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Abstract Actions for noncommutative (NC) gauge field
theories can be expanded perturbatively in powers of the non-
commutativity parameter θ using the Seiberg–Witten map
between ordinary classical fields and their NC counterparts.
The leading order term represents classical (θ = 0) action
while higher-order terms give us θ -dependent NC correc-
tions that ought to capture some aspects of quantum gravity.
Building on previous work of Aschieri and Castellani on
NC Chern–Simons (CS) gauge and gravity theories, show-
ing that non-trivial θ -dependence exists only for spacetime
dimensions D ≥ 5, we investigate a correlated effect of these
extra spatial dimensions and noncommutativity on four-
dimensional physics, up to first-order in θ . Assuming that
one spatial dimension is compactified into a circle, we apply
the Kaluza–Klein reduction procedure on the NC D = 5 CS
theory for the conformal gauge group SO(4, 2), to obtain
an effective, θ -dependent four-dimensional theory of gravity
that has Einstein–Hilbert gravity with negative cosmological
constant as its commutative limit. We derive field equations
for this modified theory of gravity and study the effect of NC
interactions on some classical geometries, such as the AdS-
Schwarzschild black hole. We find that this NC background
spacetime gives rise to chiral gravitational anomaly due to
the nonvanishing θ -dependent Pontryagin density.

1 Introduction

Higher-dimensional theories of gravity have been of inter-
est in physics ever since Kaluza and Klein proposed an ele-
gant way of unifying Einstein’s theory of General Relativ-
ity with Maxwell’s electromagnetism, in terms of a purely
geometric theory of five-dimensional gravity [1,2] with one
spatial dimension compactified into a circle – the method
now known as the Kaluza–Klein (KK) dimensional reduc-
tion. In search for a Grand Unified Theory with appropri-
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ate four-dimensional phenomenology, extra spatial dimen-
sions became a topic of extensive investigation that has led
to a plethora of higher-dimensional supergravity models [3].
Some of these models turned out to be low-energy approx-
imations to certain types of superstring theory, where extra
spatial dimensions most commonly and unavoidably arise.
For a comprehensive account on the development of the idea
of extra spatial dimensions and KK reduction see [4].

The most natural higher dimensional (D > 4) general-
ization of the Einstein–Hilbert (EH) Lagrangian (with the
cosmological constant term) that does not involve torsion
and gives at most second-order field equations for the met-
ric tensor in the torsion-free sector, is the Lovelock–Lanczos
(LL) Lagrangian [5–7],

L(D)
LL =

[D/2]∑

i=0

ci L
(D)
i , (1.1)

with locally Lorentz-invariant Lagrangian D-forms

L(D)
i = εa1...aD R

a1a2 . . . Ra2i−1a2i ea2i+1 . . . eaD . (1.2)

It is expressed in a coordinate-free fashion of the first-
order formalism (exterior product between forms is implied)
where vielbein (tetrade in D = 4) 1-form ea = eaμdxμ

and spin-connection 1-form ωab = ωab
μ dxμ are treated as

independent dynamical fields. This renders the LL action
manifestly invariant under diffeomorphisms. The curvature
2-form is Rab = dωab + ωa

cω
cb, and parameters ci are

arbitrary constants with dimensions [ci ] = [length]2i−D

(since by dimensional analysis we have [e] = [length]1 and
[ω] = [length]0).

There is a long tradition of attempts to formulate gravity
as a proper gauge field theory [8]. A well-known example
of a gauge field theory that can only be defined on odd-
dimensional spacetimes, i.e. for D = 2n − 1, is the Chern–
Simons (CS) theory. The CS Lagrangian can be regarded as

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10657-7&domain=pdf
http://orcid.org/0000-0002-8656-1030
mailto:dgocanin@ipb.ac.rs


672 Page 2 of 15 Eur. Phys. J. C (2022) 82 :672

a particular case of the LL Lagrangian (1.1) with a unique
choice of parameters that renders CS theory invariant under
an enlarged gauge group of transformations (one that con-
tains the Lorentz group SO(D − 1, 1) as a subgroup). This
enhancement follows from the fact that, in CS theory, the
vielbein and the spin-connection stand on equal footing, as
components of the connection of an enlarged gauge (super)-
group, which makes CS theory a proper gauge theory of
(super)-gravity [9–12], at least in odd dimensions. All param-
eters in the CS Lagrangian are fixed rational coefficients that
cannot be changed without breaking the gauge invariance.
Moreover, the fact that gauge invariance is satisfied off-shell
makes CS theory a promising candidate for a quantum the-
ory of gravity in odd-dimensional spacetimes. However, full
quantization of CS theory in dimensions greater than three
is not well-understood [7,13–15].

CS Lagrangians describe topological gravity in any odd
number of dimensions, suggesting that CS gravity cannot be
used to describe D = 4 phenomenology but only as a toy
model for better understanding gravity in general. However,
in [16] Chamseddine proposed a model of topological grav-
ity for all even dimensions, which involves a scalar field, and
can be obtained by KK reduction from a higher-dimensional
CS action (see also [17]). This relation explains the appear-
ance of a scalar field and indicates that CS theory can be
of even greater importance than previously anticipated. In
particular, starting from a D = 5 CS action for the confor-
mal gauge group SO(4, 2) (isometry group of anti-De Sitter
(AdS) space AdS5), the KK reduction procedure yields a
D = 4 topological gravity action with local SO(3, 2) gauge
symmetry. While it is possible to consider this action on its
own, we encounter only SO(3, 1) local Lorentz symmetry
when describing gravitational physics on common energy
scales, suggesting that SO(3, 2) should be broken in some
way. Theories based on broken SO(3, 2) gauge symmetry
have been considered in the literature for a long time, start-
ing with the work of MacDowell and Mansouri [18] and
Stelle and West [19], see also [20–22]. By fixing the value
of the scalar field in the topological action proposed in [16],
one obtains the standard EH term with a negative cosmolog-
ical constant and a topological Gauss–Bonnet term that does
not affect classical field equations. KK reduction of higher-
dimensional topological actions is also studied in [23,24]. In
this paper, we apply the KK reduction procedure on an NC
extension of D = 5 CS action to see the effects of space-
time noncommutativity in the low-energy, four-dimensional
theory of gravity.

It is generally believed that the classical description of
spacetime as a smooth manifold breaks at small enough
length scales. One way to formalize a deviation from classi-
cal geometry is to introduce an abstract algebra of noncom-
muting coordinates x̂μ, describing a noncommutative (NC)
spacetime. These NC coordinates satisfy some non-trivial

commutation relations, the simplest of which are the canon-
ical, or θ -constant commutation relations,

[x̂μ, x̂ν] = iθμν, (1.3)

where NC deformation parameters θμν comprise a con-
stant antisymmetric matrix. The NC parameters are of order
l2NC , where lNC is an undetermined length scale associ-
ated with noncommutativity. In a NC spacetime, individual
points cannot be sharply defined, as encoded by a kind of
uncertainty relations, �x̂μ�x̂ν ≥ 1

2 |θμν |. A way to imple-
ment this canonical spacetime noncommutativity is to keep
the commutative (i.e. classical) structure of spacetime and
instead deform the algebra of functions of commuting coor-
dinates, xμ, by substituting the ordinary pointwise multi-
plication with the noncommutative, but associative, Moyal-
Weyl-Groenewold (MWG) �-product,

( f � g)(x) = f (x)e
i
2
←−
∂ μθμν−→

∂ ν g(x)

= f (x)g(x) + i

2
θμν∂μ f (x)∂νg(x) + . . . (1.4)

Applied on coordinate functions, it gives us the θ -constant
�-commutator relations,

[xμ, xν]� = xμ � xν − xν � xμ = iθμν. (1.5)

For a comprehensive review of the subject, see [25,26]. By
definition, the MWG �-product is associated with a particular
system of coordinates, depending on the choice of noncom-
muting coordinates x̂μ on which we impose the θ -constant
noncommutativity (1.3). However, as we will discuss later,
the �-product structure can be generalized to any coordinate
system in a way that allows us to study NC gauge field theory
and NC (super)-gravity in a coordinate-free formulation; see,
for example, [27]. In a nongravitational setting, NC three-
dimensional Chern–Simons theory was also considered in
[28]. Also, the subject of NC extra dimensions is treated in
[29].

