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Abstract In the paper, we investigate the moments 〈ξ‖;n
2;a1

〉
of the axial-vector a1(1260)-meson distribution amplitude
by using the QCD sum rules approach under the background
field theory. By considering the vacuum condensates up to
dimension-six and the perturbative part up to next-to-leading
order QCD corrections, its first five moments at an ini-
tial scale μ0 = 1 GeV are 〈ξ‖;2

2;a1
〉|μ0 = 0.223 ± 0.029,

〈ξ‖;4
2;a1

〉|μ0 = 0.098 ± 0.008, 〈ξ‖;6
2;a1

〉|μ0 = 0.056 ± 0.006,

〈ξ‖;8
2;a1

〉|μ0 = 0.039 ± 0.004 and 〈ξ‖;10
2;a1

〉|μ0 = 0.028 ± 0.003,
respectively. We then construct a light-cone harmonic oscil-
lator model for a1(1260)-meson longitudinal twist-2 distri-
bution amplitude φ

‖
2;a1

(x, μ), whose model parameters are
fitted by using the least squares method. As an application of
φ

‖
2;a1

(x, μ), we calculate the transition form factors (TFFs)
of D → a1(1260) in large and intermediate momentum
transfers by using the QCD light-cone sum rules approach.
At the largest recoil point (q2 = 0), we obtain A(0) =
0.130+0.015

−0.013, V1(0) = 1.898+0.128
−0.121, V2(0) = 0.228+0.020

−0.021,

and V0(0) = 0.217+0.023
−0.025. By applying the extrapolated

TFFs to the semi-leptonic decay D0(+) → a−(0)
1 (1260)�+ν�,

we obtain B(D0 → a−
1 (1260)e+νe) = (5.261+0.745

−0.639) ×
10−5, B(D+ → a0

1(1260)e+νe) = (6.673+0.947
−0.811) × 10−5,

B(D0 → a−
1 (1260)μ+νμ) = (4.732+0.685

−0.590) × 10−5,

B(D+ → a0
1(1260)μ+νμ) = (6.002+0.796

−0.748) × 10−5.

1 Introduction

The D-meson semileptonic decays into axial-vector mesons
are the key components for understanding the nonperturba-
tive effects in weak interactions, which have been studied
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by many theoretical and experimental groups. Based on the
constituent quark model, the quantum number of a meson is
determined by the quantum numbers of all the constituent
quarks. There are two types of axial-vector mesons, 1P1-
state with the quantum state J PC = 1+− and 3P1-state
with J PC = 1++. Among the axial-vector mesons, only the
isospin triplet heavy state mesons b1(1235) and a1(1260)

do not have a mixing phenomenon. Their internal structures
are relatively clear. At the hadron level, the a1(1260)-meson
is a good subject which is considered as the chiral adjoint
state of ρ-meson. Thus a1(1260) and ρ-meson are defined
as the light-quark pair qq̄ with q = (u, d) [1–3]. Since
1986, the properties of a1(1260)-meson have been accurately
measured [4]. Besides, the observation of the charmless
hadronic decay processes involving a1(1260)-meson, such as
B0 → a±

1 (1260)π∓, which have been issued by the BABAR
and Belle collaborations [5–8], indicates that a1(1260) is
a 3P1-state. Those measurements help us to investigate the
production mechanism of axial-vectors via hadronic decay
processes and to probe the structures of axial-vector meson.
Thus it is important to give a detailed theoretical study on
the semileptonic decay D → a1(1260)�+ν�.

The transition form factors (TFFs) of D → a1(1260) are
key components for investigating the corresponding semilep-
tonic decays. The TFFs for heavy-to-light decay processes
have been calculated under various approaches, such as
the QCD sum rules (QCDSR) [9], the covariant light-front
quark model (CLFQM) [10,11], the constituent quark model
(CQM) [12], the light-cone sum rules (LCSR) [13–16], the
relativistic quark model (RQM) [17], the perturbative QCD
(PQCD) [18,19], the QCD factorization (QCDF) [20], the
three-point QCD sum rules (3PSR) [21], and etc. Among
them, the LCSR approach provides an effective way in deter-
mining the non-perturbative parameters of hadronic states.
By using the LCSR approach, one can carry out the operator
product expansion (OPE) near the light-cone x2 ≈ 0, and
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the nonperturbative hadronic matrix elements can be param-
eterized as the light-cone distribution amplitudes (LCDAs)
with various twists. In the present paper, we shall adopt the
LCSR approach to deal with the D → a1(1260) TFFs by
using a left-handed chiral current, which can highlight the
longitudinal leading-twist LCDA contribution.

Within the LCSR approach, the LCDAs not only are basic
parameters of hard exclusive processes, but also can reflect
the dynamic information of the internal structure of hadrons.
One can expand the longitudinal twist-2 LCDA φ

‖
2;a1

(x, μ)

of a1(1260)-meson at an arbitrary scale μ into a Gegenbauer
series, φ

‖
2;a1

(x, μ) = 6x x̄[1 + ∑
n a

‖;n
2;a1

(μ)C3/2
n (ξ)], where

x̄ = (1 − x), ξ = (2x − 1) and a‖;n
2;a1

(μ) are Gegenbauer
moments, whose first nonzero one has been given by Yang
at the initial scale μ0 = 1 GeV [15], a‖;2

2;a1
(μ0) = −0.02(2).

This value, along with the higher order of a‖;n
2;a1

(μ), can be
calculated within the framework of QCDSR under the back-
ground field theory (BFTSR) [22]. It has been pointed out
that the LCDA model based on conformal expansion that is
truncated after its first few terms is not suitable for all cases,
since the higher-order Gegenbauer terms may have sizable
contributions, even if they are generally power suppressed
with the increment of n for large momentum transforms.
Thus it is important to know more moments for a precise
determination of LCDA.

The leading-twist LCDA of a meson can be related to
its Bethe–Salpeter wave function. Previous works mainly
focused on the wave functions of the pseudoscalar or the vec-
tor mesons, cf. Refs. [23–27], and there is few research on the
axial-vector mesons. In this work, we will construct a light-
cone harmonic oscillator (LCHO) model for the a1(1260)-
meson longitudinal twist-2 LCDA. The parameters of the
model shall be fitted by using the newly calculated moments
〈ξ‖;n

2;a1
〉|μ. And we will use the least squares method to do the

fitting and to get the optimal solution. For the purpose, we
will use BFTSR to calculate the moments 〈ξ‖;n

2;a1
〉|μ. Within

the framework of BFTSR, the quark and gluon fields are
composed by the background fields and their surrounding
quantum fluctuations, and the usual vacuum condensates
are described by the classical background fields, which pro-
vides a clear physical picture for the bound-state internal
structures and makes the sum rules calculation more sim-
plified. The BFTSR have been widely used in calculating
the LCDAs of the heavy/light mesons [28–33]. Here we
will adopt this approach to investigate the a1(1260)-meson
moments 〈ξ‖;n

2;a1
〉|μ and then provide a more accuracy LCDA

φ
‖
2;a1

(x, μ).
The remaining parts of the paper are organized as fol-

lows. In Sect. 2, we present the calculation procedures for the
moments of a1(1260)-meson longitudinal twist-2 LCDA, the
LCHO model, the TFFs and the branching ratios. Numerical

results and discussions are presented in Sect. 3. Section 4 is
reserved for a summary.

