vari-
ables under permutation, either in the flavor basis (α, β, γ )

or in the mass-eigenvalue basis (i, j, k). For Vαi , under

exchange operators (α ↔ β) or (i ↔ j), there is an unde-
termined phase. To keep det V = +1, we choose the phase
factor (−1). There remain possible additional phases which
we can remove by rephasing. Thus, the transformation laws
are

Vαi −→ −Vβi , (α ↔ β) (13)

Vαi −→ −Vα j , (i ↔ j) (14)

which remain intact as long as we only use Vαi in rephasing
invariant combinations (RIC). From these the transformation
laws of physical variables (RIC) can be read off directly from
their labels.

It may be further noticed that the basic units �
αβγ

i jk and Wαi

(with V ∗
αi given in Eq. (3)) contain each flavor and eigenvalue

index once, and only once. This means that physical variables
composed out of them have the same property. Or, under
permutation of the indices, the physical variables are tensors.
A direct consequence is that all the relations that we obtain
are tensor equations under permutation.

3 Mixing parameters

In Ref. [1], elegant identities were established which connect
the mixing element Wαi directly with the eigenvalues of an
n × n hermitian matrix and those of its (n − 1) × (n − 1)

submatrices along the diagonal. We will now examine its
detailed implementation to 3 × 3 matrices. To do this we
adopt the concrete notation of neutrino mass matrix, [M]αβ ,
(α, β) = (e, μ, τ), with the diagonal submatrices [Mα],
which are obtained from [M]αβ by deleting the α-th row and
column. The eigenvalues of [M]αβ and [Mα] are denoted
as λi and (ξα, ηα), respectively, with i = (1, 2, 3) and
α = (e, μ, τ). The diagonalizing mixing matrix is Vαi , with
Wαi = |Vαi |2. It is convenient to define the traces and deter-
minants of the submatrices as

tα = ξα + ηα (15)

dα = ξαηα (no sum). (16)

They are not independent and satisfy two constraint condi-
tions:

�αtα = 2�iλi , (17)

�αdα = �′λiλ j = �i< jλiλ j , (18)

where the second relation can be proved by an expansion of
det(λI − M) = 	(λ − λi ). There are thus four independent
parameters in the set (tα, dα), which agrees with the number
of independent variables from the set Wαi . In other words,
the seven eigenvalues contained in M and Mα (det M , dα , tα)
can be divided into two groups. One set (det M = 	λl , �dα ,
�tα) determines λi , while the rest morph (together with λi )
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into mixing parameters which bridge the flavor space and
mass eigenvalue space.

The eigenvector-eigenvalue identities are given by [2]

Wαi = (λi − ξα)(λi − ηα)/(λi − λ j )(λi − λk). (19)

To elucidate their transformation properties under permuta-
tion in either the flavor or mass eigenvalue basis, it is con-
venient to introduce the traceless and anti-symmetric tensors
(̃3):

λ̃i = 1

2
ei jk(λ j − λk), (20)

and

λ̃iλi = ((λ2 − λ3)λ1, (λ3 − λ1)λ2, (λ1 − λ2)λ3), (21)

and a pseudoscalar (̃1):

	λ̃l = (λ1 − λ2)(λ2 − λ3)(λ3 − λ1). (22)

The trace of another tensor λ̃iλ
2
i (̃3) is given by

�λ̃iλ
2
i = −	λ̃l . (23)

Thus, we have

Wαi = −(	λ̃l)
−1 [̃λi (λ2

i − λi tα + dα)], (24)

which exhibits its transformation properties explicitly.
Let us pause and analyze some of the implications of these

results. The transformation from the flavor basis (F-basis)
to the mass-eigenvalue basis (M-basis) is mediated by Wαi ,
which are now given explicitly in terms of the eigenvalues.
As noted in Ref. [1], Eqs. (19) and (24) are invariant under
the following transformations:

(1) Translation: M → M + δ[I ],
(λi ; ξα, ηα; tα, dα;Wαi ) → (λi + δ; ξα + δ, ηα

+δ; tα + 2δ, dα + δtα + δ2;Wαi ).