NC gravity has been studied extensively for the past
twenty years and from various viewpoints. In [30–32] an
approach based on the Seiberg–Witten map was applied to
deform pure Einstein gravity. The twist approach was applied
in [33–36]. Some other interesting proposals can be found in
[37–43]. NC gravity based on canonically deformed Lorentz
symmetry is developed in [44], and for canonically deformed
AdS group SO(3, 2) in [45–48], both models predicting that
first non-vanishing NC correction appears at second-order in
θ . Finally, the NC extension of D = 5 CS gravity for the
conformal gauge group SO(4, 2) is constructed by Aschieri
and Castellani in [49], and the first-order NC correction is
computed explicitly. Their result will be taken as the start-
ing point of this paper. Assuming that one spatial dimen-
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sion is compactified into a circle, we will derive an effective
four-dimensional theory of gravity that amounts to a mod-
ification of Einstein’s gravity by θ -dependent perturbative
NC corrections that can be interpreted as new gravitational
interaction terms, capturing some aspects of quantum gravity.
We will derive modified field equations for tetrade and spin-
connection from this NC action and analyze some of their
solutions. We find that NC-modified AdS-Schwarzschild
geometry exhibits θ -dependent chiral gravitational anomaly
that makes an interesting phenomenological aspect of the
theory.

The paper is organized as follows. In the following section,
we briefly review the classical CS theory and, in particular,
the D = 5 case and its KK reduction. In Sect. 3, we go
through some basic elements of the NC �-product formalism
and geometric Seiberg–Witten map, closely following the
account of [49]. Section 4 contains the KK reduction of the
NC D = 5 CS action and derivation of the NC-modified field
equations for the effective four-dimensional theory of gravity.
In Sect. 5, we study the NC-correction to AdS-Schwarzschild
geometry and compute the θ -dependent Pontryagin topolog-
ical invariant that gives rise to a chiral gravitational anomaly.
Finally, we discuss some main points of the paper and possi-
bilities for further research in Sect. 6. Some useful formulae
and calculations are given in Appendices A–C.

2 Classical CS gauge field theory in D = 5 and its
Kaluza–Klein reduction

In doing classical (i.e. commutative) gauge field theory, one
usually starts with a Lie algebra g of some gauge group
G, having a set of generators {TK } (we take them to be
anti-hermitian). Assuming that G-bundle is trivial, there is
a globally defined g-valued gauge field 1-form, A = AK TK ,
and the corresponding g-valued field strength 2-form, F =
dA+A∧A = FK TK . Under an infinitesimal gauge transfor-
mations, with a g-valued gauge parameter 0-form ε = εK TK ,
they change as

δε A = −dε − [A, ε] = −dε − A ∧ ε + ε ∧ A, (2.1)

δεF = [ε, F] = ε ∧ F − F ∧ ε, (2.2)

and the algebra of infinitesimal gauge transformations closes
in the Lie algebra,

[δε1, δε2 ] = δ−[ε1,ε2]. (2.3)

Covariant derivative acts on F (or any field in the adjoint
representation) as

DF = dF + [A, F] = dF + A ∧ F − F ∧ A. (2.4)

One can define a gauge-invariant topological action over
some 2n-dimensional manifold M2n with boundary by tak-
ing a 2n-form Tr (Fn) as a Lagrangian, i.e.

∫

M2n

Tr
(
Fn) , (2.5)

where we take Tr in some matrix representation of the Lie
algebra (more generally, one can use any symmetric invari-
ant tensor of rank n, 〈. . . 〉n : g × · · · × g → C, but since
we will be using an explicit representation later on, the trace
operator is a natural choice [50]). Action (2.5) is manifestly
gauge-invariant, given the gauge transformation law for F
and graded cyclicity of the trace. Some basic definitions
involving Lie algebra-valued forms are given in Appendix
A.

From the Chern–Weil theorem [50] follows that Tr (Fn)

can be expressed as an exact form, being an exterior derivative
of a Chern–Simons (2n − 1)-form,

Tr(Fn) = dQ(2n−1)
CS , (2.6)

where the CS form is given by,

Q(2n−1)
CS = n

1∫

0

tn−1Tr
(
A(F + (t − 1)A2)n−1

)
dt. (2.7)

In particular, in five dimensions (for n = 3), we have

Q(5)
CS = Tr

(
F2A − 1

2
FA3 + 1

10
A5

)
. (2.8)

The topological action (2.5) is therefore related by Stokes
theorem with the CS action on the (2n − 1)-dimensional
boundary of M2n ,

S(2n−1)
CS = α

∫

∂M2n

Q(2n−1)
CS =

∫

∂M2n

L(2n−1)
CS , (2.9)

where the overall factor α is introduced for later convenience.
The gauge invariance of Tr (Fn) implies that the gauge vari-
ation of the CS Lagrangian is locally exact, and so

δεS
(2n−1)
CS = 0. (2.10)

It is worth noting that CS theory need not be regarded as a
boundary theory. In particular, it can be defined on an arbi-
trary (2n−1)-dimensional manifold with boundary, in which
case (at least for n = 2) the boundary theory corresponds to
the chiral Wess–Zumino–Witten (WZW) model [51].

Gauge group that we are interested in is the conformal
group SO(4, 2), i.e. the group of isometries of AdS5. Let
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JAB = (JAB, JA5) be the generators of this group with
SO(4, 2) group index A = (A, 5) and A = 0, 1, 2, 3, 4,
satisfying the so(4, 2) algebra,

[JAB, JCD] = GAD JBC + GBC JAD − (C ↔ D) (2.11)

with GAB = (− + + + +−), or, in a more explicit form,

[JAB, JCD] = GAD JBC + GBC JAD − (C ↔ D),

[JAB, JC5] = GBC JA5 − GAC JB5,

[JA5, JC5] = JAC , (2.12)

with GAB = (− + + + +). A representation of this alge-
bra is provided by five-dimensional 4 × 4 gamma matrices
�A, satisfying Cliford algebra {�A, �B} = 2GAB14×4. In
terms of these gamma matrices, the generators are given by
JAB = 1

2�AB = 1
4 [�A, �B] and JA5 = 1

2�A, with hermi-

tian relations J †
AB = �0 JAB�0 and J †

A5 = �0 JA5�0. The
five-dimensional gamma-matrices can be defined in terms of
familiar, reversed signature, four-dimensional Dirac gamma-
matrices as �A = (�a = −iγa, �4 = γ5), with SO(3, 1)

Lorentz index a = 0, 1, 2, 3.
The SO(4, 2) gauge field can be decomposed as

A = 1

2
�AB JAB + 1

l
E A JA5, (2.13)

where l is the AdS radius. Field strength 2-form is then

F = dA + A ∧ A = 1

2
F AB JAB + F A5 JA5

= 1

2

(
RAB + 1

l2
E AEB

)
JAB + 1

l
T A JA5, (2.14)

with curvature and torsion given by

RAB = d�AB + �A
C�CB, (2.15)