2 Calculation technology

Firstly, the a1(1260)-meson longitudinal twist-2 LCDA is
defined as [15]

〈0|q̄1(z)γμγ5q2(−z)|a1(q, λ)〉

= ima1 f
‖
a1

∫ 1

0
dxei(xz·q−x̄ z·q)qμ

e∗(λ) · z
q · z φ

‖
2;a1

(x, μ).

(1)

Here, two light quarks q1 = q2, which are (u, d)-quark for
a1(1260)-meson, respectively. This convention shall be fol-
lowed throughout the remaining parts of this paper. The f ‖

a1

is a1(1260)-meson decay constant, q and e∗(λ) are momen-
tum and polarization vector of a1(1260)-meson. The polar-
ization vector satisfies the relationship (e∗(λ) · z)/(q · z) →
1/ma1 [34]. By doing the series expansion near z → 0 on
both sides of Eq. (1), one will get:

〈0|q̄1(0)/zγ5(i z · D↔)nq2(0)|a1(q, λ)〉
= i(z · q)n+1 f ‖

a1
〈ξn;‖

2;a1
〉|μ, (2)

where the covariant derivative satisfies the relation (i z ·
D
↔

)n = (i z · −→
D − i z · ←−

D )n . The n-th order moments of
the a1(1260)-meson DA are defined as

〈ξ‖;n
2;a1

〉|μ =
∫ 1

0
dx(2x − 1)nφ

‖
2;a1

(x, μ). (3)

One can start from the following correlation function (cor-
relator) to derive the sum rules, i.e.



(n,0)
2;a1

(z, q) = i
∫

d4xeiq·x 〈0|T {Jn(x), J †
0 (0)}|0〉

= (z · q)n+2 I (n,0)
2;a1

(q2), (4)

with Jn(x) = q̄1(x)/zγ5(i z · D↔)nq2(x), J
†
0 (0) = q̄2(0)/zγ5

q1(0) and z2 = 0.1 Because of the G-parity, φ
‖
2;a1

(x, μ)

for 3P1-state defined by the nonlocal axial-vector current
is symmetric, indicating only even moments are non-zero,
i.e. n = (0, 2, 4, 6, . . .). Based on the idea of BFTSR and
the Feynman rules for one hand, one can apply the OPE

1 Here, the current Jn(x) mainly comes from the basic definition of
φ

‖
2;3P1

(x, μ), which is also in agreement with the current in calculating

the Gegenbauer moments of 3P1 axial-vector meson, i.e. a‖,n
2;3P1

(μ) from
Ref. [15]. The slightly difference lies in the relationship between two
types of moments.
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for the correlator (4) in deep Euclidean region q2 � 0.
Then, the correlator can be expanded into three terms includ-
ing the quark propagators SdF (0, x), SuF (x, 0) and the vertex

operators (i z · D↔)n , which have been given in our previous
work [33]. In dealing with Lorentz invariant scalar function



(n,0)
2;a1

(z, q2), the vacuum matrix element should be used,
which can be found in Ref. [28]. On the other hand, one
can insert a complete set of a1(1260)-meson intermediated
hadronic states with the same J P quantum number into the
correlator and obtain

ImI (n,0)
2;a1,Had(q

2) = πδ(q2 − m2
a1

) f 2
a1

〈ξ‖;n
2;a1

〉|μ〈ξ‖;0
2;a1

〉|μ
+ 3

4π(n + 1)(n + 3)
θ(q2 − sa1), (5)

where sa1 is the continuum threshold. The first (second) terms
on the r.h.s of Eq. (5) are the a1(1260)-meson ground state
(continuum states) contribution. Due to not all higher-order
contributions and higher-dimensional operators have been
included, the fixed-order prediction of 〈ξ‖;0

2;a1
〉|μ is close but

not exactly equals to 1. So we reserve the term 〈ξ‖;0
2;a1

〉|μ
in the hadronic expression, i.e. Eq. (5), which is different
from other researches in dealing with the axial-meson DA
by using the QCDSR approach. Then, one can bridge the
invariant function and the OPE side by using the dispersion
relation. Furthermore, the Borel transformation are used to
suppress the contribution from the continuum states and high
dimension condensates. The sum rule expression is

1

πM2

∫

dse−s/M2
ImI (n,0)

a1,had(s) = B̂M2 I (n,0)
2;a1,QCD(q2), (6)

where the Borel parameter M2 coming from the Borel trans-
formation with the operator B̂M2 . Following the standard
SVZ sum rules procedures, we then obtain the expression of
the moment of a1(1260)-meson longitudinal twist-2 LCDA,
i.e.,

f ‖2
a1 〈ξ‖;n

2;a1
〉|μ〈ξ‖;0

2;a1
〉|μ

M2em
2
a1

/M2 = 3

4π2(n + 1)(n + 3)

×
(

1 + αs

π
A′
n

)

(1 − e−sa1 /M2
)

+ (mu + md)〈q̄q〉
M4 + 〈αsG2〉

12πM4

1 + nθ(n − 2)

n + 1

−8n + 1

18

(mu + md)〈gsq̄σTGq〉
M6 + 〈gsq̄q〉2

81M6 4(2n + 1)

−〈g3
s f G

3〉
48π2M6 nθ(n − 2) + 〈g2

s q̄q〉2

M6

2 + κ2

486π2

{

3 (17n + 35)

−2(51n + 25)

(

− ln
M2

μ2

)

+ θ(n − 2)

[

2n

(

− ln
M2

μ2

)

−25(2n + 1) ψ̃(n) + 1

n
(49n2 + 100n + 56)

]}

. (7)

Here, ψ̃(n) = ψ((n + 1)/2) − ψ(n/2) + ln 4. The next-to-
leading (NLO) corrections are A′

0 = 0, A′
2 = 5/3, A′

4 =
59/127, A′

6 = 353/135 [35]. When taking n = 0 for the
Eq. (7), one can get the sum rule of zeroth moment, e.g.
〈ξ‖;0

2;a1
〉|μ. To derive more accurate 〈ξ‖;n

2;a1
〉|μ, we adopt

〈ξ‖;n
2;a1

〉|μ =
(〈ξ‖;n

2;a1
〉|μ〈ξ‖;0

2;a1
〉|μ)

∣
∣
∣
From Eq. (7)

√
(〈ξ‖;0

2;a1
〉|μ)2

, (8)

where, the numerator of Eq. (8) are coming from the Eq. (7),
and denominator are the zeroth moment.

