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Abstract We show that the anomalous magnetic moment
experimental data of muon and electron (g − 2)μ,e can be
explained simultaneously in simple extensions of the 3-3-
1 models consisting of new heavy neutrinos and a singly
charged Higgs boson. The heavy neutrinos generate active
neutrino masses and mixing through the general seesaw
mechanism. They also have non-zero Yukawa couplings with
singly charged Higgs bosons and right-handed charged lep-
tons, which result in large one-loop contributions known as
chirally-enhanced ones. Numerical investigation confirms a
conclusion indicated previously that these contributions are
the key point to explain the large (g − 2)μ,e data, provided
that the inverse seesaw mechanism is necessary to allow both
conditions that heavy neutrino masses are above few hun-
dred GeV and non-unitary part of the active neutrino mixing
matrix must be large enough.

1 Introduction

Recently, anomalous magnetic moments (AMM) of charged
leptons aea ≡ (g−2)ea/2 have been studied widely because
the recent experimental data shows large deviations from
the Standard Model (SM) predictions. The recent improved
AMM value of muon aμ predicted by the SM is accepted
widely as [1] aSM

μ = 116591810(43) × 10−11, which is
derived from the combination of various contributions using
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the dispersion approach [2–22]. However, this results is
inconsistent with the lattice-QCD calculation [23], which is
closer to the recent experimental data. In our work, we will
use the larger discrepancy between theoretical and experi-
mental results, because it is more interesting for theoretical
discussions and the allowed regions of parameter space are
still applicable for the smaller deviation reported in Ref. [23].
The latest experimental measurement has been reported from
Fermilab [24] and is also in agreement with previous experi-
mental result measured by Brookhaven National Laboratory
(BNL) E82 [25]. A combination of these results in the new
average value of aexp

μ = 116592061(41) × 10−11, which
leads to the improved standard deviation of 4.2 σ from the
SM prediction, namely

�aNP
μ ≡ aexp

μ − aSM
μ = (2.51 ± 0.59) × 10−9. (1)

The recent experimental AMM values of electron ae were
reported from different groups [26–28] (for calculation of ae
in the SM, see Refs. [17,29–34]). In our numerical discus-
sion, we adopt the experimental values of ae corresponding
to the following standard deviation of 2.5σ from the SM one:

�aNP
e ≡ aexp

e − aSM
e = (−8.7 ± 3.6) × 10−13. (2)

Many models beyond the SM (BSM) have been constructed
to explain the experimental data of (g − 2)μ,e, such as mod-
els adding vector-like lepton multiplets [35–46], leptoquarks
[47], both neutral and charged Higgs bosons as SU (2)L sin-
glets [48], SU (2)L triplets of leptons and scalars [49]. The
minimal supersymmetric standard model can explain both
(g−2)e,μ data in the regions of the parameter space with light
slepton masses below a few hundred GeVs [50,51]. Some
two Higgs doublet models (THDM) adding new SU (2)L
Higgs doublets can give large two-loop contributions to �aμ
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[52–56], provided that the masses of the new neutral and/or
charged Higgs bosons must be light at a few hundred GeVs.

In this work, we will focus on the AMM problems pre-
dicted by a BSM class called as 3-3-1 models, constructed
based on the SU (3)C × SU (3)L ×U (1)X group [57–67]. It
was shown that the early 3-3-1 versions cannot predict large
�aμ given by the experimental data [68–74]. Extended ver-
sions were introduced to solve this problem, such as 3-3-1
models with new vector-like leptons or inert SU (3)L Higgs
triplets [72,73], the models with new singly charged Higgs
couplings with heavy neutrinos generating neutrino masses
through the inverse seesaw (ISS) mechanism [75,76], and
3-3-1 models with discrete symmetries containing a rather
large number of new particles needed to explain the hier-
archy problems of fermion masses [77,78]. In Ref. [36],
the very precise analytic formulas applicable to calculate
general one-loop contributions to AMM in a wide class of
BSM were presented. Using these formulas, we can estimate
again the previous results available in all current 3-3-1 mod-
els. These analytic formulas are consistent with those cal-
culated previously for 3-3-1 models [79,80]. More impor-
tantly, we will show that the 3-3-1 models can give large
one-loop contributions to AMM by adding new SU (3)L sin-
glets such as singly charged Higgs bosons h± and heavy
neutrinos, a similar way that was applied to the 3-3-1 model
with right-handed (RH) neutrinos (331RHN). On the other
hand, Higgs triplets and their Yukawa couplings needed to
generate masses for charged leptons, quarks, and neutrinos in
many 3-3-1 models may have different features from those
in the 331RHN, leading to new predictions of the allowed
regions of parameter space satisfying the AMM experimen-
tal data predicted by different 3-3-1 models. Heavy neutrinos
are needed to generate active neutrino masses and mixing
through the general seesaw (GSS) mechanism, and Yukawa
couplings of singly charged Higgs boson and RH charged
leptons. Hence the new particles result in Yukawa terms like
N
(
λL PL + λR PL

)
eaH+ corresponding to the presence of

the so called chirally-enhanced one-loop contributions pro-
portional to λL∗λR , where N and H+ denote two physical
states of a neutrino and a singly charged Higgs boson. They
are the most important terms that can be large enough to
explain the recent AMM data [36]. Other chirally-enhanced
one-loop contributions originating from the 3-3-1 models
will be also mentioned. For convenience, the 3-3-1 models
discussed in our work will be generalized in the form of the
3-3-1 model with an arbitrary parameter β (331β) defining
the electric charge operator as follows [64,67]:

Q = T3 + βT8 + X. (3)

We have introduced the SU (3) generators Ta , a = 1, . . . 8
and X is the new quantum charge corresponding to the group
U (1)X . Thus, the charge operator Q depends on two param-
eters β and X . The 3-3-1 models corresponding to different

β distinguish each other by new heavy leptons and quarks
arranged in the third components of fermion (anti-)triplets,
for example, β = −√

3, 1√
3
, − 1√

3
, and 0 for the mini-

mal 3-3-1 model [58], the 331RN [62], with heavy singly
charged leptons [63], and the simplest 3-3-1 model [65],
respectively. These models result in distinguishable conse-
quences for many interesting processes [81–85]. Hence, suc-
cessful solutions for AMM problems in 3-3-1 models will
guarantee their realities.

The explanation of AMM data in Refs. [75,76] was just
valid for the specific 331RHN model corresponding to β =
± 1√

3
, which results in a special case that heavy SU (3)L lep-

tons in the third components of the lepton (anti) triplets are
exotic heavy neutrinos ψaL ∼ (ea, νa, Na)

T
L . They play roles

of right-handed neutrinos NaR ≡ (NaL)c, and mix with SM
neutrinos through a very special form of the total antisym-
metric 3 × 3 neutrino Dirac mass matrix mD . As a result,
strict relations between parameters are necessary to explain
simultaneously all neutrino oscillation data, AMM (g−2)μ,
and constraints of lepton flavor violating (cLFV) decays
eb → eaγ that must be consistent with experiments. In addi-
tion, the 331RHN model needs three more neutrino singlets
for generating the ISS neutrino mass matrix (331ISS), and
a singly charged scalar singlet to give large one-loop contri-
butions to AMM of muon, while the destructive interference
among different one-loop contributions gives a small total
one loop contribution to every decay amplitude eb → eaγ .

The models 331β and 331ISS need three SU (3)L Higgs
triplets for generating non-zero masses of all quarks and lep-
tons at the tree level, including active Dirac and Majorana
neutrino masses. Two of these Higgs triplets give masses
for SM fermions and gauge bosons, therefore they play the
same role as the ones well-known in the two Higgs doublet
models. They contain two neutral Higgs components with
two vacuum expectation values (VEVs) denoted as v1,2 sat-
isfying v2

1 + v2
2 � (246 GeV)2. The important parameter

tβ ≡ v2/v1, where v2 is always chosen to generate the top
quark mass, must have a lower bound tβ ≥ 0.33 from the
perturbative limit of the top quark Yukawa coupling. In the
331ISS model, charged lepton masses and the neutrino Dirac
mass term are originated from v1, therefore large tβ > 30 is
the necessary condition to give large one-loop contributions
to AMM of muon consistent with experimental data [76].
In contrast, the neutrino Dirac mass term comes from the
Yukawa couplings of the neutral Higgs component with VEV
v2 in the 331β model. The same property also happens for the
Yukawa couplings between leptons and the singly charged
Higgs bosons. In addition, no SU (3)L neutral leptons are
available, therefore the 331β model needs six exotic neu-
trino singlets for the ISS mechanism. Therefore, the allowed
regions of the parameter space give large one-loop contribu-
tions to (g − 2)e,μ cannot be generalized qualitatively from
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previous results given in Ref. [76], which requires large tβ .
A first derivation may start from the most important property
that the Yukawa couplings of singly charged Higgs singlet
and mD relate to the Higgs triplet containing VEV v2 instead
of v1. Therefore, the proper values of tβ may be small enough
to explain the experimental AMM data, leading to the exis-
tence of an upper bound for tβ . This may be conflict with the
perturbative limit tβ ≥ 0.33. This problem will be addressed
in this work.

Before coming to detailed analysis, we emphasize our
works is helpful because of the following reasons. First, we
will see that the 331β model considered in this work explain
simultaneously both experimental data of (g − 2)e,μ only
when the mixing between h± and singly charged compo-
nents of the SU (3)L Higgs triplets is non-zero. This non-
zero mixing implies the existence of a non-trivial coupling
of h± with two SU (3)L Higgs triplets, fh

(
ρ†ηh+ + h.c.

)
,

which was not introduced previously. This may be an indi-
rect link between SU (3)L Higgs triplets and the ISS neutral
lepton singlets, apart from the small ISS mixing among XaR

and νbL . In other words, the existence of the SU (3)L Higgs
triplet components can be detected through their decays to
leptons. The second reason, many previous discussions on
3-3-1 models showed clearly that they did not accommodate
the (g − 2)μ data unless adding some other new particles,
such as vector-like fermions, etc. Our qualitative estimation
in this work provides another interesting approach to con-
firm this conclusion. Finally, the original appearance of the
3-3-1 models solved some interesting questions, such as the
answer to the question of three fermion flavors confirmed
by experiments, etc. New improved versions of 3-3-1 mod-
els have been introduced to explain successfully the latest
experimental results. Our model is one of them constructed to
explain dark matter data, the hierarchies problems of fermion
masses, etc. Many of them contain complicated particle con-
tents including new singly charged Higgs scalars and neutral
leptons. Our discussion on AMM data with a very simple
Higgs sector will be helpful for further realization solutions
for AMM data in these models.