T A = D�E A = dE A + �A
B E

B . (2.16)

Using the trace identities (see Appendix B) we compute

Tr
(
F3

)
= 3i

8
εABCDE F

AB FCDFE5. (2.17)

After some partial integration, the CS action in D = 5 can
be cast in the following form,

S(5)
CS = k

8

∫
εABCDE

(
1

l
RAB RCDEE

+ 2

3l3
RABEC EDEE + 1

5l5
E AEBEC EDEE

)
,

(2.18)

where we took α = −ik/3, the dimensionless parameter k
being the CS level. In a perhaps more familiar second-order
formulation, the action is

S(5)
CS = 1

16πG(5)

∫
d5x

√−g
[
R − 2�

+ l2

4

(
R2 − 4RμνRνμ + Rμνρσ Rρσμν

) ]
, (2.19)

with five-dimensional gravitational constant G(5) = l3
8πk and

cosmological constant � = −3/ l2. The last term in (2.19) is
the Gauss–Bonnet term, which in D = 5 is not topological.
Note, however, that the action (2.19) is defined on a Riemann-
Cartan spacetime, as the torsion is not set to zero, even on-
shell. This implies that tensor Rμνρσ is a Riemman-Cartan
curvature tensor, and does not have all symmetry properties
of a Riemman curvature tensor on a Riemannian (Lorentzian)
spacetime.

Now we consider in some detail the KK dimensional
reduction of the D = 5 CS action (2.18) along the lines
of Chamseddine’s paper [16]. First, we separate the five-
dimensional spacetime coordinates as x μ̃ = (xμ, x4) where
μ = 0, 1, 2, 3. Assuming that the one extra spatial dimen-
sion is compactified into a circle of radius R, i.e. x4 ∼
x4 + 2πR, and taking only KK zero-modes into account
(nothing depends on x4), we can integrate out the x4 coordi-
nate to get an overall factor of 2πR.

The SO(4, 2) gauge field A = 1
2�AB JAB + l−1E A JA5

with A = (a, 4) and a = 0, 1, 2, 3, can be decomposed as

A = 1

2
�ab

μ Jabdxμ + �a4
μ Ja4dxμ

+ 1

2
�ab

4 Jabdx4 + �a4
4 Ja4dx4

+ 1

l
Ea

μ Ja5dxμ + 1

l
E4

μ J45dxμ

+ 1

l
Ea

4 Ja5dx4 + 1

l
E4

4 J45dx4. (2.20)

Components �ab
μ ≡ ωab

μ and Ea
μ ≡ eaμ are identified as

the spin-connection and the tetrade of the four-dimensional
theory, respectively. Also, we introduce φa ≡ −l2�a4

4 and
ϕ ≡ l E4

4 as components of a scalar multiplet in four dimen-
sions (usually called the radion); note that both φa and ϕ have
length dimension one. We make a standard truncation of the
theory by keeping only four-dimensional graviton (ωab

μ , eaμ)

and four-dimensional scalar (φa, ϕ), and setting the compo-
nents �ab

4 , Ea
4 , �a4

μ , and E4
μ to zero.

As for the curvature components, only Rab
μν and Ra4

μ4
remain after the truncation. In particular,
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Rab
μν = ∂μωab

ν − ∂νω
ab
μ + ωa

μcω
cb
ν − ωa

νcω
cb
μ ,

Ra4
μ4 = ∂μ�a4

4 + ωa
μc�

c4
4 = −l−2Dμφa,

Rab
μ4 = Ra4

μν = 0. (2.21)

Thus we come to the reduced action in four dimensions, for-
mulated in the coordinate-free fashion,

Sred = k(2πR)

8l2

∫
εabcd

(
RabRcdϕ + 2

l2
Rabecedϕ

+ 1

l4
eaebecedϕ − 4

3l3
eaebecDωφd − 4

l
ea RbcDωφd

)
.

(2.22)

This action is invariant under SO(3, 2) gauge transforma-
tions, however this invariance is not manifest. Generators of
the SO(3, 2) group are Jab and Ja5, with SO(3, 2) gauge
field 1-form and field strength 2-form

A = 1

2
ωab Jab + l−1ea Ja5,

F = 1

2
Fab Jab + Fa5 Ja5. (2.23)

By introducing adjoint scalar field

� = �a J4a + �5 J45 = φa J4a + ϕ J45, (2.24)

the reduced action (2.22) becomes

Sred = ik(2πR)

l2

∫
Tr (FF�) , (2.25)

which is a topological action manifestly invariant under
SO(3, 2) gauge transformations.

After the KK reduction and truncation, SO(3, 2) gauge
transformations with parameter ε = 1

2εab Jab + εa5 Ja5 (we
set εa4 = ε45 = 0), induce the following variations of the
gauge field components,

δεω
ab = −dεab −

(
ωa

cε
cb + l−1eaεb5 − (a ↔ b)

)
,

l−1δεe
a = −dεa5 − ωa

bε
b5 − l−1ebε a

b ,

δεφ
a = εabφ

b + εa5ϕ,

δεϕ = −εa5φa . (2.26)

with the remaining components being invariant. In terms of
the SO(3, 2) connection A and the scalar field �, these vari-
ations can be expressed as

δεA = −dε − [ε,A], (2.27)

δε� = [ε,�], (2.28)

and therefore also δεF = [ε,F]. The SO(3, 2) invariance
of the action (2.25) now follows directly from the graded
cyclicity of the trace.

The local SO(3, 2) invariance of the theory can be reduced
to the local Lorentz SO(3, 1) invariance by choosing φa = 0
and ϕ = l, which gives us

Sred = k(2πR)

8l3

∫
εabcd

×
(
l2RabRcd + 2Rabeced + 1

l2
eaebeced

)
. (2.29)

The above action consists of the standard EH term, the cos-
mological constant term with � = −3/ l2, and the topo-
logical Gauss–Bonnet term that does not affect classical
field equations; the four-dimensional gravitational constant

is G(4) = l3

16π2Rk
= G(5)

2πR .
Classical field equations are simply

εabcd

(
Rab + 1

l2
eaeb

)
ec = 0, (2.30)

εabcdT
aeb = 0. (2.31)

Equation (2.31) shows that the classical geometry is torsion-
less, i.e. T a = 0, which is in agreement with the usual percep-
tion of Einstein’s General Relativity. The first equation is the
standard Einstein field equation with a negative cosmolog-
ical constant. The above analysis shows how KK reduction
of the classical D = 5 CS theory for the conformal gauge
group SO(4, 2) leads to Einstein’s gravity with negative cos-
mological constant in four dimensions.

In what follows, we will study further this relation between
D = 5 CS theory and four-dimensional gravity in the setting
of NC field theory.

3 Noncommutative gauge field theory and the
geometric Seiberg–Witten map

To make a transition to NC gauge field theory, we will intro-
duce some basic elements of the generalized �-product for-
malism and the geometric version of the Seiberg–Witten
(SW) map (a generalization of the ordinary SW map asso-
ciated with the MWG �-product [52]), closely following the
account given in [49], where the geometric SW map was
applied in the case of NC CS gravity. For completeness, we
will recapitulate the main steps and results obtained in the
case of NC D = 5 CS gravity (they differ from those in [49]
only due to our slightly different conventions) in a manner
that will be sufficient to proceed with the KK reduction of
this theory in the following section. For the complete anal-
ysis and derivation of the NC correction to the classical CS
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gravity action in all odd dimensions, we point the reader to
[49].