Owning to the fact that the high-order Gegenbauer
moment for a1(1260)-meson longitudinal twist-2 DA still
have large uncertainties, one can construct a new LCDA
model, i.e. the LCHO model based on the Brodsky–Huang–
Lepage (BHL) prescription [26,36]. The BHL suggested
a connection between the equal-time wave function in the
rest frame and the light-cone wave function by equating the
off-shell propagator ε in the two frames. For the former

ε = M2 − (∑n
i=1 q

0
i

)2
with

∑n
i=1 qi = 0, for the latter

ε = M2 − ∑n
i=1

[
(k2⊥i + m2

i )/xi
]

with
∑n

i=1 k⊥i = 0 and∑n
i=1 xi = 1. In the two-particle system, one has

q2 ←→ k2⊥ + m2
q

4x(1 − x)
− m2

q , (9)

with m1 = m2 = mq . Then the possible connection between
the rest frame wave function ψCM(q2) and the light-cone
wave function ψLC(x,k⊥) can be formally represented by

ψCM(q2) ←→ ψLC

(
k2⊥ + m2

q

4x(1 − x)
− m2

q

)

. (10)

On the other hand, the wave function of the harmonic oscil-
lator model in the rest frame is

ψCM(q2) = A exp

(

− q2

2β2

)

, (11)

from an approximate bound state solution in the quark models
for mesons. By combining Eqs. (10) and (11), the LCHO
model of a1(1260)-meson wave function satisfies

�
‖
2;a1

(x,k⊥) ∝ exp

[

− k2⊥ + m2
q

8β2
2;a1

x x̄

]

. (12)

Then the LCHO model for the a1(1260)-meson wave func-
tion gives

�
‖
2;a1

(x,k⊥) = A‖
2;a1

ϕ
‖
2;a1

(x) exp

[

− k2⊥ + m2
q

8β2
2;a1

x x̄

]

, (13)
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where A‖
2;a1

is the normalization constant, β2;a1 is a harmonic
parameter, and mq is the mass of the constitute quark u and d

in a1(1260)-meson. In addition, the function ϕ
‖
2;a1

(x) domi-
nates longitudinal distribution and can be expressed as [37]

ϕ
‖
2;a1

(x) = (x x̄)
α

‖
2;a1 [1 + B‖

2;a1
C3/2

2 (ξ)]. (14)

Since the meson LCDA is related to its wave function
�

‖
2;a1

(x,k⊥) via the following relation:

φ
‖
2;a1

(x, μ) = 2
√

6

f ‖
a1

∫

|k⊥|2≤μ2

d2k⊥
16π3 �

‖
2;a1

(x,k⊥). (15)

Then, the twist-2 LCDA of a1(1260)-meson can be derived
by integrating the transverse momentum, which have the fol-
lowing form

φ
‖
2;a1

(x, μ) =
√

6A‖
2;a1

β2
2;a1

π2 f ‖
a1

x x̄ϕ‖
2;a1

(x)

×
{

exp

[

− m2
q

8β2
2;a1

x x̄

]

− exp

[

− m2
q + μ2

8β2
2;a1

x x̄

]}

. (16)

The two parameters A‖
2;a1

and β2;a1 are constrained by the
following two conditions:

• The wave function normalization condition,

∫ 1

0
dx

∫
d2k⊥
16π3 �

‖
2;a1

(x,k⊥) = f ‖
a1

2
√

6
. (17)

• The probability of |qq̄〉 Fock state in a a1(1260)-meson
should be less than 1, e.g. Pa1 < 1,

Pa1 =
∫ 1

0
dx

∫
d2k⊥
16π3 |�‖

2;a1
(x,k⊥)|2

= (A‖
2;a1

)2β2
2;a1

4π2

∫ 1

0
dx[ϕ‖

2;a1
(x)]2x x̄

× exp

[

− m2
q

4x x̄β2
2;a1

]

. (18)

We shall fit the parameters α
‖
2;a1

and B‖
2;a1

by using the least

squares method so as to achieve the same moments 〈ξ‖;n
2;a1

〉|μ
from the sum rules (7). The detailed analysis about this point
can be found in Refs. [37,38].

Secondly, we adopt the following correlator to derive the
LCSRs for the D → a1(1260) TFFs,


μ(p, q) = i
∫

d4xeiq·x 〈a1(p, λ)|T { jμ(x), j†
D(0)}|0〉

= −
1e
∗(λ)
μ + 
2(e

∗(λ) · q)(2p + q)μ

+ 
3(e
∗(λ) · q)qμ + i
V εαβγ

μ e∗(λ)
α qβ pγ , (19)

where jμ(x) = q̄2(x)γμ(1−γ5)c(x) and j†
D(x) = i c̄(x)(1−

γ5)q1(x). In the time-like q2-region, the long distance quark-
gluon interactions are dominant. To deal with the correlator
in the time-like region, one can insert a complete set of the
D-meson states, which have the same J P quantum numbers
to obtain the hadronic expression. After separating the D-
meson pole term, we obtain


H
μ(p, q) = 〈a1|q̄2γμ(1 − γ5)c|D〉〈D|c̄iγ5q1|0〉

m2
D − (p + q)2

+
∑

H

〈a1|q̄2γμ(1 − γ5)c|DH〉〈DH|c̄i(1 − γ5)q1|0〉
m2

DH − (p + q)2
,

(20)

where 〈D|c̄iγ5q|0〉 = m2
D fD/mc. The D → a1(1260) tran-

sition matrix elements have the expressions [18]:

〈a1(p, λ)|q̄2γμγ5c|D(p + q)〉=−εμναβe∗(λ)
ν qα pβ

2i A(q2)

mD − ma1

,

(21)

〈a1(p, λ)|q̄2γμc|D(p + q)〉 = −e∗(λ)
μ (mD − ma1) V1(q

2)

+(2p + q)μ
e∗(λ) · q

mD − ma1

V2(q
2) + qμ(e∗(λ) · q)

2ma1

q2

×[V3(q
2) − V0(q

2)], (22)

where p is a1(1260)-meson momentum and q = pD − pa1

is the momentum transfer, e∗(λ) stands for a1(1260)-meson
polarization vector with λ = (⊥, ‖) being its transverse or
longitudinal component, respectively. There are one linear
relationships among the TFFs [13,39]:

V3(q
2) = mD − ma1

2ma1

V1(q
2) − mD + ma1

2ma1

V2(q
2). (23)

Following the standard sum rules procedures, one can
represent the contributions of the higher resonances and
the continuum states by dispersion integrations so as to
derive the expressions for the hadronic invariant amplitudes

H

i [q2, (p + q)2] with i = (1, 2, 3, V ) defined in Eq. (19).
The continuum threshold parameter s0 can be set as the value
close to the squared mass of the lowest scalar D-meson.
Meanwhile, the conventional quark-hadron duality ansatz,
ρhad
i = ρ

QCD
i θ(s − s0), can be used to calculate the hadron

spectrum density ρhad
i . On the other hand, in the space-like

region, one can calculate the correlator via the QCD theory.
In this region, the correlator can be treated by the OPE with
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the coefficients being pQCD calculable. The c-quark propa-
gator which shall be used in the calculation can be found in
Ref. [33]. After applying the OPE and using the expressions
for the transition matrix elements, one can arrange the resul-
tant expressions by twist-2, 3, 4 LCDAs [15,16]. After match-
ing the correlator with the dispersion relation, and applying
the conventional Borel transformation to suppress the less
known continuum contributions, the resultant TFFs under
the LCSR approach are

V1(q
2) = 2m2

cma1 f
‖
a1

m2
D fD(mD − ma1 )

∫ 1

0

du

u
e(m2

D−s(u))/M2

×
[

�(c(u, s0))φ
⊥
3;a1

(u) − �̃(c(u, s0))
m2

a1

uM2 �
‖
4;a1

(u)

]

+2m2
cm

2
a1

m2
D fD

× ( f V3;a1
− f A3;a1

)

(mD − ma1 )

∫

Dαi

×
∫ 1

0
dve(m2

D−s(X))/M2

× 1

X2M2 �(c(X, s0))
[
�̃

‖
3;a1

(αi ) − �
‖
3;a1

(αi )
]
, (24)

V2(q
2) = 2m2

cma1 f
‖
a1 (mD − ma1 )

m2
D fD

∫ 1

0

du

u
e(m2

D−s(u))/M2

×
[

1

uM2 �̃(c(u, s0))�
‖
2;a1

(u)

+ m2
a1

uM4
˜̃�(c(u, s0))�

‖
4;a1

(u)

]

−m2
cm

2
a1

( f V3;a1
− f A3;a1

)(mD−ma1 )

m2
D fD

∫

Dαi

×
∫ 1

0
dve(m2

D−s(X))/M2

× 1

X3M4 �(c(X, s0))

[

�̃
‖
3;a1

(αi ) − �
‖
3;a1

(αi )

]

, (25)

V0(q
2) = V3(q

2) +
{
q2m2

c f
‖
a1

m2
D fD

∫ 1

0

du

u
e(m2

D−s(u))/M2

×
[

1

uM2 �̃(c(u, s0))�
‖
2;a1

(u)

−m2
a1

(2 − u)

u2M4
˜̃�(c(u, s0))�

‖
4;a1

(u)

]

−q2 m2
c ma1 ( f V3;a1

− f A3;a1
)

m2
D fD

×
∫

Dαi

∫ 1

0
dv e(m2

D−s(X))/M2

× 1

X3M4 �(c(X, s0))

[

�̃
‖
3;a1

(αi ) − �
‖
3;a1

(αi )

]}

,

(26)

A(q2) = m2
cma1 f

‖
a1 (mD − ma1 )

2m2
D fD

∫ 1

0
due(m2

D−s(u))/M2

× 1

u2M2 �̃(c(u, s0))ψ
⊥
3;a1

(u), (27)

where the q2-dependence factors s(u) and s(X) are defined
as

s(ζ ) = m2
c − (1 − ζ )(q2 − ζm2

a1
)

ζ
with ζ = (u, X), (28)

where X = α1 − α2 + vα3, α1, α2 and α3 are the respective
momentum fractions carried by q̄1, q2 quarks and gluon in the
a1(1260)-meson [15]. �(c(u, s0)) is the conventional step
function, �̃(c(u, s0)) and ˜̃�(c(u, s0)) are defined as

∫ 1

0

du

u2M2 e
−s(u)/M2

�̃(c(u, s0)) f (u)

=
∫ 1

u0

du

u2M2 e
−s(u)/M2

f (u) + δ(c(u0, s0)), (29)

∫ 1

0

du

2u3M4 e
−s(u)/M2 ˜̃�(c(u, s0)) f (u)

=
∫ 1

u0

du

2u3M4 e
−s(u)/M2

f (u) + �(c(u0, s0)), (30)

where c(u, s0) = us0 − m2
b + ūq2 − uūm2

a1
and

δ(c(u, s0)) = e−s0/M2 f (u0)

m2
c + u2

0m
2
a1

− q2
, (31)

�(c(u, s0)) = e−s0/M2
[

1

2u0M2

f (u0)

m2
c + u2

0m
2
a1

− q2

− u2
0

2(m2
c + u2

0m
2
a1

− q2)

d

du
(

f (u)

u(m2
c + u2m2

a1
− q2)

)∣
∣
∣
∣
∣
u=u0

]

. (32)

Here u0 is the solution of c(u0, s0) = 0 with 0 ≤ u0 ≤ 1.
The simplified LCDAs are defined as

�
‖
2;a1

(u) =
∫ u

0
dvφ

‖
2;a1

(v), (33)

�⊥
3;a1

(u) =
∫ u

0
dvφ⊥

3;a1
(v), (34)

�
‖
4;a1

(u) =
∫ u

0
dv

∫ v

0
dwψ

‖
4;a1

(w). (35)

The coupling constants f V3;a1
and f A3;a1

for a1(1260)-meson
are defined as the following matrix elements:

〈a1(q, λ)|J 3,A
3,μ (0)|0〉 = − f A3;a1

(z · q)3e(λ)
⊥,μ + O(zμ),

〈a1(q, λ)|J 1,V
3,μ (0)|0〉 = −i f V3;a1

(z · q)2e(λ)
⊥,μ + O(zμ), (36)

where the interpolating currents, J 3,A
3,μ (0) = zαzβ q̄2(0)γαγ5

[Gβμ(0)i(z · −→
D ) − i(z · ←−

D )Gβμ(0)]q1(0), J 1,V
3,μ (0) =

123
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zαzβ q̄2(0)γαgsG̃βμ(0)q1(0), and O(zμ) involve the twist-
4 corrections [15].