Our work is arranged as follows. In Sect. 2, the 331β

model will be reviewed, where we pay attention to the lep-
tons, gauge bosons, and Higgs sectors, giving all physical
states as well as the couplings that may give large one-loop
contributions to AMM. In Sect. 3, the 331β model with the
GSS will be presented along with the two particular frame-
works of the minimal seesaw (MSS) and simple ISS. In
Sect. 4, analytic formulas for one-loop contributions to AMM
are constructed. Numerical discussions for both MSS and
ISS will be shown in detail. Our main results are collected
in Sect. 5. There are three appendices listing master func-
tions for one-loop contributions to AMM given in Ref. [36],
analytic formulas for one-loop contributions from the singly

charged Higgs bosons to AMM, and a detailed discussion on
the masses and mixing of the singly charged bosons.

2 The 3-3-1 model with arbitrary β

Let us review the 331β model. Left-handed leptons are
assigned to anti-triplets and RH leptons are singlets:

L ′
aL =

⎛

⎝
e′a

−ν′
a

E ′
a

⎞

⎠

L

∼
(

3∗ , −1

2
+ β

2
√

3

)
, a = 1, 2, 3,

e′aR ∼ (1 , −1) , XI R ∼ ( 1 , 0) , E ′
aR ∼

(

1 , −1

2
+

√
3β

2

)

.

(4)

The model includes K RH neutrinos XI R , I = 1, 2, . . . , K ,
and three exotic leptons E ′a

L ,R which are much heavier than
the normal leptons. The prime denotes flavor states to be
distinguished with mass eigenstates introduced later. The
numbers in the parentheses are to label the representation
of SU (3)L ⊗U (1)X group. The quark sector is ignored here
because it is irrelevant to our present work. We note that our
result will be true for 3-3-1 models consisting left-handed
lepton triplets because they are equivalent with the models
with lepton sector defined in Eq. (4) through a transformation
keeping physical results unchanged [86,87].

The model has nine electroweak gauge bosons, included
in the following covariant derivative

Dμ ≡ ∂μ − igT aWa
μ − igX XT

9Xμ, (5)

where T 9 = 1/
√

6, g and gX are gauge couplings of the two
groups SU (3)L and U (1)X , respectively. The matrix WaT a ,
where T a = λa/2 corresponding to a triplet representation,
is written as

Wa
μT

a = 1

2

⎛

⎜
⎝

W 3
μ + 1√

3
W 8

μ

√
2W+

μ

√
2Y A

μ√
2W−

μ −W 3
μ + 1√

3
W 8

μ

√
2V B

μ√
2Y−A

μ

√
2V−B

μ − 2√
3
W 8

μ

⎞

⎟
⎠ ,

(6)

where we have defined the mass eigenstates of the charged
gauge bosons as

W±
μ = 1√

2

(
W 1

μ ∓ iW 2
μ

)
,

Y±A
μ = 1√

2

(
W 4

μ ∓ iW 5
μ

)
,

V±B
μ = 1√

2

(
W 6

μ ∓ iW 7
μ

)
. (7)
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From Eq. (3), the electric charges of the gauge bosons are
calculated as

A = 1

2
+

√
3β

2
, B = −1

2
+

√
3β

2
. (8)

To generate masses for gauge bosons and fermions, the model
has three scalar triplets defined as

χ =
⎛

⎝
χA
χB
χ0

⎞

⎠ ∼
(

3 ,
β√
3

)
, ρ =

⎛

⎝
ρ+
ρ0

ρ−B

⎞

⎠ ∼
(

3 ,
1

2
− β

2
√

3

)

η =
⎛

⎝
η0

η−
η−A

⎞

⎠ ∼
(

3 , −1

2
− β

2
√

3

)
, h+ ∼ (1, 1, 1), (9)

where A, B denote electric charges as defined in Eq. (8); and
h+ is a new singly charged Higgs boson needed for giving
large one-loop contributions to AMM. These Higgs bosons
develop the following non-zero VEVs

〈χ0〉 = u√
2
, 〈ρ0〉 = v2√

2
, 〈η0〉 = v1√

2
. (10)

This VEV configuration of the 331β model without h± was
shown to be valid in Ref. [88]. This is also true for the 331β

adding new singly charged Higgs boson h± we consider here.
For convenience, we will use the following notations:

tβ ≡ v2

v1
, → sβ = v2

v
, cβ = v1

v
, (11)

where v2 ≡ v2
1 + v2

2, and s2
β + c2

β = 1.
The symmetry breaking happens in two steps: SU (3)L ⊗

U (1)X
u−→ SU (2)L ⊗ U (1)Y

v1,v2−−−→ U (1)Q , leading to the
condition that u � v1, v2. After the first step, five gauge
bosons will be massive and the remaining four massless
ones can be identified with the before-symmetry-breaking
SM gauge bosons, resulting in the following important equa-
tion:

g2
X

g2 = 6s2
W

1 − (1 + β2)s2
W

, g = g2, (12)

where the weak mixing angle is defined as tW = tan θW =
g1/g2, g1,2 are the gauge couplings of the SM gauge groups
U (1)Y and SU (2)L , respectively. We denote sW = sin θW
and cW = cos θW . Putting in the value of sW , we get approx-
imately

|β| ≤ √
3. (13)

The masses of the charged gauge bosons are

m2
Y±A = g2

4
(u2 + v2

1),

m2
V±B = g2

4
(u2 + v2

2),

m2
W± = g2

4
(v2

1 + v2
2), (14)

where the gauge boson W± is identified with the SM one,
implying that

v2 ≡ v2
1 + v2

2 = 4m2
W

g2 � (246 GeV)2. (15)

The above Higgs bosons are enough to generate all SM
quark masses and heavy new quark masses [67,89]. In

addition, the Yukawa term Yu
3aQ3Lρ∗uaR → Yu

3av2√
2
u3LuaR

mainly contributes to the top quark mass, mt � Yu
33v2√

2
≤√

4πv2/
√

2, equivalently sβ ≥ √
2mt/(

√
4πv) → tβ ≥

0.3.
In general, the mixing between a SM lepton and a new

lepton is allowed if they have the same electric charge
in some particular values of β. This mixing effect will
be neglected in the 331β model under consideration. The
Yukawa Lagrangian now is

−Lyuk
lepton = Y e

abe
′
aRηT L ′

bL + Y E
abE

′
aRχT L ′

bL + Y X
IbX I RρT L ′

bL

+ 1

2
MN ,I J X I R(X J R)c + Yh

Ib(XI R)ce′bRh+ + h.c.,

(16)

where a, b = 1, 2, 3 are family indices, and I = 1, 2, 3, . . .

K are the number of new neutral lepton singlets. The pertur-
bative limit of the Y h is important in this work, which should
satisfy |Y h

Ia | <
√

4π . In fact, the trust values of |Y h
Ia | may

be smaller [90]. In Lagrangian (16), the neutrino Dirac mass
matrix comes from the third term including the Higgs triplet
ρ which also generates the top quark mass. This important
property is different from that given in Ref. [76], hence the
dependence of the Dirac mass term, the Yukawa couplings
of singly charged Higgs bosons, and the perturbative condi-
tion of the Yukawa couplings with heavy neutrinos Y X

Ib on tβ
will be different between two models 331β and 331ISS dis-
cussed in Ref. [76]. In later discussions, we will set K = 3
and K = 6 for the respective MSS and ISS mechanisms
considered in this work. The corresponding mass terms are:

−Lmass
lepton = Y e

abv1√
2

e′
aRe

′
bL + Y E

abu√
2

E ′
aR E

′
bL

+ 1

2

(
(ν′

L)c XR

)
Mν

(
ν′
L

(XR)c

)
+ h.c.,

Mν =
(

03×3 MT
D

MD MN

)
, (17)

where (MD)I b ≡ MD,I b = −Y X
Ibv2√
2

, ν′
L = (ν′

1, ν
′
2, ν

′
3)

T
L and

XR = (X1, X2, . . . , XK )TR . Note that, here, charged lepton
masses and MD come from different Higgs triplets, while
these mass terms discussed in Ref. [76] come from the same

123
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Higgs triplet. Therefore, the effects on �aμ,e relating to the
relevant Yukawa couplings in the model under consideration
will be different from those discussed in Ref. [76]. At present,
the active neutrino masses and mixing are still generated from
the GSS mechanism. The total mixing matrix is defined as

U νTMνU ν = M̂ν = diag(mn1, mn1, . . . ,mnK+3),(
ν′
L

(XR)c

)
= U νnL ,

(
(ν′

L)c

XR

)
= U ν∗nR = U ν∗(nL)c,

(18)

where nL ,R = (n1, n2, . . . , n(K+3))L ,R are Majorana neu-
trino mass eigenstates satisfying niL ,R = (ni R,L)c, and the
four-component forms are ni = (niL , ni R)T .

From now on we will work in the basis where the SM
charged leptons are in their mass eigenstates, namely Y e

ab =
Y e
abδab and e′

a = ea in Eqs. (16) and (17). This can always
be done without loss of generality. The transformations from
the flavor states to mass eigenstates of the heavy lepton Ea

are defined as

E ′
aL = V L

abEbL , E ′
aR = V R

abEbR, (19)

where V L ,R is a 3×3 unitary mixing matrix for new charged
leptons.

For the Higgs sector, the ratios between VEVs are used to
define two mixing angles:

s2
iu = sin2 βiu = v2

i

u2 + v2
i

, i = 1, 2. (20)

We will also use the following notations tiu = siu/ciu .
The scalar potential is

Vh = μ2
1η

†η + μ2
2ρ

†ρ + μ2
3χ

†χ + λ1
(
η†η

)2

+ λ2
(
ρ†ρ

)2 + λ3
(
χ†χ

)2

+ λ12(η
†η)(ρ†ρ) + λ13(η

†η)(χ†χ) + λ23(ρ
†ρ)(χ†χ)

+ λ̃12(η
†ρ)(ρ†η) + λ̃13(η

†χ)(χ†η) + λ̃23(ρ
†χ)(χ†ρ)

+ √
2 f
(
εi jkη

iρ jχk + h.c.
)

+ μ2
4h

+h− + fh
(
ρ†ηh+ + h.c.

)

+ (h+h−)
(
λh1η†η + λh2ρ†ρ + λh3χ†χ

)
+ λh4

(
h+h−)2 ,

(21)

where the last line includes all terms relating to the singly
charged Higgs boson that does not appear in the previous
versions [64,67]. The triple coupling fh is a very important
parameter controlling the mixing between the singly charged
Higgs components of the two SU (3)L Higgs triplets and the
Higgs singlet h±. It is emphasized that the existence of fh
is a very interesting feature of the 331β that did not mention

previously, because of the nontrivial property that the cou-
pling ρ†ηh+ always respects U (1)X symmetry for arbitrary
β.