2) Dilatation: M → rM ,

(λi ; ξα, ηα; tα, dα;Wαi )

→ (rλi ; rξα, rηα; r tα, r2dα;Wαi ).

Invariance under dilatation means that a dimension analy-
sis can be effective in constraining the forms taken by the
(dimensionless) mixing parameters, as can be seen in all of
the results that follow.

(3) Permutation:

[S3]F : (Mαβ ↔ Mβα; tα ↔ tβ;
dα ↔ dβ,Wαi ↔ Wβi ),

[S3]M : (λi ↔ λ j ;Wαi ↔ Wα j ).

Physically, as noted in Refs. [4,6], the symmetry [S3]F ×
[S3]M stems from the freedom to reorder the states in a
diagonalization process. Physical variables (λi ,Wαi , etc.)
transform as tensors, the Lagrangian of the standard model

is invariant, and evolution equations of the physical vari-
ables are tensor equations under [S3]F × [S3]M . The
eigenvector-eigenvalue identities corroborate this analysis
and, we believe, help to put permutation symmetry on firm
grounds.

Turning now to other mixing variables, we start with the
cofactor matrix [w], which has elements

wαi = 1

2!eαβγ ei jkWβ jWγ k . (25)

Using Eq. (24), we find

(	λ̃l)wαi = −(λ j + λk)d̃α + λ jλk t̃α + (dβ tγ − dγ tβ),

(26)

where (i, j, k) and (α, β, γ ) are cyclic permutations of the
bases, and we have constructed the anti-symmetric combi-
nations

t̃α = 1

2!eαβγ (tβ − tγ ), (27)

d̃α = 1

2!eαβγ (dβ − dγ ). (28)

Using Eqs. (15) and (16), plus the definition

ξ̃α = 1

2
eαβγ (ξβ − ξγ ), (29)

η̃α = 1

2
eαβγ (ηβ − ηγ ), (30)

we can recast wαi in the form

(	λ̃l)wαi

= ξ̃α(λ j − ηβ)(λk − ηγ ) + η̃α(λ j − ξγ )(λk − ξβ), (31)

or, equivalently,

(	λ̃l)wαi = ξ̃α(λ j − ηγ )(λk − ηβ)

+η̃α(λ j − ξβ)(λk − ξγ ), (32)

mimicking Eq. (19). Also, note that

ξ̃αηβηγ + η̃αξβξγ = dβ tγ − dγ tβ, (33)

and

�(dβ tγ − dγ tβ) = �dα t̃α

= −�d̃αtα. (34)

Thus

D = det W = �wαi

= (	λ̃l)
−1�dα t̃α = −(	λ̃l)

−1�tα d̃α

= 1

2! (	λ̃l)
−1[�Eαβγ (̃ξαηβηγ + η̃αξβξγ )], (35)

which is a remarkably simple relation between det W and the
eigenvalues. Note also that it is the ratio of two pseudoscalars,
one in flavor space and the other in mass eigenvalue space
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(D ∼ (̃1)F × (̃1)M ), in agreement with the transformation
property of det W under (S3)F × (S3)M .

It is instructive to compare this result with that of the
2×2 matrices. There, the eigenvalue solution is well-known.
Without loss of generality, we may take the matrix to be
traceless and real,
(
Mαα Mαβ

Mαβ −Mαα

)
, (36)

whose eigenvalues are given by

λ1,2 = ±
√
M2

αα + M2
αβ, (37)

and the mixing parameters are

We1 − Wμ1 = Mαα/

√
M2

αα + M2
αβ, (38)

which agrees with the eigenvector-eigenvalue identity [2],

We1 − Wμ1 = (−ξα + ξβ)/(λ1 − λ2). (39)

In our notation,

ξα = tα = −Mαα, (40)

det W = We1 − Wμ1 = D(2), (41)

we have

D(2) = −(tα − tβ)/(λ1 − λ2). (42)

Since the parameter D(2) completely determines the mixing
pattern, Eq. (42) gives an intuitive and elegant formula con-
necting the three sets of variables (the dimensionless mixing
parameter, the eigenvalues in the flavor, and the mass eigen-
basis) involved in the diagonalization. Note also that, written
in this form, Eq. (42) is valid for an arbitrary 2 × 2 hermitian
matrix.