NC gauge field theory (including NC gravity and super-
gravity) can be formulated in the language of twisted differ-
ential geometry, a short review of which can be found in [53].
In the case of an abelian Drinfeld twist [27,44,49,54,55], one
introduces an associative exterior product between forms,
denoted by ∧�, that amounts to a deformation of the ordi-
nary exterior product. For a p-form τp and a q-form τ ′

q , it is
defined by

τp ∧� τ ′
q ≡

+∞∑

n=0

(
i

2

)n

θ I1 J1

. . . θ In Jn (�I1 . . . �Inτp) ∧ (�J1 . . . �Jnτq)

= τp ∧ τ ′
q + i

2
θ I J (�I τp) ∧ (�J τ

′
q)

+ 1

2!
(
i

2

)2

θ I1 J1θ I2 J2

× (�I1�I2τp) ∧ (�J1�J2τ
′
q) + . . .

= τp ∧ τ ′
q + �I k

I . (3.1)

where NC parameters θ I J (I, J = 1, . . . , s ≤ D) com-
prise a constant antisymmetric matrix, while �I stand for
Lie derivatives along mutually commuting vector fields XI

(summation over indices I, J is implied). The NC exterior
product (3.1) is associative due to [XI , X J ] = 0. The last line
of (3.1) follows from the fact that, in the case of commuting
vector fields, Lie derivatives along these fields also commute
[�I , �J ] = 0. Therefore, the ∧� product of forms differs form
the ordinary exterior product by a total Lie derivative of some
(p+q)-form k I , which is given by the remaining summation
in (3.1).

A system of commuting vector fields {XI } that enter the
definition of ∧� is an independent structure on the space-
time manifold that provides a coordinate-free formulation
of an NC theory. However, we can choose (at least locally)
a system of coordinates xμ that is adapted to {XI } by set-
ting XI = ∂/∂xμ (note that the number of vector fields XI

need not be equal to the number of spacetime dimensions
D, in which case {XI } span a subspace of a D-dimensional
tangent space), so that if τp and τ ′

q are 0-forms, the (3.1)
reduces to the MWG �-product of functions (1.4) men-
tioned in the introduction. In particular, the �-commutator
between coordinate functions (treated as scalar fields) is sim-
ply [xμ, xν]� = iθ I J δ

μ
I δν

J = θμν = const . In some other
system of coordinates, unrelated to {XI }, the �-commutator
would in general not be constant. In other words, the choice
of {XI } determines in which coordinates do we have con-
stant noncommutativity. At this point, it might seem arti-
ficial to introduce such a structure without giving it some
physical interpretation. Although it is essential for defining

a star-wedge product, it makes an NC theory emphatically
not background independent. It is therefore natural to ask
is there some principle that explains how these vector fields
come about. Presumably, the criterion for choosing a partic-
ular set of commuting vector fields could come from some
more fundamental theory that has NC field theory as its low-
energy limit.

Gauge field theory actions in the NC setting have the
same form as the corresponding commutative ones, and are
obtained directly from them by replacing ordinary exterior
product with the NC-deformed exterior product ∧�. How-
ever, to maintain gauge invariance of the NC theory, one has
to introduces NC fields (we will denote them by a hat sym-
bol) that change under NC gauge transformations in the same
manner as classical fields change under ordinary gauge trans-
formations. For an NC gauge parameter ε̂, infinitesimal NC
variations of NC gauge field Â and NC field strength F̂ are
thus

δ̂̂ε Â = −d̂ε − Â ∧� ε̂ + ε̂ ∧� Â, (3.2)

δ̂̂ε F̂ = ε̂ ∧� F̂ − F̂ ∧� ε̂. (3.3)

which amounts to an NC deformation of (2.1) and (2.2). The
NC action is invariant under these deformed gauge transfor-
mations, by construction.

In particular, the NC D = 5 CS action reads

S(5)
CS,NC = − ik

3

∫
Tr

(
F̂ ∧� F̂ ∧� Â

− 1

2
F̂ ∧� Â ∧� Â ∧� Â

+ 1

10
Â ∧� Â ∧� Â ∧� Â ∧� Â

)
. (3.4)

A commutator between two infinitesimal NC gauge transfor-
mations acts on the (adjoint) field F as

[̂δ̂ε1, δ̂̂ε2 ]F̂ = δ̂−[̂ε1 ,̂ε2]� F̂ = −[[̂ε1, ε̂2]�, F̂]�, (3.5)

with

[̂ε1, ε̂2]� = 1

2

(
[̂εK1 , ε̂L2 ]�{TK , TL} + {̂εK1 , ε̂L2 }�[TK , TL ]

)
.

(3.6)

The fact that anticommutator {TK , TL} appears in the above
formula implies that infinitesimal NC gauge transformations
are not generally closed in the Lie algebra. A way out of this
difficulty is to consider a larger, universal enveloping algebra
(UEA) of the original Lie algebra, i.e., to assume that the NC
gauge transformations parameter is UEA-valued, implying
that the NC gauge field Â and NC field strength F̂ are also
UEA-valued.
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However, since UEA is infinite-dimensional, this leads to
an infinite number of new degrees of freedom, which we find
physically unacceptable. Seiberg–Witten (SW) map allows
us to redefine these new NC degrees of freedom in terms of
the original classical ones [52,56]. The main idea of Seiberg
and Witten was to show that these UEA-valued NC fields
that transform under NC gauge transformations can be orga-
nized into a perturbation series in powers of θ , with coeffi-
cients built out of fields from the commutative theory (θ = 0)
subjected to ordinary gauge transformation laws. The basic
principle behind SW construction is that NC gauge trans-
formations are induced by the corresponding commutative
ones,

δ̂̂ε Â(A) = Â(A + δε A) − Â(A), (3.7)

where the NC gauge field Â is a function of the classical
gauge field A and ε̂ = ε̂(ε, A). Using (2.1) and (3.2) we
can solve this differential equation perturbatively and derive
the nonlinear SW map that represents NC fields Â and ε̂ as a
power series in θ , with coefficients built out solely of classical
fields. For an arbitrary set of commuting vector fields (for any
abelian twist), SW expansions of the NC gauge field and NC
parameter, up to first-order in θ , are given by

Â = A − i

4
θ I J {AI , �J A + FJ }, (3.8)

ε̂ = ε − i

4
θ I J {AI , �J ε}. (3.9)

where 0-form AI ≡ iX I (A) = 1
2�AB

I JAB + l−1E A
I JA5 is

a contraction of the gauge field along vector field XI , and
similar for 1-form FJ .

SW map allows us to expend NC actions in powers of
θ and ensures the invariance of the action under ordinary
gauge transformations, at each order. The leading order term
(θ = 0) is the classical action, and higher-order terms rep-
resent θ -dependent NC corrections that can be interpreted
as new effective interactions for classical fields. A detailed
computation of an NC gauge variation of the NC CS (2n−1)-
form can be found in [49]. The result is

δθ Q̂
(2n−1)
CS = i

2
δθ I J

×
∫

Tr

(
FDFI

n−3∑

k=0

(k + 1)Fn−3−k FJ F
k

)
.

(3.10)

We see that for n = 1 and n = 2 the first-order NC correction
vanishes; it appears only for n ≥ 3. In particular, for n = 3,
i.e. for D = 5, the variation of the CS Lagrangian is

δθ L
(5)
CS,NC = k

6
δθ I JTr (F ∧ DFI ∧ FJ ) , (3.11)

where we have

DFI = dFI + [A, FI ]
= 1

2

(
D�F AB

I + 1

l2

(
E AT B

I − EBT A
I

))
JAB

+ 1

l

(
D�T

A
I + F AB

I EB

)
JA5. (3.12)

After calculating traces and some algebra, we get

S(5)
CS,θ = kθ I J

12

×
∫ (

F AB(FI )BC (D�FJ )
C
A + 1

l2
F AB(FI )BC (TJ )

C EA

+ 1

l2
F AB(TI )B(D�TJ )A + 2

l2
F AB(TI )B(FJ )AC E

C

+ 1

l2
T A(TI )

B(D�FJ )BA + 1

l2
T A(D�TI )

B(FJ )BA

+ 1

l2
TA(FI )

AB(FJ )BC E
C + 2

l4
TA(TI )B(TJ )

[B E A]
)

.