As we mentioned above, the VEV configuration consid-
ered in this work is the same as that chosen in Refs. [88,91],
which was shown to be consistent with the unitarity, per-
turbativity and bounded-from-below (BFB) constraints. On
the other hand, the exact necessary and sufficient BFB con-
straints are still difficult to determine [92]. They relate to the
copositive (conditionally positive) conditions of the quar-
tic term of the Higgs potential to guarantee the existence of
local minima, as discussed in Ref. [93]. Determining which
local minimum is the global one defining the stability of
the Higgs potential corresponding to the VEV structure cho-
sen in this work is more difficult. A method introduced in
Ref. [94] can solve this problem, but it is still difficult to
apply to BSM models with complicated Higgs sectors such
as the 3-3-1 models. The discussions on the VEV structure
mentioned in Refs. [88,91] were not addressed clearly to the
vacuum stability issue. In the model under consideration, the
global minimum corresponding to the VEV structure men-
tioned above requires more relations between Higgs cou-
plings. We hope that the large number of Higgs couplings
appearing in the Higgs potential (21) will allow the exis-
tence of these new relations consistent with the available
constraints. They should be discussed in more detail when
the Higgs phenomenology is focused. It is not our scope in
this work, we therefore will not discuss more.

A detailed calculation to derive masses and mixing matrix
of the singly charged Higgs bosons is shown in Appendix C.
From this, the relations between the mass and flavor eigen-
states of singly charged Higgs bosons are

⎛

⎝
ρ±
η±
h±

⎞

⎠ =
⎛

⎝
−sβ cαcβ sαcβ

cβ cαsβ sαsβ
0 −sα cα

⎞

⎠

⎛

⎝
φ±
W

H±
1

H±
2

⎞

⎠ , (22)

where φ±
W are the Goldstone bosons of W±, H±

1,2 are two
physical states with masses mH±

1,2
, and α is a new mixing

parameter defined in Eq. (C5). Normally, mH±
1,2

and α are

functions of the potential couplings. For convenience, we
will consider α, and mH+

1,2
as free parameters, while μ4, f ,

and fh are chosen as functions of all free ones, namely:

μ2
4 = c2

αm
2
H±

2
+ s2

αm
2
H±

1
− 1

2

(
λh1s

2
βv2 + λh2c

2
βv2 + λh3u

2
)

,

f = −
cβsβ

(
−λ̃12v

2 + 2c2
αm

2
H±

1
+ 2s2

αm
2
H±

2

)

2u
,

fh = −
√

2sαcα

(
m2

H±
1

− m2
H±

2

)

v
. (23)
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The case of sα = 0 or cα = 0 will return to the decouple
limit between h± and the SU (3)L Higgs triplets mentioned
in Ref. [76], where this limit is allowed. In contrast, we will
see that s2α = 2sαcα �= 0, equivalently, the triple Higgs
coupling fh �= 0, is one of the necessary condition to give
large one-loop contributions to AMM in the 331β.

The relations between the mass and flavor eigenstates of
other charged Higgs bosons are:

(
η±A

χ±A

)
=
(

s1u c1u

−c1u s1u

)(
φ±A
Y

H±A

)
,

(
ρ±B

χ±B

)
=
(
s2u −c2u

c2u s2u

)(
φ±B
V

H±B

)
, (24)

where φ±
W , φ±A

Y and φ±B
V are the Goldstone bosons of W±,

Y±A andV±B , respectively. The masses of the charged Higgs
bosons H±A, H±B are

m2
H A = (u2 + v2

1)

(− f v2

v1u
+ 1

2
λ̃13

)
,

m2
HB = (u2 + v2

2)

(− f v1

uv2
+ 1

2
λ̃23

)
. (25)

Because the neutral Higgs bosons couple to charged lepton
through the Yukawa couplings of the form S0eaea , which
is the same form as that of the SM-like Higgs boson pre-
dicted by the SM, the corresponding one-loop contributions
to AMM is very small. Hence, they will be ignored in our cal-
culation from now on. The discussion on the identification of
the SM-like Higgs boson can be found in Ref. [89]. In total,
there are six charged Higgs bosons, one neutral pseudoscalar
Higgs and three neutral scalar Higgs bosons.

3 The minimal seesaw and inverse seesaw mechanisms
in the neutral lepton sector

In this section, we will collect important properties of the
MSS and ISS mechanisms used in our calculation. In the GSS
framework, the neutrino mixing matrix is parameterized in
the following form:

U ν=
((

I3 − 1
2 RR

†
)
UPMNS RV

−R†UPMNS
(
IK − 1

2 R
†R
)
V

)
+O(R3),

(26)

where V is a K × K unitary matrix; R is a 3 × K matrix
satisfying |RaI | < 1 for all a = 1, 2, 3, and I = 1, 2, . . . , K .
The 3 × 3 unitary matrix UPMNS is the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix [95]. The GSS relations
are

R � M†
DM

∗
N

−1
,

mν � −MT
DM

−1
N MD = U∗

PMNSm̂νU
†
PMNS,

V ∗M̂N V � MN + 1

2
RT R∗MN + 1

2
MN R†R, (27)

where m̂ν = diag(mn1,mn1 ,mn3) and M̂N = diag(mn4 ,

mn5, . . . ,mn(K+3)
) consist of three active neutrino and K new

heavy neutrino masses, respectively. In many formulas dis-
cussed below, we will use the equality that

(
m̂ν

)
cc = mnc

with c = 1, 2, 3 are active neutrino masses.
The general parameterization of MD was introduced in

Ref. [96]. In the limit of the MSS mechanism with K = 3,
we will use the simplest forms of MN and MD ≡ mD as
follows [97,98],

MN = M0 I3, MD ≡ mD = i
√
M0m̂νU

†
PMNS. (28)

The relations in (27) reduce to the following simple form:

R = −iUPMNS

(
m̂ν

M0

)1/2

, V � I3,

M̂N � MN , mn4,5,6 � M0. (29)

In the ISS mechanism with K = 6, the total neutrino
mixing matrix U ν in (26) is 9 × 9. In the 331β model,
the well-known ISS form of the total neutrino matrix can
be derived from the requirement that the model respects
a global U (1)L symmetry called the generalized lepton
number, which is defined from the following formula: L:
L ≡ − 4√

3
T 8 + L, where L is the normal lepton num-

ber defined in the SM that L(�) = 1 for all SM leptons
� = e, μ, τ, νeL , νμL , ντ L and zero for all other SM par-
ticles including quarks, gauge, and Higgs bosons [99–101].
The specificL assignments for all Higgs bosons and fermions
in two 3-3-1 models with right-handed neutrinos and the
minimal ones in Refs. [99–101] are the same and indepen-
dent with β, therefore they are valid for the 331β model
with L(L ′

aL) = 1/3, L(e′
aR) = 1. In addition, introduc-

ing L(ρ) = L(η) = 2/3, L(χ) = −4/3, L(h+) = 0, and
L(E ′

aR) = −1 will result in the Lagrangian (16) conserv-
ing L, except the mass term XI R(X J R)c, which includes
soft-breaking terms. Namely, choosing that L(XI R) = 1
with I ≤ 3 and L(XI R) = −1 with I > 3, the con-
served Lagrangian (16) implies that Y h = (O3×3, Y h

2

)T

and Y X = (
Y X

1 , O3×3
)T

, where Y h
2 , and Y X

1 are two 3 × 3
matrices, and O3×3 is the 3 × 3 null matrix. This leads to the
ISS form of MD = (mD, O3×3)

T . The 6×6 Majorana mass
matrix MN consists of three parts denoted as MR , μX , and
μ′
X . The conserved mass term (MR)ab ≡ MN ,a(b+3) with

a, b ≤ 3 can be arbitrary large, while the soft-breaking term(
μ′
X

)
ab ≡ MN ,ab and (μX )ab ≡ MN ,(a+3)(b+3) should be

small. Inserting the ISS form of MD into the GSS relations
to derive the active neutrino mass termmν , we find that small
μ′
X does not affect significantly the final result. Hence, we

assume the simplest case of μ′
X = O3×3 without loss of

generality.

123
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Now, the Dirac and Majorana mass matrices have well-
known ISS forms as follows [97,98]

MT
D = (mT

D,O3×3), MN =
(O3×3 MR

MT
R μX

)
. (30)

Defining M = MRμ−1
X MT

R , the ISS relations now are

R = M†
DM

∗
N

−1 =
(

−m†
DM

∗−1,m†
D

(
M†

R

)−1
)

,

mν = −MT
DM

−1
N MD = mT

D

(
MT

R

)−1
μXM

−1
R mD,

V ∗M̂N V
† � MN + 1

2
RT R∗MN + 1

2
MN R†R. (31)

In the ISS framework, mD is parameterized in terms
of many free parameters, hence it is enough to choose
μX = μX I3. The parameter μX is a new scale making
the most important difference between the neutrino mix-
ing matrices in the ISS and MSS. We also assume that
MR = M̂R = M0 I3. A simple parameterization of mD

is mD = diag(
√
M11,

√
M22,

√
M33)

√
m̂νU

†
PMNS [98],

which is completely different from the total antisymmetric
mD given in Ref. [76]. The ISS condition |m̂ν | � |μX | �
|mD| � M0 gives

√
μX m̂ν

M0
� 0. Then we have

M̂N =
(

M̂R O3×3

O3×3 M̂R

)

� M0 I6, V � 1√
2

(−i I3 I3
i I3 I3

)
.

(32)

The important results for the ISS mechanism are:

mD = M0 x̂
1/2
ν U †

PMNS,

R =
(

−UPMNS

√
μX m̂ν

M0
, UPMNS x̂

1/2
ν

)

�
(
O3×3, UPMNS x̂

1/2
ν

)
, (33)

where x̂ν ≡ m̂ν

μX
satisfying max[(|x̂ν |

)
ab] � 1 for all a, b =

1, 2, 3.
In numerical discussion, we will use the best-fit values of

the neutrino oscillation data [95] corresponding to the normal
order (NO) scheme with mn1 < mn2 < mn3 , namely

s2
12 = 0.32, s2

23 = 0.547, s2
13 = 0.0216, δ = 218 [Deg],

�m2
21 = 7.55 × 10−5[eV2], �m2

32 = 2.424 × 10−3[eV2].
(34)

In numerical calculation, we will use the following formulas

m̂ν = (
m̂2

ν

)1/2

= diag

(
mn1 ,

√
m2

n1
+ �m2

21,

√
m2

n1
+ �m2

21 + �m2
32

)
,

UPMNS =
⎛

⎝
c12c13 c13s12 s13e−iδ

−c23s12 − c12s13s23eiδ c13c23 − s12s13s23eiδ c13s23

s12s23 − c12c23s13eiδ −c23s12eiδs13 − c13s23 c13c23

⎞

⎠

�
⎛

⎝
0.816 0.560 0.147e−iδ

−0.381 − 0.09eiδ 0.555 − 0.062eiδ 0.732
0.418 − 0.082eiδ −0.61 − 0.056eiδ 0.666

⎞

⎠ . (35)

These neutrino masses satisfy the constraint from Plank 2018
[102] that

∑3
i=1 mna ≤ 0.12 eV. With the best-fit values of

�m2
i j we have mn1 ≤ 0.028 eV.