Equation (42) can also be deduced from Eq. (35). To do
this we consider a degenerate 3 × 3 matrix for which the
elements in the third row and column vanish, Mγρ = Mργ =
0, ρ = (α, β, γ ). In this case we have λ3 = 0, dα = dβ = 0,
dγ = λ1λ2 and t̃γ = tα − tβ = −2Mαα . Then, �dα t̃α =
λ1λ2(tα − tβ), 	λ̃l = −λ1λ2(λ1 − λ2), and D(3) reduces
to D(2). The unmistakable lineage between D(2) and D(3) is
thus established.

We now turn to other parameters which are composed out
of Wαi and wαi . To do this it is convenient to separate the
traceless parts (corresponding to extracting the singlet out of
a triplet under S3) of these variables, we define

Wαi = Wαi − 1

3
, (43)

wαi = wαi − D
3

. (44)

They are related to Wαi and wαi as follows:

3Wαi = wβ j − wβk − wγ j + wγ k

= 1

2!eαβγ ei jk(wβ j + wγ k), (45)

3wαi = Wβ j − Wβk − Wγ j + Wγ k

= 1

2!eαβγ ei jk(Wβ j + W γ k). (46)

which can be verified using Eqs. (5) and (6). Note that, by
using traceless variables, these relations are now linear, while
those between Wαi and wαi are quadratic,

wαi = 1

2!eαβγ ei jkWβ jWγ k, (47)

DWαi = 1

2!eαβγ ei jkwβ jwγ k . (48)

Equations (45–46) exhibit manifest reciprocity between Wαi

and wαi , which however, is camouflaged by the relation
between Wαi and wαi . These equations are also useful in
converting W into w and vice versa.

We may further define

mαi = (−	λ̃l)Wαi − λ̃iλ
2
i = λ̃i (dα − λi tα) (49)

nαi = mβi − mγ i = λ̃i (d̃α − λi t̃α)

= −(	λ̃l)(Wβi − Wγ i ). (50)

The traces of mαi are given by

�imαi = 0, (51)

�αmαi = λ̃i (�dα − λi�tα)

= −(	λ̃l) − 3̃λiλ
2
i , (52)

where Eqs. (17) and (18) are used. They can be used to verify
the unitarity conditions

�iWαi = �αWαi = 1. (53)

For nαi , it is clear that they are traceless with respect to both
sets of indices,

�αnαi = �i nαi . (54)

Also,

nαi − nβi = 3(	λ̃l)W γ i , (55)

nαi − nα j = −3(	λ̃l)wαk . (56)

Note that nαi is invariant under translation (λi , ξα, ηα) →
(λi + δ, ξα + δ, ηα + δ), just like Wαi , wαi , etc.

Turning to the (x, y) variables, we again define the trace-
less variables

xi = xi − D + 1

6
, (57)

yi = yi − D − 1

6
, (58)
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Table 1 Three equivalent forms for (−3	λ̃l )× (xi ; yi ), arranged in the order of nαi − nβ j with (i, j) = [(2, 1); (3, 2); (1, 3)]
(i, j) = (2, 1) (i, j) = (3, 2) (i, j) = (1, 3)

x1 nα2 − nβ1 nβ3 − nγ 2 nγ 1 − nα3

x2 nγ 2 − nα1 nα3 − nβ2 nβ1 − nγ 3

x3 nβ2 − nγ 1 nγ 3 − nα2 nα1 − nβ3

(−3	λ̃l )× y1 nα2 − nγ 1 nγ 3 − nβ2 nβ1 − nα3

y2 nβ2 − nα1 nα3 − nγ 2 nγ 1 − nβ3

y3 nγ 2 − nβ1 nβ3 − nα2 nα1 − nγ 3

we find, e.g.,

We1 + Wμ2 + Wτ3 = 3x1 + 1, (59)

or collectively,

3x1 = We1 + Wμ2 + W τ3, (60)

3x2 = We2 + Wμ3 + W τ1, (61)

3x3 = We3 + Wμ1 + W τ2, (62)

3y1 = We1 + Wμ3 + W τ2, (63)

3y2 = We2 + Wμ1 + W τ3, (64)

3y3 = We3 + Wμ2 + W τ1. (65)

We can write these variables in terms of nαi , in three equiv-
alent ways, as shown in Table 1.