Then, the longitudinal and transverse differential decay
widths for semileptonic decay D → a1(1260)�+ν� can be
expressed as

d�L(D → a1(1260)�+ν�)

dq2 =
(
q2 − m2

�

q2

)2 √
λG2

F |Vcd |2
384π3m3

D

× 1

q2

[

3m2
� λ V 2

0 (q2) + m2
� + 2q2

2ma1

∣
∣
∣(m2

D − m2
a1

− q2)

× (mD − ma1)V1(q
2) − λ

mD − ma1

V2(q
2)

∣
∣
∣
2
]

, (37)

d�±(D→a1(1260)�+ν�)

dq2 =
(
q2 − m2

�

q2

)2 λ3/2G2
F |Vcd |2

384π3m3
D

× (m2
� + 2q2)

∣
∣
∣
∣

A(q2)

mD − ma1

∓ (mD − ma1) V1(q2)√
λ

∣
∣
∣
∣

2

,

(38)

where GF is the Fermi coupling constant, |Vcd | is the CKM
matrix element, and λ = (m4

D + m4
a1

+ q4 − 2m2
a1
m2

D −
2q2m2

D − 2q2m2
a1

). The total differential decay width of the
semileptonic decay is d�L + d�T, where d�L and d�T =
d�++d�− corresponds to longitudinal and transverse parts,
respectively.

3 Numerical results and discussions

To do the numerical calculation, the input parameters are
taken as follows. The current charm-quark mass, m̄c(m̄c) =
1.27(2) GeV, and the current quark-masses for the light
quarks are m̄u(2 GeV) = 2.16+0.49

−0.26 MeV and m̄d(2 GeV) =
4.67+0.48

−0.17 MeV. The D-meson and the a1(1260)-meson
masses are, mD0 = 1.865 GeV,mD+ = 1.870 GeV
and ma1 ≈ 1.230 GeV, accordingly, which are taken
from the Particle Data Group (PDG) [40]. The D-meson
and a1(1260)-meson decay constants fD0 = fD+ =
0.210(12) GeV, f ‖

a1 = 0.238(10) GeV [41]. The D →
a1(1260) decay processes typical scale in this paper is μk =
(m2

D−m2
c)

1/2 ≈ 1.4 GeV. Furthermore, the non-perturbative
vacuum condensates are the significant parameters to the sum
rule, and we take [37,42,43]

〈q̄q〉|2 GeV = (−289.14+9.34
−4.47)

3 MeV3,

〈gsq̄σTGq〉|2 GeV = (−1.934+0.188
−0.103) × 10−2 GeV5,

〈gsq̄q〉2|2 GeV = (2.082+0.734
−0.697) × 10−3 GeV6,

〈g2
s q̄q〉2|μ = (7.420+2.614

−2.483) × 10−3 GeV6,

〈αsG
2〉|μ = 0.038(11) GeV4,

〈g3
s f G

3〉|μ ≈ 0.045 GeV6,

κ = 0.74(3). (39)

Table 1 The ratios of the continuum states’ and the dimension-six
condensates’ contributions over the total moments of a1(1260)-meson
longitudinal twist-2 LCDA 〈ξ‖;n

2;a1
〉|μ with n = (2, 4, 6, 8, 10) within

the determined Borel windows. The abbreviations “Con.” and “Six.”
stand for the continuum and dimension-six contributions, respectively

n Con. Six. M2 〈ξ‖;n
2;a1

〉|μ
2 < 35% < 5% [1.782, 2.886] [0.240, 0.198]
4 < 35% < 5% [2.740, 3.385] [0.101, 0.091]
6 < 40% < 5% [3.669, 4.567] [0.057, 0.051]
8 < 40% < 5% [4.585, 5.269] [0.037, 0.034]
10 < 45% < 5% [5.494, 6.790] [0.027, 0.023]

It should be noted that, the values of the gluon conden-
sates are the most commonly used in QCD sum rules. The
value of the double-gluon condensate 〈αsG2〉 is determined
by the sum rule of the charmonium, and the one for triple-
gluon condensate 〈g3

s f G
3〉 is based on the instanton model2.

The double-quark condensate 〈q̄q〉 and the quark-gluon
mixed condensate 〈gsq̄σTGq〉 were updated in our previ-
ous work [37] based on the GellMann–Oakes–Renner rela-
tion and the relationship 〈gsq̄σTGq〉 = m2

0〈qq̄〉 with m2
0 =

0.80(2) GeV2 [46]. One can calculate the four-quark conden-
sate 〈gsq̄q〉2 by using ραs〈q̄q〉2 = (5.8 ± 1.8)× 10−4GeV6

with ρ � 3 − 4 [46], and determine the value of 〈g2
s q̄q〉2

by combining with the new value of 〈q̄q〉. All those scale-
dependent parameters, such as the quark masses and the vac-
uum condensates, shall be run from an initial scale μ0 to a
special choice of scale such as μk by applying the renormal-
ization group equations (RGE) given by Refs. [47–50].

Two important parameters for the BFTSR approach for
the moments are continuum threshold s0 and Borel parame-
ter M2, whose range is called as the Borel Window. To fix
their values and make the sum rules predictions reliable, the
contributions from the continuum states and the contribu-
tions from the dimension-six condensates should be small
enough. For the purpose, we determine the Borel window by
allowing the contribution of continuum states to be less than
45% and the contribution of dimension-six condensates to
be less than 5%. When determining the threshold parameter
sa1 , one can normalized the 0th-order a1(1260)-meson lon-
gitudinal DA in the appropriate Borel window. Followed by
this approach, we can get sa1 = 1.4(4) GeV. We present

the determined Borel windows and 〈ξ‖;n
2;a1

〉|μ at the scale

μ = √
M2 in Table 1. Here, we have set the continuum con-

tributions to be no more than (35%, 35%, 40%, 40%, 45%)

for n = (2, 4, 6, 8, 10), respectively, and the dimension-six
contributions for all 〈ξ‖;n

2;a1
〉|μ to be less than 5%.

Principally, the moments including all the condensates
should be independent to the Borel parameter M2, and

2 For more detailed discussion, one can refer to Refs. [42,44,45]

123
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Fig. 1 Moments 〈ξ‖;n
2;a1

〉|μ up to n = (2, 4, 6, 8, 10) order level versus

the Borel parameter M2. The shaded bands stand for the corresponding
Borel windows

for a fixed-order OPE expansion, it may change with dif-
ferent choices of M2 within the allowable Borel window.
Such change depends heavily on the convergence of the
OPE expansion over 1/M2. For the present LCSR up to
dimension-6 condensates, e.g the series (7), as a conserva-
tive prediction, we require the variations of 〈ξ‖;n

2;a1
〉|μ within

the Borel window to be less than 10%. We present the first
five moments for a1(1260)-meson twist-2 LCDA versus the
Borel parameter M2 in Fig. 1. The shaded bands indicate
the corresponding Borel windows, which are in the region of
[1.0, 7.0] GeV2, respectively.