The other well-known numerical parameters are given in
Ref. [95], namely

g = 0.652, αe = 1

137
= e2

4π
, s2

W = 0.231,

me = 5 × 10−4 GeV, mμ = 0.105 GeV, mW = 80.385 GeV.

(36)

Also, the inverted order (IO) scheme withmn3 < mn1 < mn2

can be considered a similar way, but the qualitative results
are the same as those from the NO scheme, so we will not
present here.

The non-unitary part of the active neutrino mixing matrix(
I3 − 1

2 RR
†
)
UPMNS is constrained by other phenomenology

such as electroweak precision, lepton flavor violating decays
of charged leptons (cLFV) [103–105], namely

η ≡ 1

2

∣∣∣RR†
∣∣∣ <

⎛

⎝
2 × 10−3 3.5 × 10−5 8. × 10−3

3.5 × 10−5 8 × 10−4 5.1 × 10−3

8 × 10−3 5.1 × 10−3 2.7 × 10−3

⎞

⎠ .

(37)

This constraint is consistent with the data used popularly in
recent works [48,106]. The constraint on η may be more
strict, depending on particular models. For example in the
type III general and inverse seesaw models, |ηaa | ≤ O(10−4)

[37,107]. We will choose the values that |η33| ≤ 10−3 in our
numerical discussion.

In the next section, we will consider the one-loop contri-
butions to �aμ,e.

4 Analytical formulas for AMM and numerical
discussion

From the above information we obtain all vertices giving one-
loop contributions to eb → eaγ decay rates and aea . They
are collected from Lagrangian (16). All relevant couplings
are listed in the following Lagrangian

123
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L = g√
2mW

2∑

k=1

3∑

a=1

K+3∑

i=1

ni
[
λ
L ,k
ia PL + λ

R,k
ia PR

]
eaH

+
k

− g√
2mY

3∑

a,c=1

V L∗
ac Ec

[
mea

t1u
PL + mEc t1u PR

]
eaH

A

+
3∑

a=1

K+3∑

i=1

g√
2
U ν∗
ai niγ

μPLeaW
+
μ

+
3∑

a,c=1

g√
2
V L∗
ac Ecγ

μPLeaY
A
μ + h.c., (38)

where

λ
L ,1
ia =

K∑

I=1

MD,I at
−1
β cαU

ν
(I+3)i

� t−1
β cα ×

[
− (MT

DR
†UPMNS

)
ai , i ≤ 3(

MT
D

(
IK − 1

2 R
†R
)
V
)
a(i−3)

, i > 3
,

λ
L ,2
ia � λ

L ,1
ia tα,

λ
R,1
ia = mea tβcαU

ν∗
ai +

K∑

I=1

v√
2
Y h
IasαU

ν∗
(I+3)i

�
[
mea tβcα

((
I3 − 1

2 R
∗RT

)
U∗

PMNS

)
ai − vsα√

2

(
Y hT RTU∗

PMNS

)
ai , i ≤ 3

mea tβcα (RV )∗a(i−3) + vsα√
2

(
Y hT

(
IK − 1

2 R
T R∗) V ∗)

a(i−3)
i > 3

,

λ
R,2
ia = mea tβsαU

ν∗
ai −

K∑

I=1

v√
2
Y h
IacαU

ν∗
(I+3)i

�
[
mea tβsα

((
I3 − 1

2 R
∗RT

)
U∗

PMNS

)
ai − vcα√

2

(
Y hT RTU∗

PMNS

)
ai , i ≤ 3

mea tβsα (RV )∗a(i−3) − vcα√
2

(
Y hT

(
IK − 1

2 R
T R∗) V ∗)

a(i−3)
i > 3

. (39)

We can see that λ
L ,k
ia with k = 1, 2 contains a factor t−1

β ,

which is the inverse value included in λ
L ,1
ia introduced in

Refs. [75,76], where the regions predicting large (g − 2)μ
require large tβ > 40, consistent with the perturbative con-
straint tβ ≥ 0.3. In contrast, the 331β model may support
small tβ for large (g − 2)e,μ, which may be excluded if
tβ < 0.3 is required. Hence, the valid regions satisfying
the experimental AMM data must be determined through
detailed numerical investigation.

We do not list here the couplings of neutral gauge and
Higgs bosons because they give suppressed contributions to
aNP
ea . In particularly, the relevant couplings are only with usual

charged leptons s0eaea and V 0
μeaγ

μea . The one-loop con-
tribution from V0 = Z is the same as that predicted by the
SM. Another one from heavy neutral gauge boson V0 = Z ′ is
suppressed by a factor of m2

Z/m2
Z ′ . The contributions from

neutral Higgs bosons are not larger than the one from the
SM-like Higgs boson with a suppressed order of O(10−14).

The form factors cX(ab)R relating to new one-loop contribu-
tions from exchanging X boson to the �aea and cLFV decays
were introduced in Ref. [36], see Appendix A. Formulas of
cX(ab)R from X = H A,W±,Y±A are:

cH
A

(ab)R = eg2mea

32π2m2
Y m

2
H A

3∑

c=1

V L
acV

L∗
bc

{
m2
Ec

[
f�
(
tH,c

)+ Bg�

(
tH,c

)]

+
[
m2
eb t

−2
1u + m2

Ec t
2
1u

] [
f̃�
(
tH,c

)+ Bg̃�

(
tH,c

)]}
, (40)

cW(ab)R ≡ eg2meb

32π2m2
W

K+3∑

i=1

Uν
aiU

ν∗
bi f̃V

(
tW,i

)
, (41)

cY(ab)R ≡ eg2meb

32π2m2
Y

3∑

c=1

V L
acV

L∗
bc

[
f̃V
(
tY,c

)+ Bg̃V
(
tY,c

)]
, (42)

where tH,c ≡ m2
Ec

/m2
H A , tW,i ≡ m2

ni /m
2
W , and tY,c ≡

m2
Ec

/m2
Y .

The particular parameterisations of the MSS and ISS used
in this work give the limit mni = 0 with i = 1, 2, 3;
mni = M0 with all i > 3; cX(ab)R = 0 with a �= b and

X = H±
1,2, H

A,W,Y . To avoid large cLFV rates, we also
consider the simple limit that Mab = M0δab, mE1 = mE2 =
mE3 ≡ mE , and V L = I3, so that cH

A

(ab)R = 0 and cY(ab)R = 0
for a �= b. Therefore, the cLFV decay rates are much smaller
than the current experimental constraints [108,109]. We will
not discuss them from now on.

The one-loop contribution of X = H±
1,2, H

A,W, Y to
AMM of a charged lepton ea is

aea (X) = −4mea

e
Re
[
cX(aa)R

]
. (43)

And the deviation from the SM is defined as follows:
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�aea =
∑

X

aea (X) + �aea (W ), �aea (W )

≡ aea (W ) − a(1)SM
ea (W ), (44)

where X = H±
1,2, H

A,Y , and a(1)SM
μ (W ) � 3.83 × 10−9

[110]. In the 331β model, the SM-like Higgs and gauge
bosons have the same couplings with usual charged lepton
ea as those predicted by the SM, hence they do not con-
tribute to �aea . Also, the heavy neutral Higgs and gauge
bosons will give one-loop contributions smaller than the ones
of the SM-like gauge and Higgs bosons by suppressed fac-
tors of m2

h/m
2
H0 < 10−1 and m2

Z/m2
Z ′ < 6. × 10−4. We

have used heavy neutral Higgs mass mH0 > 1 TeV, and
mZ ′ > 3.7 TeV from the constraints concerned for 3-3-1
models from LHC [111–113] and the combination of weak
charge data of Cesium and proton [81].

One-loop contributions from heavy charged lepton Ea

exchanges are

�aμ(H A) � − eg2m2
μ

8π2m2
W

×
{
m2

W

m2
Y

[
tH A f�

(
tH A

)+ BtH A g�

(
tH A

)]

+
(

m2
μ

m2
Ec

2
β

+ m4
Wc2

β

m4
Y

)

×
[
tH A f̃�

(
tH A

)+ BtH A g̃�

(
tH A

)]}
, (45)

�aμ(Y ) � − eg2m2
μ

8π2m2
W

× m2
W

m2
Y

[
f̃V (tY ) + Bg̃V (tY )

]
, (46)

where tY = m2
E/m2

Y , tH A = m2
E/m2

H A . The above formu-
las are independent from both MSS and ISS mechanisms
affecting only the one-loop contributions from singly charged
Higgs bosons. �aμ(H A) has a chirally-enhanced term but
contains a suppressed factor m2

W /m2
Y .

Firstly, we will show that the one-loop contribution from
W± is always close to the SM prediction. Using the approx-
imation that tW,i = 0 with i ≤ 3 and tWi = xW = m2

ni /m
2
W

with i > 3, we have

cW(aa)R = eg2mea

32π2m2
W

[
f̃V (0) +

(
R∗RT

)

aa

×
(
f̃V (xW ) − f̃V (0)

)]
, (47)

leading to the following contribution from W to aea with
f̃V (0) = −5/12:

aea (W ) = − g2m2
ea

8π2m2
W

[
− 5

12
+
(
R∗RT

)

aa
×
(
f̃V (xW ) + 5

12

)]
.

(48)

Because | f̃V (xW )+ 5
12 | ≤ 5

12 , see the bellow discussion, in
the limit

(
R∗RT

)
aa ≤ 10−3 � 1 given in (37), aμ(W )

equals to the one-loop contribution predicted by the SM
[110]:

a(1)SM
μ (W ) � g2m2

μ

8π2m2
W

× 5

12
� 383 × 10−11,

g2m2
μ

8π2m2
W

� 9.19 × 10−9. (49)

Finally, one-loop contributions from the two singly
charged Higgs bosons will be shown precisely in the two
frameworks of MSS and ISS. The analytic formulas were
collected in Appendix B. Before discussing the total contri-
butions, we just show here the most important part a0,μ(H±)

which can be large enough to reach the allowed ranges con-
sistent with �aNP

μ :

aμ(H±) = aμ(H±
1 ) + aμ(H±

2 ) ≡ aμ,0(H±) + · · · ,

aμ,0(H±) = − g2mμ

8π2m2
W

2∑

k=1

K+3∑

i=3

⎡

⎣
λ
L ,k∗
ia λ

R,k
ia mni f�(xi,k)

m2
H±
k

⎤

⎦

� −9.19 × 10−9

⎡

⎣
vt−1

β cαsα√
2mμ

(
M†

DV
∗V †Yh

M0

)

22

⎤

⎦

× [x1 f�(x1) − x2 f�(x2)] , (50)

where xk ≡ M2
0 /m2

H±
k

. Note that aμ(H±) �= 0 requires

s2α = 2sαcα �= 0 and x1 �= x2.
In summary, general formulas for one-loop contributions

to aea used in this work were given in Ref. [36]. They are con-
sistent with those calculated previously for the 331β models
[79,80]. In the 331β model under consideration, all the rel-
evant one-loop contributions will be derived in the forms
depending on the two classes of the following master func-

tions:
{
f�(x), f̃�(x), x f�(x), x f̃�(x), xg�(x), x g̃�(x)

}

and { f̃V (x), g̃V (x)} for charged Higgs and gauge boson
exchanges, respectively. The additional factor x originates
from the specific properties of the charged Higgs bosons in
the 331β framework. The dependence of these functions on
x is shown in Fig. 1, where all allowed ranges are shown
precisely.