Combined with the expression for D, Eq. (35), the basic
variables (xi , y j ) can be written in terms of the eigenvalues,
and so can the mixing parameters constructed out of (xi , y j ).
We will now present a concrete example as follows.

It was pointed out that permutation symmetry suggests
the use of singlets as mixing parameters [6]. In addition to
D and J 2, as defined in Eqs. (9) and (12), respectively, one
may propose another two parameters,

Q2 = �xi x j + �yi y j , (66)

K = 	xi + 	yi , (67)

to form a set of four parameters, which may serve to char-
acterize flavor mixing. The set (D,Q2,K,J 2) is unique in
that it does not contain superfluous variables. This situation is
similar to that in relativistic theories, where it is preferable to
use relativistic invariants, rather than frame-dependent vari-
ables, as physical parameters.

Before writing them in terms of eigenvalues, let’s first
verify the constraint �′(xi x j − yi y j ) = 0. We note that

�′(xi x j − yi y j ) = �′(xi x j − yi y j ) + 1

3
D, (68)

and

2�′(xi x j − yi y j ) = −�(x2
i − y2

i ). (69)

Using Eq. (55) and the expressions for nαi − nβ j in the
(i, j) = (2, 1) column of Table I, we find

�(x2
i − y2

i ) = −2

3
(	λ̃l)

−1(�αnα2Wα1), (70)

�αnα2Wα1 = −(	λ̃l)
−1̃λ1̃λ2(λ1 − λ2)[�αdα t̃α]

= −(	λ̃l)D. (71)

Thus, �′(xi x j − yi y j ) = 0. Note that, had we used (i, j) =
(3, 2) or (1, 3) to calculate D in Eq. (71), we would have
gotten the same result. Thus, we may recast Eq. (71) as

(	λ̃l)D = 1

3
�′
i< j�α(nαiWα j ), (72)

showing explicitly that D is a singlet under S3 × S3.
In addition to the expression forD as function of eigenval-

ues, as in Eq. (35), the calculation of Q2 = �′(xi x j + yi y j )
is more involved. Start from

�′(xi x j + yi y j ) = �′(xi x j + yi y j ) + D2 + 1

6
, (73)

�′(xi x j + yi y j ) = −1

2
�(x2

i + y2
i ), (74)

and calculating �(x2
i + y2

i ) by using the average of the three
columns in Table 1, we find

9

2
(	λ̃l)

2 · �(x2
i + y2

i ) = −1

3
�′
i< j�α(nαi nα j ). (75)

Another way to display this result is to use Eq. (50) and write
it explicitly in terms of (λi , dα, tα). The result is

Q2 = 1

27
(	λ̃l)

−2[�′
i< j�α(nαi nα j )] + D2 + 1

6

= 1

27
(	λ̃l)

−2{[−1

4
(�tα)2 + �dα][�(d̃α)2]

+[−1

2
(�tα)(�dα) + 9(	λ̃l)][�(d̃α t̃α)]

+[(�dα)2 − 1

2
(�tα)(	λ̃l)][�(̃tα)2]} + D2 + 1

6
.

