
Eur. Phys. J. C (2022) 82:571
https://doi.org/10.1140/epjc/s10052-022-10516-5

Regular Article - Theoretical Physics

Fundamental length scale and the bending of light in a
gravitational field

Philip Tee1,2,a , Nosratollah Jafari3,4,b

1 Beyond Center, Arizona State University, Tempe, AZ 85287, USA
2 Department of Informatics, University of Sussex, Falmer, Sussex BN1 9RH, UK
3 Department of Physics, Nazarbayev University, Kabanbay Batyr Ave 53, 010000 Nur-Sultan, Kazakhstan
4 Fesenkov Astrophysical Institute, 050020 Almaty, Kazakhstan

Received: 25 May 2022 / Accepted: 12 June 2022 / Published online: 29 June 2022
© The Author(s) 2022

Abstract The canonical approach to quantizing quan-
tum gravity is understood to suffer from pathological non-
renomalizability. Nevertheless in the context of effective
field theory, a viable perturbative approach to calculating
elementary processes is possible. Some non-perturbative
approaches, most notably loop quantum gravity and com-
binatorial quantum gravity imply the existence of a minimal
length. To circumvent the seeming contradiction between the
existence of a minimum length and the principle of special
relativity, Double Special Relativity introduces modified dis-
persion relationships that reconcile the conflict. In this work,
we combine these dispersion relationships with an effective
field theory approach to compute the first post Newtonian
correction to the bending of light by a massive object. The
calculation offers the prospect of a directly measurable effect
that rests upon both the existence of a quantized gravitational
field and a minimal length. Experimental verification would
provide evidence of the existence of a quantum theory of
gravity, and the fundamental quantization of spacetime with
a bound on the minimal distance.

1 Introduction

Perhaps the most celebrated experimental test of General
Relativity (GR) is the bending of a ray light in the presence
of a gravitational field. For a ray of light grazing a mass M at
a distance b from the center of mass (the impact parameter),
to first order the ray is deflected by θclass from straight, given
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by the formula [1],

θ
(1)
class = 4GM

c2b
. (1)

This result has been verified many times since it was first
measured by Eddington in 1919 [2], and more recently by
Bruns et al. [3], and was an early triumph of GR.

On the contrary, a quantum theory of gravity (QG) enjoys
little experimental support, and indeed an accepted and con-
sistent framing of such a theory remains elusive. Despite
many attempts to incorporate GR into a quantum field the-
ory it remains plagued by issues of renormalizability when
treated canonically [4,5]. Other attempts to formulate a non-
perturbative quantum theory such as loop quantum gravity
and causal dynamical triangulation, amongst others, have
failed to gain consensus as viable theories. Indeed it is still
a matter of some dispute as to whether a quantum theory
of gravity even exists, beyond of course the well understood
semi-classical treatments [6]. Experimental proof of the exis-
tence of the force mediating boson of QG, the graviton, or
evidence of the discreteness of spacetime geometry such as
a fundamental length scale, would settle this question.

In this work we seek to bring together several independent
approaches to provide a calculation of the QG correction to
θclass , and provide a potentially measurable result that rests
upon the existence of both the graviton as the quantum of
the gravitational field and a fundamental length scale con-
sistent with a quantized spacetime. To do so we will make
use of the techniques of Effective Field Theory (EFT) [7,8],
to compute the quantum correction to θclass , with the cru-
cial added ingredient of Doubly Special Relativity (DSR)
[9,10] that modifies the propagators of the graviton to account
for the minimal length. The modifications to the propagator
include a coupling constant dependent upon the Planck mass,
which has the effect of modifying the classical limit gravi-
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tational potential. Our results demonstrate that the effect is
just beyond the accuracy of the most recent experiments to
measure light ray deflection by the Sun [3], but in principle is
a measurable deflection in more distant systems such as the
black hole hypothesized to exist at the center of the galaxy
NGC 4395. Further, the error bars in the measurement of
the solar deflection allow us to place a lower bound on the
Planck mass in the modified propagator, consistent with the
theoretically proposed value of 2.176 × 10−8 kg.