To estimate the one-loop contributions to AMM, it is use-
ful to see the limits for the above master functions as follows:

lim
x→0

f�(x) = f�(0) = 1

4
, lim

x→∞ f�(x) = f�(∞) = 0,

lim
x→0

f̃�(x) = f̃�(0) = 1

24
, lim

x→∞ f̃�(x) = f̃�(∞) = 0,

lim
x→0

f̃V (x) = f̃V (0) = − 5

12
, lim

x→∞ f̃V (x) = f̃V (∞) = −1

6
,

lim
x→0

g̃V (x) = g̃V (0) = −3

4
, lim

x→∞ g̃V (x) = g̃V (∞) = −3

8
,

lim
x→0

[x × f�(x)] = 0, lim
x→∞ [x × f�(x)] = 1

4
,

123
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Fig. 1 The dependence of master formulas as functions of x = m2
E/m2

X and m2
ni /m

2
X with X = W, Y, H±

1,2, H
A

lim
x→0

[
x × f̃�(x)

]
= 0, lim

x→∞
[
x × f̃�(x)

]
= 1

12
,

lim
x→0

[x × g�(x)] = 0, lim
x→∞ [x × g�(x)] = 1

2
,

lim
x→0

[
x × g̃�(x)

] = 0, lim
x→∞

[
x × g̃�(x)

] = 1

8
. (51)

Because |β| ≤ √
3, we have −1 ≤ B ≤ 2. It is easily to

show that:

|x f� (x) + Bxg� (x)| ≤ O(1),
∣∣∣x f̃� (x) + Bxg̃� (x)

∣∣∣ ≤ O(1),

∣∣∣ f̃V (x) + Bg̃V (x)
∣∣∣ ≤ 7

6
,

0 ≤ f̃V (x) + 5

12
≤ 5

12
, 0 ≤ x f� (x) ≤ 1

4
. (52)

First, we consider the one-loop contribution from the SM
gauge W± where the deviation from the SM prediction
derived from Eq. (48) satisfies:

∣∣�aμ(W )
∣∣ � 9.19 × 10−9

∣
∣∣
∣
(
R∗RT

)

aa
×
(
f̃V (xW ) + 5

12

)∣∣∣
∣

< 2.5 × 10−11 < aNP
μ , (53)

where the constraint | (R∗RT
)
aa | ≤ 2×10−3 consistent with

non-unitary condition (37). In Eq. (53), �aμ is considered as
the 1σ range of the discrepancy between the SM’s prediction
and experiments shown in Eq. (1), namely

∣∣�aμ(W )
∣∣ �

�aμ ∈ [1.92 × 10−9, 3.1 × 10−9
]
. Therefore, we will use

the following approximation for both frameworks MSS and
ISS:

�aμ(W ) � 0. (54)

For the recent bound of the SU (3)L scale, we can use
the lower bound mY ≥ 1 TeV, consistent with the recent

constraint concerned for 3-3-1 models [81,111–113]. Now
the one-loop contributions from H A andY A can be estimated
as follows:

0 < −aμ(H A) ≤ 9.19 × 10−9

×
[
m2

W

m2
Y

+ m2
μ

m2
Ec

2
β

+ m4
Wc2

β

m4
Y

]

< 6.3 × 10−11 � �aNP
μ ,

0 < �aμ(Y ) ≤ 9.19 × 10−9 × m2
W

m2
Y

× 7

6
< 7 × 10−11 � �aNP

μ .

(55)

where a crude lower bound mEcβ ≥ 5 GeV was used. We
conclude that the two one-loop contributions originated from
heavy Higgs H A and charged gauge boson Y is much smaller
than �aNP

μ ∼ O(10−9), which is considered as the 1σ range
given in Eq. (1) from now on. This agrees with all previ-
ous works, for example for the heavy charged gauge bosons
[103]. We will ignore them from now on.

We now discuss on the dominant contributions of the two
singly charged Higgs bosons given in Eq. (50), where small tβ
supports large values of these contributions. The reasonable
values for a numerical estimation are t−1

β sαcα � 0.5, and

v/(
√

2mμ) = 1.6 × 103, max[|x1 f� (x1) − x2 f� (x2) |] �
0.25, we have

∣∣∣∣∣

2∑

k=1

�aμ(H±
1 )

∣∣∣∣∣
≤ 1.9 × 10−9

[
103

(
M−1

0 M†
DY

h
)

22

]

∼ �aNP
μ

[
103

(
M−1

0 M†
DY

h
)

22

]
. (56)

In the next discussion for two specific frameworks of MSS

and ISS, the allowed values of
∣∣∣
(
M−1

0 M†
DY

h
)

22

∣∣∣will depend

strictly on the characteristics of the two models. We will
show that the condition (56) will satisfy for only the ISS
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mechanism, which allows this value to reach the (g − 2)μ
data.

For convenience, we will use the following estimation,

v√
2mμ

� 1.6 × 103; |x1 f� (x1) − x2 f� (x2) | ≤ 0.25;

0.3 ≤ tβ ≤ 10;
|sαcα| =

∣∣∣∣
sin(2α)

2

∣∣∣∣ ≤ 0.5; mH±
1

, mH±
2

≥ 800 GeV;
M0 ≥ 100 GeV. (57)

After that, other possible values of mH±
K

, M0, and tβ will also
be discussed.

Now we will derive the specific analytic formulas of one-
loop contributions to �aμ corresponding to the two mecha-
nisms MSS and ISS. We note that all above discussions for
�aμ are applied in the same way to derive to �ae, therefore,
we just mention to �aμ in the numerical discussion.

4.1 The MSS mechanism

The MSS relations given in Eqs. (28) and (29) result in that

M†
DR

† = m̂ν, R = −iUPMNS

(
m̂ν

M0

)1/2

, mn4,5,6 � M0.

(58)

The detailed derivation of the one-loop contributions from
singly charged Higgs bosons is given in Appendix B. Using
f̃�(0) = 1

24 , the one-loop contribution from H±
1 is

�aMSS
μ (H±

1 ) = −9.19 × 10−9

× Re

⎧
⎨

⎩

⎡

⎣c2
α

(
m2
n2

M2
0

)1/2

+
vt−1

β cαsα√
2mμ

3∑

c=1

(
m2
nc

M2
0

)1/4

×UPMNS,2c

(
−iY h

)

c2

]

× x1 f�(x1) + t−2
β c2

α

3∑

c=1

∣∣UPMNS,2c
∣∣2

×
⎡

⎣
m2
nc

m2
H±

1

(
1

24
− f̃�(x1)

)
+ mnc

M0
x1 f̃�(x1)

⎤

⎦

+
m2

μt
2
βc

2
α

m2
H±

1

⎡

⎣ 1

24
−

3∑

c=1

∣
∣UPMNS,2c

∣
∣2 mnc

M0

(
1

24
− f̃�(x1)

)
⎤

⎦

+ v2s2
α

2m2
H±

1

⎡

⎣
3∑

c=1

∣
∣∣Yh

c2

∣
∣∣
2 mnc
M0

(
1

24
− f̃�(x1)

)

+
(
Yh†Yh

)

22
f̃�(x1)

]

−vmμtβs2α√
2m2

H±
1

⎡

⎣

⎛

⎝−iUPMNS

(
m̂2

ν

M2
0

)1/4

Yh

⎞

⎠

22

×
(

1

24
− f̃�(x1)

)]}
. (59)

It can be seen that only two terms proportional to

(
m2
nc

M2
0

)1/4

Re[(−iUPMNS,2cY h
c2)] can give contributions having consis-

tent sign with �aNP
μ , and Re[(−iUPMNS,2cY h

c2)] must be neg-
ative (see the first and last lines in the real part of Eq. (59)). We
just focus on these two contributions. The remaining terms
always give negative contributions to �aNP

μ . The two men-
tioned terms can be estimated as follows:

0 <

(
m2

nc

M2
0

)1/4

× x1 f�(x1) ≤
⎛

⎝ (0.12 eV)2

m2
H±

1

⎞

⎠

1/4

× x3/4
1 f�(x1) < 1.1 × 10−7,

0 <

(
m2

nc

M2
0

)1/4

×
(

1

24
− f̃�(x1)

)

≤ 1

24

⎛

⎝ (0.12 eV)2

m2
H±

1

⎞

⎠

1/4

< 10−7, (60)

where we have used mH±
1

≥ 100 GeV and max[x3/4
1 f�(x1)]

< 0.1. But in this situation the factor

∣∣∣
∣

v√
2mμ

Y h
c2t

−1
β

∣∣∣
∣ ≤ 104 is

still not large enough so that the total can give any significant
contributions to �aMSS

μ . In conclusion, the MSS mechanism
still fails to explain the experimental AMM data of μ.

4.2 The ISS mechanism

The ISS mechanism will be considered instead of the MSS
one. The change is for only singly charged Higgs bosons H±

k .
Following Eqs. (32) and (33), the results for H±

1,2 are

aISS
μ (H±

1 ) = −9.19 × 10−9

× Re

{
3∑

c=1

[
c2
α

∣∣UPMNS,2c
∣∣2 mnc

μX

+vt−1
β cαsα√

2mμ

UPMNS,2c

(
mnc

μX

)1/2 (
Y h

2

)

c2

]

x1 f�(x1)

+
3∑

c=1

[∣∣UPMNS,2c
∣∣2
(
t−2
β c2

α

mnc

μX

)]
x1 f̃�(x1)

+ m2
μt

2
βc

2
α

m2
H±

1

[
1

24
−

3∑

c=1

[∣∣UPMNS,2c
∣∣2 mnc

μX

]

×
(

1

24
− f̃�(x1)

)]

+ v2s2
α

2m2
H±

1

[
3∑

c=1

[∣
∣∣
(
Y h

2

)

c2

∣
∣∣
2 mnc

μX

](
1

24
− f̃�(x1)

)
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+
(
Y h†

2 Y h
2

)

22
f̃�(x1)

]

− vmμtβs2α√
2m2

H±
1

(
1

24
− f̃�(x1)

)

3∑

c=1

[

UPMNS,2c

(
Y h

2

)

c2

(
mnc

μX

)1/2
]}

,

aISS
μ (H±

2 ) = aμ(H±
1 ) [x1 → x2, sα → −cα, cα → sα] , (61)

where we have used the form Y h = (O3×3, Y h
2 )T for the

ISS framework. Here, the parameter μX appears in the ISS
mechanism instead of M0 corresponding to the MSS. The
second term in the first line of Eq. (61) is from H±

1 empha-
sized previously in Eq. (50).