(3.13)

This θ -dependent action is manifestly diffeomorphism-
invariant and invariant under local SO(4, 2) gauge transfor-
mations by the general feature of the Seiberg–Witten con-
struction. It represents the leading-order perturbative correc-
tion to the classical D = 5 CS theory due to spacetime non-
commutativity.

4 Kaluza–Klein reduction of NC D = 5 CS theory

Now we come to the main step of our analysis, which is
the KK reduction of the first-order NC action (3.13). Since
this part is mainly technical, we only present the obtained
results. However, to provide some insight into the details of
the computational procedure, in Appendix C, we present an
explicit example of the reduction of one of the terms in (3.13).
We saw in Sect. 2 that KK reduction of the classical D = 5
CS action with conformal gauge group SO(4, 2), followed by
a suitable symmetry breaking necessary to obtain a Lorentz
invariant theory, leads to the standard EH action with the
negative cosmological constant in four dimensions. Now we
apply the same procedure on D = 5 first-order NC CS action
(3.13) to obtain NC corrections to Einstein’s gravity in four
dimensions.

First, we must see what happens to the basic build-
ing blocks under the KK reduction and symmetry break-
ing (SB). The F AB components of the field strength F =
1
2 F

AB JAB + l−1T A JA5 after the KK reduction and SB are
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given by

Fab
μν = Rab

μν + 1

l2
(eaμe

b
ν − eaνe

b
μ),

Fab
μ4 = Fa4

μν = 0,

Fa4
μ4 = − 1

l2
Dμφa + 1

l3
eaμϕ

SB−→ 1

l2
eaμ, (4.1)

and torsion components are

T a
μν = ∂μe

a
ν − ∂νe

a
μ + ωa

μbe
b
ν − ωa

νbe
b
μ,

T a
μ4 = T 4

μν = 0,

T 4
μ4 = 1

l
Dμϕ + 1

l2
eaμφa

SB−→ 0. (4.2)

Since they appears in (3.13), we also consider the covariant
derivatives (D�FI )

AB and (D�TI )A. The former is given by

(D�FI )
AB = dF AB

I + �A
C F

CB
I − �B

C F
CA
I

= 1

2

[
∂μ̃(X α̃

I F
AB
α̃ν̃ ) − ∂̃ν(X

α̃
I F

AB
α̃μ̃ )

+ X α̃
I

(
�A

μ̃ C F
CB
α̃ν̃ − �B

μ̃ C F
CA
α̃ν̃

− �A
ν̃ C F

CB
α̃μ̃ + �B

ν̃ C F
CA
α̃μ̃

)]
dx μ̃dx ν̃ , (4.3)

or, in components,

(D�FI )
ab
μν = Dμ(Xα

I F
ab
αν ) − Dν(X

α
I F

ab
αμ),

(D�FI )
a4
μν = −Dμ(X4

I F
a4
ν4 ) + Dν(X

4
I F

a4
μ4),

SB−→ − 1

l2

(
Dμ(X4

I e
a
ν ) − Dν(X

4
I e

a
μ)

)
,

(D�FI )
ab
μ4 = 1

l2
X4
I

(
φa Fb4

μ4 − φbFa4
μ4

)
SB−→ 0,

(D�FI )
a4
μ4 = Dμ(Xα

I F
a4
α4 ) − 1

l2
Xα
I F

ab
αμφb

SB−→ 1

l2
Dμ(Xα

I e
a
α), (4.4)

and the latter,

(D�TI )
A = dT A

I + �A
BT

B
I

= 1

2

[
∂μ̃

(
X α̃
I T

A
α̃ν̃

)
− ∂̃ν

(
X α̃
I T

A
α̃μ̃

)

+ X α̃
I

(
�A

μ̃ BT
B
α̃ν̃ − �A

ν̃ BT
B
α̃μ̃

)]
dx μ̃dx ν̃ , (4.5)

or, in components,

(D�TI )
a
μν = Dμ(Xα

I T
a
αν) − Dν(X

α
I T

a
αμ),

(D�TI )
4
μν = Dμ(X4

I T
4
4ν) − Dν(X

4
I T

4
4μ)

SB−→ 0,

(D�TI )
a
μ4 = −X4

I T
4
μ4φ

a SB−→ 0,

(D�TI )
4
μ4 = Dμ(Xα

I T
4
α4) − Xα

I T
a
αμφa

SB−→ 0. (4.6)

Since we are interested only in the four-dimensional the-
ory, we may assume that ∂μX4

J = 0. This will not break
diffeomorphism invariance in four dimensions. In this case,
the reduced NC action up to first-order reads

Sred,NC = Sred + (2πR)k

12
θ I4

×
∫ [

2

l4
RabTa(eI )b − 4

l4
T a(RI )abe

b

+ 2

l4
Rab(TI )aeb + 6

l6
T aea(eI )

beb

]
, (4.7)

where Sred is the commutative action (2.29) and θ I4 ≡
θ I J X4

J is constant. Action (4.7) describes the gravitational
sector of the KK-reduced D = 5 NC CS theory. It is mani-
festly invariant under 4-diffeomorphisms and local SO(3, 1)

Lorentz transformations, and it represents a modification
od Einstein’s gravity due to spacetime noncommutativity.
Additional θ -dependent NC terms can be interpreted as new
gravitational interactions that capture some quantum gravity
effects.

By varying (4.7) with respect to the tetrade and the spin-
connection, one obtains first-order NC field equations (note
that the fact that classical geometry is torsionless greatly sim-
plifies the result of the variation) that describe a gravitational
system beyond classical Einstein’s gravity,

δed : ε d
abc

(
Rabec + 1

l2
eaebec

)

− θ I4

3l

[(
Rdb+ 3

l2
edeb

)
(DωeI )b−2(DωRI )

dbeb

]
=0,

(4.8)

δωac: εacbdT
bed

+ θ I4

3l

[
1

2
Rabec(eI )b − 1

2
Rcbea(eI )b

+(RI )
abeceb − (RI )

cbeaeb + 3

l2
eaebec(eI )b

]
= 0.

(4.9)

A point that we want to emphasize is the importance of some
XI having a non-zero component in the compactified direc-
tion. This circumstance is necessary for having a nonvanish-
ing first-order NC correction, and it suggests that noncom-
mutativity between the compactified coordinate x̂4 and the
remaining ones plays an essential role. In other words, if
we were to demand that only non-compactified coordinates
of the the four-dimensional theory have non-trivial commu-
tation relations between each other, i.e. [x̂μ, x̂ν] = iθμν

and [x̂μ, x̂4] = 0, the first-order NC correction would be
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exactly zero. Moreover, this happens to be something quite
general. Namely, it was proven in [57] that the order in which
we apply the KK reduction and the NC deformation is not
important if we assume that only non-compactified coordi-
nates fail to commute mutually. One could first take a clas-
sical action in D = 5 (with one spatial dimension compact-
ified), make a transition to NC theory and then apply the
KK reduction, or instead make a KK reduction of the clas-
sical D = 5 action first, and then make a transition to the
NC version of the reduced theory. In either way, the result
would be the same. Therefore, an NC extra spatial dimen-
sion is essential for having non-trivial first-order NC effects
in the KK-reduced theory. This fact, together with the con-
siderations in [46–48] proving that SW construction for four-
dimensional gauge theory with Lagrangian (2.25) has zero
first-order correction, is in agreement with our conclusion.
Therefore, we can safely assume that non-compactified coor-
dinates mutually commute, and that NC effects are associated
exclusively to the existence of noncommutative compactified
spatial dimension, i.e. we can assume that [x̂μ, x̂ν] = 0 and
[x̂μ, x̂4] = iθμ4.