By taking all uncertainty sources into consideration and
applying the RGE of the moments, 〈ξ‖;n

2;a1
〉|μ at the initial

scale μ0 and special scale μk are

〈ξ‖;2
2;a1

〉|μ0 = 0.223(29), 〈ξ‖;2
2;a1

〉|μk = 0.219(25),

〈ξ‖;4
2;a1

〉|μ0 = 0.098(8), 〈ξ‖;4
2;a1

〉|μk = 0.097(8),

〈ξ‖;6
2;a1

〉|μ0 = 0.056(6), 〈ξ‖;6
2;a1

〉|μk = 0.055(5),

〈ξ‖;8
2;a1

〉|μ0 = 0.039(4), 〈ξ‖;8
2;a1

〉|μk = 0.037(3),

〈ξ‖;10
2;a1

〉|μ0 = 0.028(3), 〈ξ‖;10
2;a1

〉|μk = 0.027(3). (40)

In order to determine the two LCHO model parame-
ters α

‖
2;a1

and B‖
2;a1

, one can use the specific fitting by
taking the two parameters as the fitting parameters, e.g.
θ = (α

‖
2;a1

, B‖
2;a1

). The moments 〈ξ‖;n
2;a1

〉|μ from Eq. (16) with

the definition 〈ξ‖;n
2;a1

〉|μ = ∫ 1
0 ξnφ

‖
2;a1

(x, μ) been regarded as
the mean function μ(xi ; θ)(xi → n), where the moments
calculated with BFTSR, i.e. Eq. (40) are considered as the
independent measurements yi with the known variance σi .
To obtain the best values of fitting parameters θ , one can
minimize the function

Fig. 2 The relationship curve between parameters α
‖
2;a1

, B‖
2;a1

and
goodness of fit Pχ2

min

χ2(θ) =
5∑

i=1

(yi − μ(xi , θ))2

σ 2
i

. (41)

The goodness of fit is judged by the magnitude of the prob-
ability

Pχ2 =
∫ ∞

χ2
f (y; nd)dy. (42)

Here f (y; nd) with the number of degrees of freedom nd is
the probability density function of χ2(θ), and

f (y; nd) = 1

�
(nd

2

)
2

nd
2

y
nd
2 −1e− y

2 . (43)

Then, we obtain the fitting parameters at the initial scale
μ0. Due to the quark component of a1(1260)-meson here is
ūu or d̄d, so the treatment for light-quark mass in this paper
is the same with usual constituent quark mass. There are dif-
ferent values for constituent quark mass mq , which is taken
to be 250 MeV in the invariant meson mass scheme [51–54],
330 MeV in the spin-averaged meson mass scheme [55–58].
In addition, mq = 300 MeV and mq = 200 MeV [37] of
the simplest in Refs. [59,60]. In this work, we present the
results for different choices of the constituent quark mass,
e.g.mq = (200, 250, 300, 330, 350) MeV, respectively. The
fitting results are given in Table 2. As a default value, we
shall take mq = 250 MeV to do our calculation, whose cor-
responding goodness of fit is 95.4%. This value is also agree
with the usual pion and kaon cases [37,38]. One can find
that the parameter A‖

2;a1
and B‖

2;a1
gradually decrease with

the increment of mq , and the goodness of fit Pχ2
min

is also
decreasing with the increment of mq . To show more clearly

123
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Table 2 Fitting parameters A‖
2;a1

(GeV−1), β2;a1 (GeV), α‖
2;a1

and B‖
2;a1

with different constituent quark massmq under initial scale μ0. Meanwhile,
the goodness of fit Pχ2

min
and the probability Pa1 are also given

mq 200 MeV 250 MeV 300 MeV 330 MeV 350 MeV

A‖
2;a1

+6.157 +5.382 +4.775 +4.464 +4.336

β2;a1 +0.522 +0.549 +0.582 +0.603 +0.618

α
‖
2;a1

−0.884 −0.946 −0.996 −1.022 −1.029

B‖
2;a1

−0.116 −0.115 −0.114 −0.114 −0.113

Pχ2
min

+0.977 +0.954 +0.923 +0.903 +0.889

Pa1 +0.641 +0.611 +0.584 +0.570 +0.562

Fig. 3 The a1(1260)-meson longitudinal twist-2 LCDA φ
‖
2;a1

(x, μ0).
As a comparison, the QCDSR [15,61] and the asymptotic curves are
also given

the relationship between the magnitudes of α
‖
2;a1

and B‖
2;a1

and the goodness of fit Pχ2
min

, we present the relationship
curve between them in Fig. 2. The darker shaded band of
Fig. 2 represents the higher goodness of fit. When the range
of goodness of fit is 80% ≤ Pχ2

min
≤ 96%, the allowable

ranges for the parameters α
‖
2;a1

and B‖
2;a1

are quite small.
We present the a1(1260)-meson twist-2 LCDA in Fig. 3.

As a comparison, we have also presented the QCDSR predic-
tion [15,61] and the asymmetry behavior φ

‖
2;a1

(x) = 6x x̄ in
Fig. 3. Our prediction prefers a single-peak behavior, which
is as the same as the QCDSR and asymptotic ones. In order
to deal with the a1(1260)-meson twist-3 distribution ampli-
tudes, one can decompose the φ⊥

3;a1
(x) and ψ⊥

3;a1
(x) into

several terms according to various source terms [62]:

φ⊥
3;a1

(x) = φ⊥WW
3;a1

(x) + φ
⊥g
3;a1

(x) + φ⊥m
3;a1

(x) (44)

ψ⊥
3;a1

(x) = ψ⊥WW
3;a1

(x) + ψ
⊥g
3;a1

(x) + ψ⊥m
3;a1

(x) (45)

where φ
⊥g
3;a1

(x) and ψ
⊥g
3;a1

(x) are contributions from the three-
particle distribution amplitudes, which can be neglected due
to their smallest and negligible contributions. φ⊥m

3;a1
(x) and

ψ⊥m
3;a1

(x) are related to the coefficients δ̃±, whose magni-
tudes tend to be zero in the qq̄ with q = (u, d) meson’s
components system 3. The φ⊥WW

3;a1
(x) and ψ⊥WW

3;a1
(x) denotes

the contribution from the twist-2 longitudinal distribution
amplitudes, which is also called Wandzura–Wilczek approx-
imation. Thus, one can get the following relationship