Using the constraint (37) for RR† = UPMNS x̂νU
†
PMNS we

have x̂ν < O(10−3). Therefore, we will choose a safe upper
bound for the NO scheme as follows

Max[(x̂ν

)
aa] = mn3

μX
�
(

�m2
32

μ2
X

)1/2

≤ 2 × 10−3

⇒ μX ≥ 2.5 × 10−8 GeV. (62)

The default value of μX is fixed by μX = 2.5 × 10−8 GeV.
With the allowed range given in Eq. (57), it can be proved

that:

0 <

3∑

c=1

c2
α

∣∣UPMNS,2c
∣∣2 mnc

μX
x1 f�(x1) <

∣∣UPMNS,23
∣∣2 × 5 × 10−3

× 1

12
� 8.9 × 10−5,

0 < aISS
μ,1(H

±
1 ) ∼

3∑

c=1

[∣∣UPMNS,2c
∣∣2
(
t−2
β c2

α

mnc

μX

)]
x1 f̃�(x1)

< 1.3 × 10−3,

0 <
m2

μt
2
βc

2
α

m2
H±

1

[
1

24
−

3∑

c=1

[∣
∣UPMNS,2c

∣
∣2 mnc

μX

](
1

24
− f̃�(x1)

)]

< 10−7

0 <
v2s2

α

2m2
H±

1

×
3∑

c=1

[∣
∣
∣Y h

(c+3)2

∣
∣
∣
2 mnc

μX

](
1

24
− f̃�(x1)

)
< 0.32 × 10−4,

0 <
vmμtβs2α√

2m2
H±

1

(
1

24
− f̃�(x1)

)

×
3∑

c=1

[

Re[UPMNS,2cY
h
(c+3)2]

(
mnc

μX

)1/2
]

< 10−6,

0 < aISS
μ,2(H

±
1 ) ∼ v2s2

α

2m2
H±

1

(
Y h†Y h

)

22
f̃�(x1)

= v2s2
α

2m2
H±

1

(
Y h†

2 Y h
2

)

22
f̃�(x1) < 1.6 × 10−2. (63)

There are only two contributions aμ,1(2)(H
±
1 ) in the sec-

ond and last lines that may affect significantly aμ(H±
1 )

because of the rather large upper bounds aμ,1(H
±
1 ) ≤

1.3c2
α × 10−11 and aμ,2(H

±
1 ) ≤ 23s2

α × 10−11. But both of
them give negative contributions to �aISS

μ , hence should be
small. Ignoring all other contributions smaller 10−4 ×�aNP

μ ,
the remaining large contribution in Eq. (61) is the one men-
tioned in Eq. (50). It has the following form in the ISS frame-
work:

aISS
μ,0(H±) = −9.19 × 10−9

× Re

⎧
⎨

⎩

vt−1
β cαsα√

2mμ

(
mn3

μX

)1/2
Yd

2 [x1 f�(x1) − x2 f�(x2)]

⎫
⎬

⎭

= −680.58 × 10−9

× t−1
β cαsα

(
mn3

μX

)1/2
Yd

2 [x1 f�(x1) − x2 f�(x2)] , (64)

where the part relating to xk is the contribution from H±
k

exchange, and the new parameter Yd
2 is assumed to relate to

Yukawa coupling matrix Y h
2 through the following relation

UPMNS

(
m̂ν

mn3

)1/2

Y h
2 ≡ diag

(
Yd

1 , Yd
2 ,Yd

3

)
= Yd , (65)

so that the two largest one-loop contributions from H±
1,2 to

AMM will allow zero contributions to the cLFV branching
ratios Br(eb → eaγ ) ∼ (|c(ab)R |2 + |c(ba)R |2) [36], because

c(ab)R(H±), c(ba)R(H±) ∼
(
UPMNSm̂

1/2
ν Y h

2

)

ab,ba
(H±) =

0 for a �= b. Now, the matrix Y h
2 is derived through the

following relation:

Y h
2 =

(
m̂ν

mn3

)−1/2

U †
PMNSY

d , (66)

which will be used to check the perturbative limit of all∣
∣(Y h

2 )ab
∣
∣ <

√
4π � 3.5 while scanning values of Yd

1,2,3. In

this case, the factors
(

(m̂ν )aa
mn3

)−1/2 ≥ 1 in the NO scheme and

all active neutrino masses lie in the denominators. Therefore,
these masses must be non-zero and large enough to guarantee
that all entries of Y h

2 satisfy the perturbative limits.
From now on, we will fix mn1 = 0.01 eV in our numerical

discussion. Smaller mn1 will give smaller allowed Yd
1 satis-

fying the perturbative limit of Y h
2 . Using the best-fit points

corresponding to the NO scheme of neutrino oscillation data
given in Eq. (34), Y h

2 has the following form
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Y h
2 =

⎛

⎝
1.84Yd

1 (−0.7 − 0.125i)Yd
2 (1.09 − 0.113i)Yd

3
1.1Yd

1 (1.184 − 0.074i)Yd
2 (−1.11 − 0.068i)Yd

3
(−0.116 − 0.09i)Yd

1 0.732Yd
2 0.666Yd

3

⎞

⎠ . (67)

For small mn1 including the case mn1 = 0, matrix Y h
2 is

chosen as follows:

Y h
2 =

⎛

⎝
0 0 0

(2.9 + 0.3i)Yd
1 (0.50 − 0.32i)Yd

2 (0.61 − 0.68i)Yd
3

(−1.23 − 0.21i)Yd
1 (1.15 + 0.12i)Yd

2 Yd
3

⎞

⎠ ,

which Yd defined from Eq. (65) is not diagonal, but it always
keeps (Yd)12 = (Yd)21 = (Yd)13 = 0. In addition, Yd

3 = 0
gives (Yd)32 = 0. This will avoid large contributions to the
strict constraint of cLFV decay Br(μ → eγ ). The numer-
ical investigations show that the two choices of Y h

2 men-
tioned above have the same qualitative results. Numerical
illustration will be done with the Y h

2 given in Eq. (67). There-
fore, we will fix Yd

3 = 0 in our numerical investigation on
aISS
e,μ(H±). We note that Yd

3 also contributes to the AMM
of the τ lepton, which still has weak constraints from recent
experiments [114–116] and a combination derived from these
experimental results [117,118], see discussions on this topic
in Refs. [119,120], suggesting new experiments to improve
measurements.

Similarly, the data of �aNP
e may be explained by the fol-

lowing contribution:

aISS
e,0 (H±) = −9.19 × 10−9

× m2
e

m2
μ

Re

{
vt−1

β cαsα√
2me

(
mn3

μX

)1/2

Yd
1 [x1 f�(x1) − x2 f�(x2)]

}

= −32409 × 10−13

× t−1
β cαsα

(
mn3

μX

)1/2

Yd
1 [x1 f�(x1) − x2 f�(x2)] . (68)

In the simple forms of the matrices Y h given in Eq. (66) and
MD we assumed here, the main difference betweenaISS

e,0 (H±)

and aISS
μ,0(H

±) is that they contain different free factors Yd
1

and Yd
2 , respectively. The numerical results show that this

difference is enough to explain both AMM data of e and μ

at 1σ discrepancy given in Eqs. (1) and (2). The regions of
the parameter space satisfying simultaneously these will be
defined as the allowed regions from now on.

The first numerical illustrations are shown in Fig. 2, where
free parameters are fixed in the ranges given in (57) and
predict valid regions satisfying both the experimental AMM
data of muon (two upper panels) and electron (two lower
panels). In addition, in the upper left panel of Fig. 2, the
numerical values sα = 0.5, Yd

2 = 0.21, and tβ = 0.5 safely
satisfy perturbative limits of max| (Y h

2

)
ab | < 0.2. On the

other hand, numerical values of free parameters in the upper
right panel are somewhat special: sα = 1/

√
2 is maximal

for s2α = 1, large Yd
2 = 2.8 close the perturbative limit

max| (Y h
2

)
ab | = 3.32, and tβ = 20 � 1 does not sup-

port large aISS
μ (H±), which excludes the regions satisfying

0 < x2 < 0.1 and all x1 > 0, for example. All values of
tβ > 30 are excluded in this case. We conclude that the AMM
data will result in a upper bound of tβ . The values of Yd

1 are
chosen so that there exist allowed values of (x1, x2) satisfy-
ing simultaneously both 1σ experimental AMM data of muon
and electron. Namely, the allowed values of (x1, x2) in the
two left panels are in the ranges 0 < x1 ≤ 20 and 0.1 < x2.
Similarly, the allowed regions in the two right panels satisfy
0 < x1 ≤ 10 and x2 > 0.1. Large tβ gives strong upper con-
straint on M0 < 750 GeV derived from the perturbative limit

of max|Y X
ab|=max

√
2(mD)ab

v2
= max

M0
√

2
(
x̂1/2
ν U†

PMNS

)

ab
vcβ

< 3.5.

Consequently, xk = M2
0 /m2

Hk
should not be too large so that

mHk are larger than the lower bounds from experiments.
In general, the allowed regions of parameter space depend

strongly on the x̂ν , namely larger x̂ν will allow larger tβ , and
smaller values of other parameters including s2α ≡ 2sαcα ,
Yd

1 , and Yd
2 . Defining that x̂ν = (

m̂ν/mn3

)× x̂ν3 with x̂ν3 =
mn3
μX

and fixed mn1 = 0.01 eV, aISS
e,μ(H±) given in Eq. (61)

depends strongly on x̂ν3. With large x̂ν3 ∈ [10−3, 5 × 10−3
]

the allowed ranges of free parameters are given in Table 1. We
note that sα never vanishes, namely large x̂ν3 ≤ 5×10−3 can
allow rather small |sα| ≥ 10−3, provided that tβ → 0.3. This
property distinguishes completely to the conclusion given
in Ref. [76], where the allowed regions with fixed sα = 0
require a necessary condition of large tβ > 30.