It is interesting to note that, by imposing [x̂μ, x̂4] = iθμ4,
i.e. noncommutativity between the compactified dimension
and uncompactified ones, we imply the following form of the
uncertainty relations

�x̂μ�x̂4 ≥ |θμ4|
2

. (4.10)

On the other hand, as we compactified the fourth dimension
on a circle of radius R, it makes sense to write �x̂4 ∼ R.
Therefore, �x̂μ ≥ |θμ4|

2R . From this relation follows that the
NC length scale satisfies lNC = √

θ ∼ R, meaning that the
NC structure of spacetime could have a deeper connection to
the mechanism of compactification, the radius of compacti-
fication setting the scale of noncommutativity.

5 AdS-Schwarzschild solution and NC chiral
gravitational anomaly

We now analyze some solutions of the NC field equations
(4.8) and (4.9) obtained in the last section. At this point, we
have to recall that our analysis is valid only perturbatively.
This means that we should seek the solutions of our equations
in the form of ea + ẽa (and similar for the spin-connection),
where ea stands for the commutative part of the tetrade that
satisfies classical (θ I4 = 0) equations of motion (2.30) and
(2.31), and ẽa, ω̃ab ∼ θ is the leading order NC correction
satisfying the following first-order equations

ε d
abc

[
R̃abec +

(
Rab + 3

l2
eaeb

)
ẽc

]

= θ I4

3l

[(
Rdb + 3

l2
edeb

)
(DωeI )b − 2(DωRI )

dbeb

]
,

(5.1)

εacbd T̃
bed = −θ I4

3l

[
1

2
Rabec(eI )b − 1

2
Rcbea(eI )b

+ (RI )
abeceb − (RI )

cbeaeb + 3

l2
eaebec(eI )b

]
. (5.2)

Here, we have

R̃ab = dω̃ab + ω̃a
cω

cb + ωa
cω̃

cb, (5.3)

T̃ a = dẽa + ω̃a
be

b + ωa
bẽ

b. (5.4)

In seeking a solution for (5.1) and (5.2), we will restrict our-
selves to the case of invertible tetrads.

It is well known that classical equation (2.30) is satisfied
for maximally symmetric four-dimensional spacetime with
negative curvature, i.e. the AdS spacetime. In a suitable coor-
dinate system, the metric for this geometry is given by

ds2 = −
(

1 + r2

l2

)
dt2 + 1(

1 + r2

l2

)dr2 + r2d�2. (5.5)

This solution satisfies Rab = −l−2eaeb. It is not hard to
see that, due to this relation, the right-hand sides of both
Eqs. (5.1) and (5.2) vanish, implying there is no first-order
NC correction to the tetrade and the spin-connection for AdS
spacetime; it remains a valid solution even in NC theory, at
least to first-order in θ .

Another interesting solution to consider is the AdS-
Schwarzschild black hole, with metric

ds2 = − f 2(r)dt2 + 1

f 2(r)
dr2 + r2d�2, (5.6)

with f 2(r) ≡
(

1 − 2m
r + r2

l2

)
. The horizon’s position is

determined by f 2(r) = 0. A simple analysis shows that
there is only one real solution to this equation, and therefore
only one horizon, see for example [58]. This metric, which
includes a black hole, a white hole, and two asymptotically
AdS causally disconnected spacetimes is an extraordinary
laboratory to study black hole physics in a non asymptot-
ically flat spacetime [59]. In particular, the Schwarzschild
case offers the possibility to discuss singularities, horizons
and boundaries in a simple but non-trivial way. We can now
choose tetrads as

e0 = f (r)dt, e1 = dr

f (r)
, e2 = rdθ, e3 = r sin θdφ.

(5.7)
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As torsion vanishes, we have T a = dea + ωabeb = 0, and
therefore nonzero components of the spin-connnection are

ω01 = 1

2
( f 2(r))′dt, ω12 = − f (r)dθ,

ω13 = − f (r) sin θdφ, ω23 = − cos θdφ. (5.8)

Components of the curvature tensor are then

R01 = −1

2
( f 2(r))′′e0e1, R02 = − 1

2r
( f 2(r))′e0e2,

R03 = − 1

2r
( f 2(r))′e0e3, R12 = − 1

2r
( f 2(r))′e1e2,

R13 = − 1

2r
( f 2(r))′e1e3, R23 = 1

r2 (1 − f 2(r))e2e3.

(5.9)

We note that Rab has the general form Rab = F (a,b)(r)eaeb,
This will be important when solving for the NC corrections.

We now propose an ansatz for the sought NC solution.
Perhaps the most natural choice would be to assume that
e0 and e1 get corrected by some function of r . However, NC
field equations predict that tetrads do not acquire a first-order
NC correction for a wide range of cases. There is, however,
an even simpler option. We can assume that tetrads remain
the same, and that only spin-connection acquires a first-order
NC correction. Therefore, assuming ẽa = 0 and ω̃ab �= 0,
we have

ε d
abc R̃abec = θ I4

l

[ (
F (d,b)(r) + 1

l2

)
(DωeI )b

+ 2

3
dF (d,b)(r)(eI )b

]
edeb, (5.10)

together with

εacbd T̃
bed = θ I4

2l

[
F (a,b)(r) + F (c,b)(r) + 2

l2

]
eaeceb(eI )b.

(5.11)

Equation (5.11) can then be used to obtain all nonzero com-
ponents of the NC torsion T̃ a . Until now, we did not assume
any particular properties of the vector fields {XI }, apart from
the fact that ∂4X

μ̃
I = 0 and ∂μX4

I = 0. We would like, how-
ever, to simplify our equations.

First, we will assume that non-compactified coordinates
mutually commute, [x̂μ, x̂ν] = 0, since this is not relevant
at first-order in θ . Furthermore, when dealing with quantum
fields on a NC spacetime, non-vanishing value of θ0μ̃ com-
ponents leads to a non-unitary evolution [60]; we avoid this
issue by taking [x̂0, x̂4] = 0. Since the main idea is that
NC effects are essentially associated with the existence of
a compactified extra dimension, we will choose only two

vector fields: X1 = ∂r and X4 = ∂4. This choice leads to
the �-commutator [r, x4]� = iθ14 which is directly related to
the commutation relations [r̂ , x̂4] = iθ14 in the abstract alge-
braic setting. In general, we are not aware of any definite rule
of choosing the coordinates for which we impose the con-
stant noncommutativity. One approach would be to consider
vector fields generated by Killing vector fields of a com-
mutative solution, which often simplifies the equations [61].
However, we have not decided to pursue this here, though it
can be shown that most conclusions we obtain can be derived
in the case where we choose only to include X3 = ∂φ . There
are also different proposals in the literature [48]. In any case,
by identifying vector fields XI with basis vectors of some
coordinate system, we manifestly break the diffeomorphism-
invariance of a theory (it is like choosing a gauge). However,
transformation rules for the vector fields enable us to find
noncommutativity relations in any system of coordinates.