φ⊥
3;a1

(x) = 1

2

[ ∫ x

0

dv

v̄
φ

‖
2;a1

(v) +
∫ 1

x

dv

v
φ

‖
2;a1

(v)

]

, (46)

ψ⊥
3;a1

(x) = 2x̄
∫ x

0

dv

v̄
φ

‖
2;a1

(v) + 2x
∫ 1

x

dv

v
φ

‖
2;a1

(v). (47)

The twist-3,4 LCDAs for a1(1260)-meson is taken from
Ref. [15]

ψ
‖
4;a1

(x) = 6x x̄ + (1 − 3ξ2)

[
1

7
a‖;2

2;a1
− 20

3

f A3;a1

f ‖
a1ma1

]

, (48)

�
‖
3;a1

(αi ) = 5040(α1 − α2)α1α2α
2
3, (49)

�̃
‖
3;a1

(αi ) = 360α1α2α
2
3

[

1 + 1

2
(7α3 − 3)ωV

a1

]

(50)

where a‖;2
2;a1

= 0.056 ± 0.072 is the result obtained by using

the BFTSR, the coupling constants f A3;a1
= 0.0012 GeV2 and

f V3;a1
= 0.0036 GeV2 [61], the coefficient ωV

a1
= −2.9 [61].

�
‖
3;a1

(αi ) and �̃
‖
3;a1

(αi ) represent the twist-3 LCDAs of
the three-particle part [15,63], accordingly. Here the twist-
3 LCDAs φ⊥

3;a1
(x) and ψ⊥

3;a1
(x) are related to the twist-

2 LCDAs by using the Wandzura–Wilczek approximation.
In order to evolve the hadronic parameters in a1(1260)-
meson twist-2, 3, 4 LCDAs from the initial factorization scale
μ0 to the special scale μk , one can use the RGE with the
form ci (μk) = Lγci /β0ci (μ0), where L = αs(μk)/αs(μ0),
β0 = 11 − 2/3n f . The one-loop anomalous dimensions γci
satisfy the following equation [64].

3 The detailed analysis can be found in Section 4 in Ref. [62]
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Table 3 The D → a1(1260) TFFs at the large recoil region, i.e. A(0), V1(0), V2(0), V0(0). Predictions under various approaches are also listed

References A(0) V1(0) V2(0) V0(0)

This work 0.130+0.015
−0.013 1.898+0.128

−0.121 0.228+0.020
−0.021 0.217+0.023

−0.025

LCSR-I [65] 0.07 ± 0.05 0.37 ± 0.01 −0.03 ± 0.02 0.15 ± 0.05

LCSR-II [66] 0.34+0.03
−0.04 2.63+0.20

−0.21 0.34+0.03
−0.04 0.24+0.00

−0.01

3PSR [67] 0.314+0.048
−0.046 0.039+0.012

−0.010 0.112+0.037
−0.032 −0.114+0.018

−0.019

CLFQM [10] 0.20 1.54 0.06 0.31

CLFQM [39] 0.19+0.00
−0.01 1.51+0.00

−0.04 0.05+0.01
−0.00 0.32+0.00

−0.00

γan = CF

(

1 − 2

(n + 1)(n + 2)
−

n+1∑

m=2

1

m

)

. (51)

The TFFs of D → a1(1260) are key elements for investi-
gating the D-meson semileptonic decay. To derive the exact
value for the TFFs (24)–(27), we need to fix the continuum
threshold s0 and Borel parameter M2. Normally, the contin-
uum threshold s0 should be taken near the squared mass of
the D-meson’s first excited state with the same J P number,
e.g. D0(2550)0. And we take s A0 = 6.5(3) GeV2, sV1

0 =
5.7(3) GeV2, sV2

0 = 6.0(3) GeV2 and sV0
0 = 6.0(3) GeV2.

One can use four criteria of the LCSR approach listed in
Ref. [33] to determine the Borel parameters for the four
TFFs. And the determined Borel parameters are M2

A =
4.0(3) GeV2 , M2

V1
= 5.4(3) GeV2, M2

V2
= 5.0(3) GeV2

and M2
V0

= 5.0(3) GeV2, respectively. We present the D →
a1(1260) TFFs at the large recoil region, i.e. q2 → 0 GeV2

within errors in Table 3. To make a comparison, the predic-
tions from various approaches are presented, i.e. the LCSR-I,
II [65,66], 3PSR [67] and CLFQM [10,39], respectively. Our
predictions are close to the LCSR-II ones. To have a clear look
at the uncertainties caused by different input parameters, we
present the TFFs as follows

A(0) = 0.130 + (+0.005
−0.005)s0 + (+0.009

−0.008)M2 + (+0.010
−0.009)mc fD

= 0.130+0.015
−0.013 (52)

V1(0) = 1.898 + (+0.060
−0.065)s0 + (+0.002

−0.002)M2 + (+0.114
−0.103)mc fD

+(+0.001
−0.001)a‖;2

2;a1

= 1.898+0.128
−0.121 (53)

V2(0) = 0.228 + (+0.006
−0.006)s0 + (+0.015

−0.013)M2 + (+0.014
−0.012)mc fD

+(+0.001
−0.001)a‖;2

2;a1

= 0.228+0.020
−0.021 (54)

V0(0) = 0.217 + (+0.006
−0.007)s0 + (+0.018

−0.020)M2 + (+0.013
−0.012)mc fD

= 0.217+0.023
−0.025 (55)

We present the D → a1(1260) TFFs at the large recoil
region q2 = 0 in Table 4, in which the contributions from
the DAs with various twist structures are presented. Refer-
ence [68] indicates that the corrections from the two-particle
higher-twist contributions are (27%-36%), and our twist-4

contribution falls within this margin of error. As for the twist-
4 contribution to the form factor V0(0), its magnitude is about
34.56% of the total result. For V1(0) and V2(0), their twist-
4 contributions change to 9.48% and 8.33%, respectively.
For convenience, we use H(αi ) = �̃

‖
3;a1

(αi ) − �
‖
3;a1

(αi )

to represent the net contribution of the three-particle twist-3
LCDAs, whose contribution to the TFFs V1(0), V2(0) and
V0(0) are 0.90%, 7.90% and 8.30%, respectively.