In this last discussion we will focus on the allowed regions
consisting of light masses of heavy neutrinos and singly
charged Higgs bosons. Namely in the ISS realization, heavy
neutrinos can be detected by future searches at colliders such
as Large Hadron Collider (LHC) and the International Linear
Collider (ILC), and Large Hadron electron Collider (LHeC)
[121], where the heavy neutrinos mass range from O(102)

GeV to few TeV were discussed [122–126]. Namely, because
of the not too small mixing ∼ √

xν,3 between ISS and active
neutrinos νaL , the main production channel of heavy neutri-
nos nI (I = 4, . . . , 9) with mass M0 at LHC is ud̄ → nI e+

a
through the s channel exchanging W boson. Then the decay
channel of nI may be nI → e−

a W
+, na Z , nah, where h

is the standard model-like Higgs boson. The ILC can pro-
duce heavy neutrino in the processes e+e− → n̄anI through
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Fig. 2 The dependence of �aISS
μ,0(H

±) and
[
−�aISS

e,0 (H±)
]

as functions of x1 with different fixed x2. The red lines show the 1σ allowed ranges

of �aNP
μ and �aNP

e given in Eqs. (1) and (2), respectively

Table 1 Allowed ranges of free parameters with large 10−3 ≤ x̂ν3 = mn3
μX

≤ 5 × 10−3, the notations − (+) denote the negative (positive) ranges
of the allowed regions

tβ sα {−, +} M0 [TeV] mH±
1

[TeV] mH±
2

[TeV] Yd
1 {−, +} Yd

2 {−, +}

Min 0.320 {−0.987, 0.004} 0.194 0.806 0.801 {−0.364, 0.019} {−2.95, 0.311}
Max 22.932 {−0.039, 0.998} 4.998 49.67 49.03 {−0.018, 0.376} {−0.388, 2.95}

t and s-channels exchanging the W and Z bosons, respec-
tively. The model under consideration also predicts a chan-
nel producing two heavy neutrinos e+e− → n̄ I n I through
exchanging H±

k . In the following numerical discussion, the
allowed regions are defined as they result in the two values
of �aISS

μ and �aISS
e satisfying both AMM experimental data

of μ and electron at 1 σ discrepancy level, and all Yukawa
couplings satisfy perturbative limits, |(Y h

2 )ab|, |Y X
ab| ≤ √

4π

with a, b ≤ 3. The region of parameter space used to scan is
chosen as follows:

mH±
1
, mH±

2
≥ 800 GeV; 10 GeV ≤ M0 ≤ 5 × 103 GeV;

0.01 ≤ x1, x2 ≤ 100,

0.3 ≤ tβ ≤ 50; |sα| ≤ 1.; |Yd
1 |, |Yd

2 | ≤ 4.5; 10−7

≤ x̂ν3 = mn3

μX
≤ 10−3. (69)

The scanning range of x̂ν3 satisfies the non-unitary con-
straint given in Eq. (37). The numerical results confirm that∣
∣∣aISS

μ,1(H
±)/aISS

μ (H±)

∣
∣∣ < 4%, and

∣
∣∣aISS

μ,2(H
±)/aISS

μ (H±)

∣
∣∣ <

10−5. Therefore, these suppressed values are not shown in
detail. The allowed regions are more strict than the scanned
region given in (69), see Table 2. In addition, values of |sα|,
|Yd

1 |, and |Yd
2 | are bounded from below:

sα ∈ [−0.99, −0.029] ∪ [0.026, 0.996] → s2α

∈ [−1, −0.058] ∪ [0.051, 1],
Yd

1 ∈ [−0.361, −0.024] ∪ [0.015, 0.352], Yd
2

∈ [−2.95, −0.176] ∪ [0.523, 2.95], (70)

where we define s2α = 2sαcα . Here although the lower bound
of tβ is the perturbative limit chosen in the scanned range,
the upper bound is more strict than the largest value of the
scanned range tβ < 21.42 < 50. In general, the allowed
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regions require all lower bounds for free parameters x̂ν3 ≥
3.9 × 10−7, M0 ≥ 318. GeV, |Yd

2 | ≥ 0.176, and |s2α| >

0.051. Values of Yd
1 are bounded in a more strict range of

0.015 < |Yd
1 | < 0.352. The lower bound of M0 supports

many promoting channels to search for heavy neutrinos at
both LHC and ILC [122–125].

The correlations between free parameters and aISS
μ (H±)

in the allowed regions are illustrated in Fig. 3 with 2000
allowed points collected. The correlations of �ae(H±) vs.
�aμ(H±) can be seen from the correlations relating with Yd

1
shown in the lower right panel of Fig. 3. We can see that very
large tβ allows only small �aμ(H±). The dependence of sα ,
Yd

1 , and Yd
2 on �aμ(H±) is rather weak. The Fig. 3 shows

the consistent approximation we discussed above that aISS
ea �

aISS
ea ,0

(H±) ∼ t−1
β x̂1/2

ν3 Yd
a s2α . Namely, the two left panels pre-

fer allowed points with small tβ and large x̂ν3 . While large
values of �aμ near the upper allowed bound exclude large tβ
and too small x̂ν3 . In the upper right panel, large tβ requires
large |s2α| so that the ratio s2α/tβ is large enough to keep
�aμ in the allowed range. In the lower right panel, we can-
not realize the linear dependence of Yd

2 on �aμ because
many values of Yd

2 are excluded by the perturbative limit
of Y h

2 . On the other hand, this property can be seen for Yd
1

because of the relations |Yd
1 | ∼ |�aμ,0/�ae,0|. In particu-

larly, based on the two dominant contribution of AMM given
in Eqs. (64) and (68), �aISS

ea ,0
� �aISS

ea , it is easily to show

that |�aISS
μ /�aISS

e | �|�aISS
μ,0/�aISS

e,0 | = |mμYd
2 /(meY d

1 )|.
Identifying these with the experimental data will lead to
a consequence that |Yd

1 | = |mμYd
2 �aNP

e /(me�aNP
μ )| �

O(10−2)|Yd
2 |. Therefore, |Y1| can get small values of

O(10−2). Illustrations are shown in Fig. 4, where the left
panel shows that |Yd1 | ∼ �aISS

ea ,0
depends nearly linearly

on �aISS
e . The right panel shows the valid of the relation

�aISS
e � aISS

e,0 ∼ Yd
1 /Yd

2 we mentioned above. The band
widths appear in the plots originate from the 1σ ranges of
AMM experimental data.

It is also emphasized thatYd
1,2 may give loop corrections to

lepton massesme,μ [127,128], where large |Yd
1,2| may lead to

the fine-tuning problem that loop corrections δmμ,e � mμ,e.
Our model considered here has the same property with the
models in class I with new neutral lepton having Yψ = 0.
Discussions in Ref. [128] suggest that the allowed regions
we discussed above may consist of points with small |Yd

1,2|
enough to avoid this fine-tuning. Determining exactly these
regions of the parameter space should be done in the future.

The mass parameters M0 and mH±
1,2

are independent with

�aμ(H±) in the allowed regions. It is more interesting to
see the relations between two singly charged Higgs boson
masses and M0, and between x̂ν3 and two charged Higgs
boson masses and M0, see Fig. 5. In the left panel, small
x̂ν3 is disfavored and allowed with only large M0 up to the
upper bound of the scanned range. In the right panel, the

allowed region favors both small values of mH±
1

and mH±
2

,
but requires |mH±

1
− mH±

2
| ≥ 252.4 GeV.

Other interesting correlations between different free
parameters versus x̂ν3 are shown in Fig. 6. First, the allowed
regions favor large x̂ν3, which supports small s2α and large
tβ . In addition, careful numerical investigations show that
the recent constraint on x̂ν3 given in Eq. (37) does not allow
sα = 0 or tβ > 30. This conclusion excludes completely the
allowed regions indicated in Ref. [76], where large tβ > 30
is one of the necessary requirements to explain the exper-
imental (g − 2)μ data. This important difference appears
because of the different Higgs triplets in the Yukawa term
generating MD and Higgs couplings, depending on which
models 331ISS or 331β. The future update on x̂ν3 will lead
to a significant lower bound of s2α , for example x̂ν3 ≤ 10−4

will result in |s2α| ≥ 0.07, tβ ≤ 15, and |Yd
2 | ≥ 0.4. On

the other hand, small x̂ν3 < 5.10−7 requires simultaneously
small tβ > 0.3, large |s2α| → 1, and large Yd

2 corresponding
to max| (Y h

2

)
ab | → 3.0. This is the reason why x̂ν3 must be

bounded from below.

5 Conclusion

The two models 331β under consideration and 331ISS given
in Ref. [76] have two identical Yukawa couplings generating
masses to charged leptons and top quarks, therefore keep the
same lower bound tβ > 0.3. But they predict two opposite
ranges of tβ in the regions explaining successfully the exper-
imental data of (g − 2)e,μ. Namely, the regions predicted
by the 331β model requires small tβ < 30, in contrast to
the requirement of tβ > 30 indicated for the 331ISS model.
These opposite predictions of allowed tβ depend on which
Higgs triplets appear in the Yukawa terms needed to generate
Dirac neutrino mass matrix and couplings of singly charged
Higgs bosons.

We have indicated that the 331β model adding heavy
neutrinos and singly charged Higgs bosons h± as SU (3)L
singlets can explain both experimental data of (g − 2)μ,e

in the ISS framework. Apart from the well-known prop-
erty that this mechanism generates active neutrino masses
and mixing consistent with neutrino oscillations data, it also
allows both large values of non-unitary mixing parameters
and heavy neutrino masses larger than order of O(102) GeV.
The new singly charged Higgs bosons as SU (3)L singlets
will mix with the other Higgs components predicted by the
331β model, leading to new free couplings Y h of singly
charged Higgs bosons with heavy ISS neutrinos and charged
leptons. All of these features result in the chirally-enhanced
one-loop contributions from heavy ISS neutrino exchanges to
the AMM of electron and muon. These contributions can be
large up to the order of�aNP

e,μ. We have confirmed this conclu-
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Table 2 Allowed ranges of free parameters corresponding to the scanning region (69)

tβ sα x̂ν3 M0 [TeV] mH±
1

[TeV] mH±
2

[TeV] Yd
1 Yd

2

Min 0.3 −0.99 3.9 × 10−7 0.318 0.8 0.8 −0.361 −2.95

Max 21.42 0.996 10−3 5. 48 48. 0.352 2.949

Fig. 3 The correlations of free parameters vs. �aISS
μ (H±) and tβ in the allowed regions

Fig. 4 The correlations between Yd
1 and Yd

1 /Yd
2 vs �aISS

ea ,0
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Fig. 5 The correlations between different masses vs x̂ν3 (left panel) and mH±
1

(right panel)

Fig. 6 The correlations between different free parameters vs x̂ν3

sion from numerical illustrations in the limits of the simplest
forms of the total neutrino mass matrix and the Yukawa cou-
pling matrix Y h needed to avoid large Br(eb → eaγ ). The
phenomenology of the model 331β will be richer when these
limits are relaxed, and should be studied in more detail.
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Appendix A: One loop contribution to the form factor
c(ba)R for cLFV decays eb → eaγ and �aea

We collect here the results given in Ref. [36], which were used
directly to construct our analytic formulas corresponding to
the particular properties of the 3-3-1 models. The general
Lagrangian for needed interactions (b ≡ i , a ≡ f ):

L� = �
(
�aL

��PL + �aR
��PR

)
ea�

∗ + h.c.,

LV = �
(
�aL

�V γ μPL + �aR
�V γ μPR

)
eaV

∗
μ + h.c. (A1)

The form factors c(ab)R corresponding to the one-loop con-
tribution of a boson X coupling with a fermion ψ and usual
charged ea are:

cX(ab)R ≡ e

16π2m2
X

{
�aL∗

�X �bR
�Xm� [ fX (tX ) + QgX (tX )]