Non-zero components of the NC torsion are

T̃ 0
23 = −mθ14

l

sin θ

r f (r)
,

T̃ 2
03 = mθ14

2l

sin θ

r2 ,

T̃ 3
02 = −mθ14

2lr2 . (5.12)

Next, we use T̃ a = dẽa + ω̃a
be

b +ωa
bẽ

b = ω̃a
be

b to get the
NC corrections for the spin-connection

ω̃23
0 = mθ14

lr3 ,

ω̃03
2 = − mθ14

2lr2 f (r)
,

ω̃02
3 = mθ14

2lr2 f (r)
sin θ. (5.13)

Finally, we can compute NC corrections to Rab,

R̃01
23 = −mθ14

l

sin θ

r2 ,

R̃02
13 = −mθ14

l

[
f ′(r)
2r2 + f (r)

r3

]
sin θ

f 2(r)
= − sin θ R̃03

12,

R̃12
03 = mθ14

l

[
f ′(r)
2r2 − f (r)

r3

]
sin θ = − sin θ R̃13

02,

R̃23
01 = 3mθ14

lr4 . (5.14)

Having obtained a particular NC solution, we can ask how
much it differs from its classical counterpart. For that mat-
ter, we will analyze 4-forms whose integral over a compact
manifold leads to certain topological invariants. For a general
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discussion see, for example, [7]. First consider the Nieh-Yan
form,

N = T aTa − Rabeaeb. (5.15)

Classically, this form vanishes for AdS-Schwarzschild, as
the geometry is torsionless, and it is easy to see that it also
vanishes when the first-order NC the corrections are included.

Next, we consider the Euler form

E = εabcd RabRed . (5.16)

The classical computation gives us

E =
(

48m2

r6 + 24

l4

)
r2 sin θ dt ∧ dr ∧ dθ ∧ dφ. (5.17)

However, a simple calculation shows that there is no correc-
tion to this result to first-order in θ14.

Finally, we consider the Pontryagin invariant. Pontryagin
4-form is P = RabRab. Classically, this form for the AdS-
Schwarzschild spacetime is zero. However, there are non-
trivial first-order NC contributions. We can easily check that

RabRab = 48m2θ14

lr5
sin θ dt ∧ dr ∧ dθ ∧ dφ. (5.18)

Note that this result is finite at the horizon, even though the
coordinates we used are not defined there, and components
of spin-connection are singular. This result is interesting
because Pontryagin density is directly related to the chiral
gravitational anomaly. Let us briefly consider this anomaly
here.

Suppose we have a massless Dirac fermion coupled with
some fixed geometric background. Kinetic term for this the-
ory would be

√−g ψγ μ∇μψ. (5.19)

In massless electrodynamics, it is well-known that apart
from the usualU (1) charge conserving symmetry, the classi-
cal theory is invariant under global transformations ψ →
eiαγ5ψ . Those transformations lead to separate conserva-
tion of the number of right-handed and left-handed fermions.
However, this symmetry is anomalous, and upon quantiza-
tion, there is no conservation of this type. The divergence of a
classically conserved current is proportional to F2, where F
is the curvature of the gauge connection [50]. We then expect
that when coupled to gravity, the anomaly would be propor-
tional to RabRab. This is further confirmed by a direct com-
putation, which relies on the fact that the geometry is torsion-
less. When torsion is included, it is not a priori clear whether
the anomaly will have additional terms. In [62], it was shown
that the anomaly is given by a combination P+2N , suitably

normalized. The derivation within, however, reveals that it
is necessary to rescale the tetrade by a factor of a cut-off
for N contribution to be finite. It was later argued in [63]
that this rescaling was done inconsistently and that the final
result should still be given in terms of Pontryagin density.
However, in our case, N = 0, and as there are no other
torsional invariants in four dimensions, we can safely use
that the anomaly is given solely in terms of the Pontryagin
density. More precisely, we have [50]

d ∗ j5 = 1

96π2 R
abRab, (5.20)

where j5 is axial fermionic current, and ∗ is the Hodge dual
operation with respect to the metric gμν = eaμeνa . Plugging
in the expression (5.18), we obtain

d ∗ j5 = m2θ14

2π2lr5
sin θ dt ∧ dr ∧ dθ ∧ dφ, (5.21)

which is equivalent to

∂μ(
√−g jμ5 ) = m2θ14

2π2lr5
sin θ. (5.22)

This expression is valid for all r > rh including large dis-
tances and small cosmological constant. An important thing
to note is that this anomaly contribution vanishes in the strict
limit of zero cosmological constant. Observational data from
our universe suggest that the sign of the cosmological con-
stant is positive, but we hope that the derived result can lead
to a better understanding of anomalies induced by spacetime
noncommutativity in more realistic physical settings.

6 Discussion

The primary purpose of this paper was to investigate some
aspects of the NC D = 5 CS theory based on the AdS gauge
group SO(4, 2), regarding its connection to the observable
four-dimensional physics. The standard procedure of KK
dimensional reduction led us to a model of four-dimensional
gravity that amounts to a modification of Einstein’s Gen-
eral Relativity with negative cosmological constant by θ -
dependent NC corrections as new effective interactions that
ought to capture some quantum gravity effects. An important
observation was that non-trivial NC contribution at first-order
in θ comes only from noncommutativity between the com-
pactified extra spatial dimension of the original CS theory and
the remaining non-compactified spacetime dimensions. Field
equations are derived from the effective four-dimensional
NC gravity action, and, as an example, we studied how non-
commutativity changes the torsionless classical geometry of
the AdS-Schwarzschild black hole. Besides the modification
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of curvature and torsion, we found that Pontryagin density
no longer vanishes, signalling that the NC-deformed AdS-
Schwarzschild background gives rise to a chiral gravitational
anomaly.

We want to make several remarks, the first of which con-
cerns the origin of the anomaly. We considered coupling
massless Dirac fermions to a fixed NC AdS-Schwarzschild
background geometry. One could object that the only con-
sistent way to couple fermions would be to consider an NC
theory of gravity together with fermions. This was done in
the context of NC SO(3, 2)� gravity, and one can check that
there is a non-trivial first-order NC correction to the classical
Dirac action [64], see also [54]. However, we are only con-
sidering a quantized theory of massless Dirac fermions in a
particular fixed NC background geometry. Apart from this
general issue, one could also analyze other NC backgrounds,
which would require a better understanding of the NC field
equations and their solutions. The proposed setup could also
analyze NC effects on black hole thermodynamics.

We put fermions by hand in the four-dimensional theory
in our anomaly computation, which is another aspect that
deserves further attention. Matter fields are typically present
upon compactifying a pure gravity theory. In our analysis,
we considered only zero-modes of the KK-expansion and
focused only on the gravitational sector of the reduced theory.
However, even if we decided to keep track of the KK mat-
ter fields (including the higher-modes), only bosons would
be present in the compactified theory – another reason for
neglecting matter fields altogether in the KK procedure, as
fermions are missing. Regarding this issue, supersymmetric
extensions of CS gravity Lagrangians are well-known [9],
and one might expect that the analysis from this paper, suit-
ably modified to incorporate supergravity, would produce a
more realistic theory as far as the field content is concerned.

Another significant point is that we had to keep R finite,
which can be seen from the Eq. (4.10), as well as from the fact
that it would make no sense to define pure four-dimensional
theory with nonvanishing θ14 component. One may object
that we should keep track of higher KK modes. However,
our interest in this work lies solely in the gravitational part of
the theory. We, therefore, insist on the “vacuum” solutions,
those solutions whose energy-momentum tensor (and its spin
counterpart) vanishes.

Also, in a braneworld scenario, matter fields are confined
to a D = 4 spacetime [65], and therefore are unaffected
by noncommutativity driven by the NC parameter θ14. On
the other hand, gravity is free to propagate in extra dimen-
sions, and therefore gravity action develops NC corrections.
Of course, based on the present results, we can not directly
support this claim.