Theoretically, the LCSR approach for D → a1(1260)

TFFs are reliable in low and intermediate q2-regions, which
can be extrapolated to all the physically allowable region
m2

� ≤ (mD − ma1)
2 ≈ 0.4 GeV2. In this paper, we mainly

consider the simplified series expansion (SSE), which has
the following form

Fi (q
2) = 1

Pi (q2)

∑

k

αk[z(q2) − z(0)]k, (56)

with the function z(t) including t±, t0 and t , whose defini-
tion can be found Ref. [33]. Fi (q2) are the TFFs A(q2) and
V0,1,2(q2), respectively. In this approach, the simple pole
Pi (q2) = (1 − q2/m2

R,i ) accounting for low-lying reso-
nances, instead of Blaschke factor B(t) is more applicable
in many processes. Here, the masses of low-lying D reso-
nances are mainly determined by the J P states. Followed
by the Ref. [69] and PDG values [40], we listed the mR,i in
Table 5. Meanwhile, the fitting quality should satisfied the
relationship � < 1%, which is defined as

� =
∑

t |Fi (t) − Ffit
i (t)|

∑
t |Fi (t)|

× 100 (57)

where t ∈ [0, 1/40, . . . , 40/40] × 0.28 GeV2. The fitting
parameters αi for every TFFs and the quality of fit � are also
listed in Table 5. From which, the � of D → a1(1260) TFFs
are less than 0.020%.

Furthermore, the |Vcd |-independence longitudinal and
transverse differential decay widths d�L,T and total width
d�total = d�L+d�T of D → a1(1260)�+ν� can be obtained
according to Eqs. (37) and (38), which are shown in Fig. 4. As
a comparison, we also present the LCSR-II predictions [66].
Fig. 4 shows that the contributions of the decay widths mainly

123
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Table 4 The D → a1(1260) TFFs at the large recoil region q2 = 0, in which the twist-2,3,4 LCDAs’ contributions are presented separately

A(q2) V1(q2) V2(q2) V0(q2)

�
‖
2;a1

(u) / / 0.191 −0.240

φ⊥
3;a1

(u) / 2.061 / 0.550

ψ⊥
3;a1

(u) 0.130 / / /

�
‖
4;a1

(u) / −0.180 0.019 −0.075

H(αi ) / 0.017 0.018 −0.018

Total 0.130 1.898 0.228 0.217

Table 5 The masses of low-lying D resonances, coefficients α1,2 and � for the TFFs A(q2), V1(q2), V2(q2), V0(q2), in which all the input
parameters are set to be their central values

A(q2) V1(q2) V2(q2) V0(q2)

mR,i 2.007 2.420 2.420 1.865

α1 −1.640 −5.178 −0.703 −4.384

α2 31.085 231.525 18.574 38.942

� 0.004% 0.002% 0.020% 0.020%

Table 6 The D → a1(1260)�+ν� branching fractions with error. Other predictions are given as a comparison

Method B(D0 → a−
1 (1260)e+νe) B(D+ → a0

1(1260)e+νe) B(D0 → a−
1 (1260)μ+νμ) B(D+ → a0

1(1260)μ+νμ)

This work (5.261+0.745
−0.639) × 10−5 (6.673+0.947

−0.811) × 10−5 (4.732+0.685
−0.590) × 10−5 (6.002+0.796

−0.748) × 10−5

LCSR-I [65] (3.58 ± 0.52) × 10−5 (4.73 ± 0.63) × 10−5 – –

LCSR-II [66] 6.90 × 10−5 9.38 × 10−5 6.27 × 10−5 8.52 × 10−5

3PSR [67] (1.11+0.41
−0.34) × 10−5 (1.47+0.55

−0.44) × 10−5 – –

CLFQM [70] 4.1 × 10−5 – 3.6 × 10−5 –

come from the longitudinal parts in small q2-region, and
transverse parts contribute sizably in intermediate and large
q2-regions. In different to LCSR-II prediction, our predic-
tions tend to 0 when q2 � (mD −ma1)

2 ≈ 0.4 GeV2, which
are similar to most of the other semileptonic decay processes
such as final state involving π, K , ρ, K ∗, D, . . . .

Finally, by using the lifetimes of D0, D+-mesons τD0 =
(0.410 ± 0.015) ps and τD+ = (1.040 ± 0.007) ps issued by
the PDG [40], we get the branching fractions for the two dif-
ferent semileptonic decay channels D0 → a−

1 (1260)�+ν�

and D+ → a0
1(1260)�+ν�, which are listed in Table 6.

Meanwhile, other theoretical predictions such as LCSR-I,
II [65,66], 3PSR [67] and CLFQM [70] are also given as
a comparison. Our results are in agreement with other pre-
dictions which are in order of 10−5. At present, D0(+) →
a−(0)

1 (1260)�+ν� has not been measured. In year 2020, the

BESIII collaboration measured D0(+) → b−(0)
1 e+νe decay

processes and provided the upper limits for the product
branching fractions, which are B(D0 → b−

1 (1235)e+νe) ·
B(b1(1235)− → ωπ−) < 1.12 × 10−4 and B(D+ →
b0

1(1235)e+νe) ·B(b1(1235)0 → ωπ0) < 1.75×10−4 [71].

Here B(b1(1235)0(−) → ωπ0(−)) = 1 [66] and one can get
the branching fraction for D → b1(1235)e+νe directly. Fur-
thermore, the branching fractions of D → a1(1260)�+ν� of
this work satisfies this upper limit.

4 Summary

In the present paper, we have calculated the a1(1260)-meson
moments of LCDA 〈ξ‖;n

2;a1
〉|μ by using the BFTSR approach

up to NLO QCD corrections for the perturbative part and
up to dimension-six condensates for the non-perturbative
part. The moments of LCDA up to 10th-order have been
given in Eq.(40). Then, by combining the two constraints
(17) and (18) with the least squares fitting approach for
〈ξ‖;n

2;a1
〉|μ, we get the a1(1260)-meson longitudinal LCDA

φ
‖
2;a1

(x, μ0). Figure 3 shows that φ
‖
2;a1

(x, μ0) tends to a
single-peak behavior. Moreover, by using the derived twist-2
LCDA, we have calculated the D → a1(1260) TFFs A(q2)

and V0,1,2(q2) by using the LCSR approach up to twist-4
accuracy. Furthermore, the |Vcd |-independence differential
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Fig. 4 The D → a1(1260)�+ν� decay width with q2 by using the chiral LCSR for the TFFs, where the upper and lower ones are for � = (e, μ),
respectively. As a comparison, we also present the other LCSR results from Ref. [66]

decay width of semileptonic decay D → a1(1260)�+ν� with
� = (e, μ) have been given in Fig. 4, and the branching
fractions for D0(+) → a−(0)

1 �+ν� are given in Table 6. The
branching fractions are of order 10−5, which is close to the
present experimental upper limit. It is hoped that the decays
D → a1(1260)�+ν� can be observed in near future, which
inversely could provide a (potential) helpful test for QCD
sum rules approach.
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