+
[
meb�

aL∗
�X �bL

�X + mea�
aR∗
�X �bR

�X

]
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+
[
f̃ X (tX ) + Qg̃X (tX )

]}
, (A2)

where X = �, V , tX ≡ m2
�/m2

X , Q ≡ Q� is the electric
charge of the fermion �, and the master functions are

f�(x) = 2g̃�(x) = x2 − 1 − 2x ln x

4(x − 1)3 ,

g� = x − 1 − ln x

2(x − 1)2 ,

f̃�(x) = 2x3 + 3x2 − 6x + 1 − 6x2 ln x

24(x − 1)4 ,

fV (x) = x3 − 12x2 + 15x − 4 + 6x2 ln x

4(x − 1)3 ,

gV (x) = x2 − 5x + 4 + 3x ln x

2(x − 1)2 ,

f̃V (x) = −4x4 + 49x3 − 78x2 + 43x − 10 − 18x3 ln x

24(x − 1)4 ,

g̃V (x) = −3(x3 − 6x2 + 7x − 2 + 2x2 ln x)

(x − 1)3 . (A3)

We note that except g�(x), all of the remaining master func-
tions given in (A3) are bounded in finite ranges, namely 0 ≤
f�(x), g�(x), f̃�(x), fV (x), gV (x),− f̃V (x),−g̃V (x) ≤ a
≤ 2. Regarding g�(x), although limx→0 g�(x) = ∞, the
appearance of the factor m�/m2

X along with this function
will result in the fact that the relevant contributions should be
calculated by the modified function g(x) → √

xg�(x) that
is always finite and have bound 0 ≤ √

xg�(x) ≤ 1
4 . In the

3-3-1 models discussed in this work, the modified function is
xg�(x) mentioned in Eq. (45) is also finite for all x . Further-
more, �bR

�V = 0 for all charged gauge bosons V = W, Y
hence fV (x) and gV (x) do not appear in our calculation.

Appendix B: Detailed steps of calculation

The one-loop contributions of the singly charged Higgs
bosons to AMM is

aea (H
±
k ) = − fa

m2
H±
k

K+3∑

i=1

[
λ
L ,k∗
ia λ

R,k
ia mni f�(xi,k)

+mea

(
λ
L ,k∗
ia λ

L ,k
ia + λ

R,k∗
ia λ

R,k
ia

)
f̃�(xi,k)

]

= − fa
m2

H±
k

{
3∑

i=1

[
λ
L ,k∗
ia λ

R,k
ia mni f�(0)

+mea

(
λ
L ,k∗
ia λ

L ,k
ia + λ

R,k∗
ia λ

R,k
ia

)
f̃�(0)

]

+
K+3∑

i=4

[
λ
L ,k∗
ia λ

R,k
ia M0 f�(xk)

+mea

(
λ
L ,k∗
ia λ

L ,k
ia + λ

R,k∗
ia λ

R,k
ia

)
f̃�(xk)

]}
,

(B1)

where xi,k ≡ m2
ni /m

2
H±
k

, fa = g2mea
8π2m2

W
> 0. Using the

approximations that m2
ni /m

2
H±
k

� 0 for i ≤ 3, otherwise

m2
ni /m

2
H±
k

� M2
0 /m2

H±
k

= xk , we have f�(xi,k) � f�(0)

for i ≤ 3 and f�(xi,k) � f�(xk) for i > 3, leading to
the precise analytic formulas for different left-right parts as
follows

K+3∑

i=1

λ
L ,1∗
ia λ

R,1
ia mni f�(xi,1)

=
{
−meac

2
α

[
M†

DR
Tmν

(
I3 − 1

2
RR†

)]

aa

+ v√
2
t−1
β sαcα

[
M†

DR
TmνRY

h
]

aa

}
f�(0)

+
{
meac

2
α

[
M†

D

(
IK − 1

2
RT R∗

)
V ∗V †R†

]

aa

+ v√
2
t−1
β cαsα

×
[
M†

D

(
IK − 1

2
RT R∗

)
V ∗V †

×
(
IK − 1

2
R†R

)
Y h
]

aa

}
M0 f�(x1),

K+3∑

i=1

meaλ
L ,1∗
ia λ

L ,1
ia f̃�(xi,k)

= mea t
−2
β c2

α

{(
M†

DR
T R∗MD

)

aa
f̃�(0)

+
[

M†
D

(
IK − 1

2
RT R∗

)2

MD

]

aa

f̃�(x1)

}

,

K+3∑

i=1

λ
R,1∗
ia λ

R,1
ia f̃�(xi,k) = m2

ea t
2
βc

2
α

×
[(

I3 − 1

2
RR†

)2

aa
f̃�(0) +

(
RR†

)

aa
f̃�(x1)

]

+ v2s2
α

2

{(
Y h†R†RYh

)

aa
f̃�(0)

+
[

Y h†
(
IK − 1

2
R†R

)2

Y h

]

aa

f̃�(x1)

}

+ vmea tβs2α√
2

Re

{
−
[(

I3 − RR†

2

)
RYh

]

aa
f̃�(0)

+
[
R

(
IK − R†R

2

)
Y h
]

aa
f̃�(x1)

}
, (B2)

where s2α = 2sαcα , U ≡ UPMNS, and mν ≡ U∗m̂νU †.
Ignoring suppressed term proportional to O(R3) and setting
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f̃�(0) = 1
24 , we have

aea (H
±
1 ) = − g2m2

ea

8π2m2
W

Re
{[

c2
α

(
M†

DV
∗V †R†

)

aa

+vt−1
β cαsα√
2mea

(
M†

DV
∗V †Y h

)

aa

]
M0 f�(x1)

m2
H±

1

+ t−2
β c2

α

⎡

⎢
⎣

(
M†

DR
T R∗MD

)

aa

m2
H±

1

(
1

24
− f̃�(x1)

)

+
(
M†

DMD

)

aa

m2
H±

1

f̃�(x1)

⎤

⎥
⎦

+ m2
ea t

2
βc

2
α

m2
H±

1

[
1

24
− (RR†)aa

(
1

24
− f̃�(x1)

)]

+ v2s2
α

2m2
H±

1

[(
Y h†R†RYh

)

aa

(
1

24
− f̃�(x1)

)

+
(
Y h†Y h

)

aa
f̃�(x1)

]

− vmea tβs2α√
2m2

H±
1

[(
RYh

)

aa

(
1

24
− f̃�(x1)

)]

+O(R3)
}

, (B3)

and

aea (H
±
2 ) = aea (H

±
1 ) [x1 → x2, sα → −cα, cα → sα] .

(B4)

The total mixing matrices of neutrino corresponding to
the MSS and ISS frameworks are

U ν =
⎛

⎜
⎝
UPMNS

(
1 − m̂ν

2M0

)
−iUPMNS

(
m̂ν

M0

)1/2

−i
(
m̂ν

M0

)1/2
1 − m̂ν

2M0

⎞

⎟
⎠ (B5)

and

U ν =

⎛

⎜⎜
⎝

UPMNS
(
I3 − 1

2 x̂ν

)
iUPMNS

x̂1/2
ν√

2
UPMNS

x̂1/2
ν√

2
03×3 − i I3√

2
I3√

2

−x̂1/2
ν

i√
2

(
I3 − x̂ν

2

)
1√
2

(
I3 − x̂ν

2

)

⎞

⎟⎟
⎠ ,

(B6)

respectively. They satisfy the unitary condition: U ν†U ν =
U νU ν† = I3 + O

([
m̂ν

M0

]2
)

and U ν†U ν = U νU ν† = I9 +
O (x̂2

ν

)
.

6 Appendix C: Masses and mixing of the singly charged
Higgs bosons

From the three relations corresponding to the minimal condi-
tions of the Higgs potential (21), three parameters μ1,2,3 are
written in terms of the remaining Higgs potential couplings
and non-zero vevs of the neutral Higgs components, namely

μ2
1 = − f cβu

sβ
− 1

2
c2
βλ12v

2 − λ13u2

2
− λ1s

2
βv2,

μ2
2 = − f sβu

cβ

− c2
βλ2v

2 − λ23u2

2
− 1

2
λ12s

2
βv2,

μ2
3 − f cβsβv2

u
− 1

2
c2
βλ23v

2 − λ3u
2 − 1

2
λ13s

2
βv2. (C1)

Inserting these relations into the Higgs potential (21), we
obtain the squared mass matrix of the singly charged Higgs
bosons in the basis (ρ±, η±, h±)T as follows

M2
c =

⎛

⎜⎜⎜
⎜
⎝

cβ
(
cβ λ̃12sβv2−2 f u

)

2sβ
1
2cβλ̃12sβv2 − f u

cβ fhv√
2

1
2cβλ̃12sβv2 − f u

sβ
(
cβ λ̃12sβv2−2 f u

)

2cβ
fhsβv√

2
cβ fhv√

2

fhsβv√
2

1
2

(
λh3u

2 +
(
λh2c

2
β + s2

βλh1

)
v2 + 2μ2

4

)

⎞

⎟⎟⎟
⎟
⎠

.

(C2)

Diagonalizing this matrix will result in a zero eigenvalue
and two massive ones denoted as m2

H±
12

, which correspond

to a goldstone boson φ±
W and two physical singly charged

Higgs bosons H±
1,2. The mixing matrix C used to diagonal-

ize CM2
cC

T = diag

(
0, m2

H±
1
, m2

H±
2

)
can be written as a
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product of the two unitary transformationsC = C2C1, where

C1 ≡
⎛

⎝
−sβ cβ 0
cβ sβ 0
0 0 1

⎞

⎠ , C2 ≡
⎛

⎝
1 0 0
0 cα −sα
0 sα cα

⎞

⎠ . (C3)

The C1 was introduced previously [64,67] corresponding to
the decoupling limit between h± and two Higgs triplets ρ±
and η±, namely the matrix

C1M2
cC

T
1

= M2
c,1 =

⎛

⎜⎜
⎝

0 0 0

0 λ̃12v2

2 − f u
cβ sβ

fhv√
2

0 fhv√
2

1
2

(
λh3u

2 +
(
λh2c

2
β + s2

βλh1

)
v2 + 2μ2

4

)

⎞

⎟⎟
⎠ ,

(C4)

which is diagonal when triple coupling fh = 0. In con-
trast, C2 presents the mixing between the singlet h± and two
singly charged Higgs components of the two Higgs triplets,

C2M2
c,1C

T
2 = diag

(
0, m2

H±
1
, m2

H±
2

)
. It can be proved that

tan(2α)

= 2
√

2cβ fhsβv

2 f u + c3
βsβλh2v2 + cβsβ

[
v2
(
s2
βλh1 − λ̃12

)
+λh3u

2+2μ2
4

] ,

(C5)

and mH±
1,2

are functions of parameters included in the matrix

M2
c,1 including fh, f , and μ4. On the other hand, we can

choose mH±
1,2

and α as free parameters while fh, f , and μ4

are dependent parameters, their analytic formulas are given
in Eq. (23).
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