As for the appearance of the chiral gravitational anomaly,
it would be interesting to check whether a different result
would be obtained if one considers the full NC theory of

massless fermions by including also heavy KK modes. We
expect that even in this setting, there is a nonzero contribution
to a chiral gravitational anomaly for the AdS-Schwarzschild
solution. We base our expectation on the fact that we have
explicitly computed the “topological” forms in the last sec-
tion, and see no way of cancelling their (hypothetical) con-
tributions; we also do not see an obvious modification due to
noncommutativity that could cancel the obtained result. We
postpone a full consideration of this issue for future work.

Finally, there is a general issue concerning the interpre-
tation of the vector fields used to define the NC version of
the exterior product. Apart from allowing us to transition
from one coordinate system to another covariantly, the phys-
ical criteria for selecting these fields is lacking. The most
natural thing is to adapt them to some particular coordinate
system, as we did at the end. However, one could also use
more general vector fields to generalize the obtained results.
For example, one could insist not on taking X1 = ∂r , but
rather X1 = g(r)∂r . Motivation for this comes from the
fact that many different coordinate systems can be related
to the one we used in this paper by a suitable rescaling of
the radial coordinate. For example, isotropic coordinates are
more natural when considering gravity effects far away from
a localized object. Radial coordinate ρ in those coordinates
is connected to r precisely with the type of transformation
discussed here. There is also a proposal to treat these vector
fields as dynamical fields [66].
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Appendix A: Algebra of Lie algebra-valued forms

For a Lie algebra gwith generators {TA}, let αp be a g-valued
p-form and βq a g-valued q-form, i.e.

αp = 1

p!αμ1...μpdxμ1 . . . dxμp ,

βq = 1

q!βν1...νq dxν1 . . . dxνq , (A.1)

where αμ1...μp = αA
μ1...μp

TA and βν1...νq = β A
ν1...νq

TA.
Trace and (anti)-commutator are defined as

Tr
(
αpβq

) = 1

p!q!Tr
(
αμ1...μpβν1...νq

)
dxμ1 . . . dxνq ,

[αp, βq ] = 1

p!q! [αμ1...μp , βν1...νq ]dxμ1 . . . dxνq ,

{αp, βq} = 1

p!q! {αμ1...μp , βν1...νq }dxμ1 . . . dxνq , (A.2)

and the following “graded” properties hold:

Tr
(
αpβq

) = (−1)pqTr
(
βqαp

)
, (A.3)

[αp, βq ] = αpβq − (−1)pqβqαp = −(−1)pq [βq , αp],
{αp, βq} = αpβq + (−1)pqβqαp = (−1)pq{βq , αp}.

(A.4)

Gauge invariance of Tr (Fn) now follows from the graded
cyclicity of the trace (A.3),

δεTr
(
Fn) = Tr

(
δεFFn−1 + · · · + Fn−1δεF

)

= nTr
(
[ε, F]Fn−1

)

= nTr
(
εFn − FεFn−1

)

= 0. (A.5)

Appendix B: Trace identities for �-matrices and SO(4, 2)

generators

Some relevant traces of D = 5 �-matrices satisfying Clifford
algebra {�A, �B} = 2GAB14×4, with metric GAB = (− +
+ + +), are

Tr(�A) = 0,

Tr(�A�B) = 4GAB ,

Tr(�A�B�C ) = 0,

Tr(�A�B�C�D)=4(GABGCD − GACGBD+GBCGAD),

Tr(�A�B�C�D�E ) = 4iεABCDE , (B.1)

and for SO(4, 2) generators JAB = 1
2�AB = 1

4 [�A, �B] and
JA5 = 1

2�A, we have

Tr(JAB JCD JE5) = i
2εABCDE ,

Tr(JAB JC5 JD5) = 1
2 (GABGCD−GACGBD+GBCGAD),

Tr(JA5 JC5 JD5) = 0. (B.2)

We define ε01234 = +1 and ε01234 = −1, with the fol-
lowing contractions:

εABCDEεABCMN = −3!(δDMδEN − δDN δEM ),

εABCDEεABCDF = −4!δEF ,

εABCDEεABCDE = −5!. (B.3)

Denoting five-dimensional spacetime indices by μ̃ =
(μ, 4), we have

dx μ̃ ∧ dx ν̃ ∧ dx ρ̃ ∧ dx σ̃ ∧ dx τ̃ = −εμ̃̃νρ̃σ̃ τ̃ dx5. (B.4)

Appendix C: KK reduction and symmetry breaking

To provide some insight into the details of the computation,
we will focus on the fourth term in (3.13), i.e.

2θ I J

l2
F AB(TI )B(FJ )AC E

C , (C.1)

because it gives us, along with the first one and the sev-
enth one, a nonvanishing contribution to the NC correction
after the KK reduction and symmetry breaking; the remain-
ing terms in (3.13) vanish.

The first step is to “unpack” the differential forms and
integrate out the extra coordinate x4 (this gives us a factor of
2πR that we omit in the following formulae),

− θ I J

l2
X α̃
I X

β̃
J F

AB
μ̃̃ν T̃αρ̃B Fβ̃σ̃ AC E

C
τ̃ εμ̃̃νρ̃σ̃ τ̃ d4x

= −θ I J

l2

(
Xα
I X

β
J F

AB
μ̃̃ν Tαρ̃B Fβσ̃ AC E

C
τ̃

+ X4
I X

4
J F

AB
μ̃̃ν T4ρ̃B F4σ̃ AC E

C
τ̃

+ Xα
I X

4
J F

AB
μ̃̃ν Tαρ̃B F4σ̃ AC E

C
τ̃

+ X4
I X

β
J F

AB
μ̃̃ν T4ρ̃B Fβσ̃ AC E

C
τ̃

)
εμ̃̃νρ̃σ̃ τ̃ d4x . (C.2)

The four terms in the last expression come from the fact
that, in general, vector fields {XI } have five components
X α̃
I = (Xα

I , X
4
I ) with α = 0, 1, 2, 3. We immediately see

that the second term vanishes due to θ I J X4
I X

4
J = 0. More-

over, in turns out that, after the KK reduction, the Xα
I X

β
J term

also vanishes. This result is in accordance with [57]. Namely,
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if we were to assume that only non-compactified coordinates
fail to commute, i.e. [x̂μ, x̂ν] = iθμν while [x̂μ, x̂4] = 0,
there would be no NC correction at first-order in θ , and we
would have to compute second-order perturbations, which is
much more difficult. Therefore, the expression (C.2) comes
down to the two “mixed” terms, which can be combined into
a single term,

− θ I J

l2
Xα
I X

4
J

(
F AB

μ̃̃ν Tαρ̃B F4σ̃ AC E
C
τ̃

− F AB
μ̃̃ν T4ρ̃B Fασ̃ AC E

C
τ̃

)
εμ̃̃νρ̃σ̃ τ̃ d4x

= θ I J

l2
Xα
I X

4
J

(
− F AB

μν TαρB F4σ AC E
C
4

+ 2F AB
μ4 TανB F4ρAC E

C
σ

− 2F AB
μ4 T4νB FαρAC E

C
σ

)
εμνρσ d4x

= θ I J

l2
Xα
I X

4
J

(
Fab

μνTαρbFσ4a4E
4
4 − 2Fb4

μ4TανbFρ4c4E
c
σ

+ 2Fa4
μ4T

4
ν4FαρacE

c
σ

)
εμνρσ d4x

SB−→ −θ I J

l4
Xα
I X

4
J R

ab
μνTαρaeσbε

μνρσ d4x . (C.3)

The last line is the result after the symmetry breaking.
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