(76)
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Table 2 Expressions for (D,Q2,K,J 2) in terms of (xi , y j ) and the eigenvalues

(xi , y j ) Eigenvalues

D �xi + �yi
1
3 (	λ̃l)

−1[�′
i< j�α(nαi Wα j )] = (	λ̃l)

−1�dα t̃α = −(	λ̃l)
−1�tα d̃α

Q2 �(xi x j + yi y j )
1

27 (	λ̃l )
−2[�′

i< j�α(nαi nα j )] + D2+1
6

K 	xi + 	yi (− 1
9 )(	λ̃l)

−2[ 1
3 �i�

′
αβγ (nαi nβiwγ i )] + D

54 (9Q2 − D2 + 3)

J 2 	xi − 	yi (− 1
9 )(	λ̃l)

−2[ 1
3 �α�′

i jk(nαi nα j Wαk)] + 1
54 (9Q2 − 2D2 − 1)

For K and J 2, we will only give the results in terms of
nαi :

K =
(

− 1

9

)
(	λ̃l)

−2
[

1

3
�i�

′
αβγ (nαi nβiwγ i )

]

+ D

54

(
9Q2 − D2 + 3

)
, (77)

J 2 =
(

− 1

9

)
(	λ̃l)

−2
[

1

3
�α�′

i jk(nαi nα jWαk)

]

+ 1

54

(
9Q2 − 2D2 − 1

)
, (78)

where (xi , yi ) as functions of nαi (and thus of the eigenval-
ues) are given in Table 1 and Eq. (50), respectively. Equa-
tions (72), (76), (77), and (78) form a complete set for
(D,Q2,K,J 2). We present them in Table 2.

In summary, starting from the eigenvector-eigenvalue
identities, we can write the mixing parameters in terms of
the eigenvalues in the flavor basis and in mass-eigenvalue
basis. This is facilitated by noticing that �xi = 1

2 (D + 1)

and �yi = 1
2 (D − 1), with D given in Eq. (9). The trace-

less variables xi and yi are now linear functions of Wαi ,
and can be written as simple functions of the eigenvalues.
Through out these manipulations, permutation symmetry is
an indispensable guide, and all relations thus obtained are
tensor equations under permutation. Other examples which
manifest the permutation symmetry properties of the neutrino
parameters can be found, e.g., in Ref. [7].

It should also be mentioned that, given Wαi , one can
construct J 2, but the sign of J = ±√J 2 is undeter-
mined. The sign of J is fixed by summing up Eq. (1),
(1/3!)��

αβγ

i jk = D − i(3!)J . Thus, the variables Wαi can
only determine CP-violation effects up to a sign.

4 Conclusion

In this paper we generalized the eigenvector-eigenvalue iden-
tities to include general mixing parameters. These rephas-
ing invariant variables are tensors under S3 × S3. A well-
known set is of course Wαi , which, however, has a lot of
redundancy. A smaller set is (xi , y j ), with six variables
and two consistency conditions. The most economical set

is (D,Q2,K,J 2), with exactly four parameters. They are
all singlets under rephasing and permutation, in tune with
the symmetry properties of the diagonalization process. We
obtained direct link between these variables and the eigen-
values, summarized in Tables 1 and 2. Of particular interest
may be Eq. (35), which expressed D = det W in terms of the
ratio of two eigenvalue expressions. Its use has enabled us to
greatly simplify our results. Together with the other results,
they suggest a deep-rooted connection between the mixing
parameters, the flavor eigenvalues, and the mass-eigenvalues.

Our analysis also brings out the prominent role played
by permutation symmetry (see also Ref. [1]). All of the
relations are tensor equations under [S3]F × [S3]M , with-
out which they would be very hard to decipher. It should be
emphasized that the eigenvalue and mixing parameters must
transform together. This is in contrast to the narrative, that
masses are fixed numbers and not subject to transformations.
However, an inherent property of the mass matrix diagonal-
ization problem is that it does not predetermine the order of
states. If one makes an exchange of states, it is only natural to
also exchange the eigenvalues associated with the states. The
resulting permutation symmetry then reflects the freedom of
choice of ordering in the diagonalization process.

Another indication of the working of permutation sym-
metry is seen in our maneuvering to get the results. The
basic variables used in this paper transform as 3’s, which
are reducible. The use of their traceless parts, which are irre-
ducible, has been effective in simplifying our results.

Finally, we add some speculative remarks. In the standard
model, the fermion mass matrices are notorious for being
incomprehensible. At the same time, the observed masses
and mixing parameters do seem to have some regularity (hier-
archy). It is hoped that, with the availability of a direct con-
nection between these entities, some new approach/insight
may be uncovered.
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