Our starting point is an elementary calculation in Quantum
Field Theory (QFT) that uses the Born approximation to com-
pute the equivalent effective classical potential when com-
paring to a tree level calculation of the scattering amplitudes.
Following any introductory text on QFT such as [11], in Fig.
1 we depict the lowest order tree diagram for a process char-
acterised by an interaction Lagrangian such asL = −gψ̄φψ .
Comparing the obtained scattering amplitude with the Born
formula at first order 〈p′ |iT |p〉 = −i Ṽ (q)(2π)δ(Ep′ −Ep),
one obtains the expression for the potential in momentum
space as,

Ṽ (�q) = −g2

|�q2| + m2
φ

.

This may be easily inverted into spherical polar coordinate
position space with the aid of a contour integral to obtain the
effective “Yukawa” potential,

V (r) = −g2e−mφr

4πr
. (2)

This approach is in principle applicable to any reasonable
or effective quantum field theory, such as QG providing that
the perturbative expansion remains a valid approximation, as
is the case in EFT. In the case of a massless scalar with mφ =
0, one recovers the familiar inverse r dependency that one
finds in Newtonian gravity and electrostatics, and indeed the
extension of the Feynman diagram in Fig. 1 to the exchange
of a massless vector gauge boson (i.e. a photon or graviton), is
trivial. Indeed in [5,7,12], precisely this approach was taken
to obtain the classical limit of the quantum gravity potential.

Our next ingredient is to introduce the discreteness of
spacetime. It is postulated that as a necessary consequence of
the quantization of gravity, spacetime itself must be quantized
and therefore discrete [13]. This discreteness has been exten-
sively studied and modelled in recent studies of emergent
geometry and the ground up approach to QG, combinato-
rial quantum gravity (CQG) [14–18]. These models propose
that the emergence of spacetime must necessarily involve the
existence of a fundamental length. This idea ultimately has
its origins in the work of Hartland Snyder [19], which intro-
duces a spatial quantum operator with a discrete spectrum (at
least assuming spacetime is finite).

Fig. 1 Simplest tree level diagram in the t-channel (k = (p
′
1 − p1)),

for the scattering of two distinguishable fermions by the exchange of a
scalar particle φ of mass Mφ

The existence of a fundamental length, usually assumed
to the Planck length l p = 1.6 × 10−35 m, is seemingly in
direct contravention of the postulates of special relativity.
Observers in different inertial frames that are not at rest rel-
ative to each other would surely disagree about the length
of the smallest quanta of distance. However, the framework
of Doubly Special Relativity (DSR) introduced by Amelino-
Camelia [9,10], provides a way out of this seemingly patho-
logical contradiction. In DSR [20] the postulates of relativity
are modified to accommodate an independent velocity and
length scale, being the speed of light c and the Planck length
l p.

Specifically for a particle of mass m, one modifies the
normal dispersion relationship E2 − c2 p2 − c4m2 = 0, with
the addition of a scale dependent term f (E, p,m; l p) to give,

E2 − c2 p2 − c4m2 − f (E, p,m; l p) = 0. (3)

It is possible to demonstrate that this form of modified dis-
persion relationship is valid in all inertial frames with an
observer independent value for l p, in a way that is consistent
with the normal postulates of special relativity. The leading
order term, argued by dimensional analysis, has the form
f (E, p,m; l p) � l pcEp2.

A modification to the dispersion relationship implies a
corresponding change to the propagator of the particle in
QFT. To be more specific, for a scalar field, Myers et al. [21]
proposed that with a preferred frame defined by a a four-
vector nα , the normal Klein–Gordon equation for a particle
of mass m is replaced by,

(� + m2)� = icκ1

Mp
(n · ∂)3�, (4)

with Mp being the Planck mass and κ1 a coupling constant.
On dimensional grounds, for κ1 to remain dimensionless an
additional factor of c is necessary. In what follows, we set
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h̄ = c = 1 until we perform the explicit calculations in Sect.
3.

This form of Equation of Motion (EOM), in momentum
space would introduce a third power of the momentum, con-
sistent with Eq. 3, and in fact we can generalize this approach
to propose a modified dispersion relationship as follows,

E2 = p2 + m2 + κ1

Mp
p3 + κ2

M2
p
p4. (5)

In this relationship we assume that κ1 and κ2 are dimension-
less constants. For a massless particle, in momentum space
we of course obtain,

E2 = p2 + κ1

Mp
p3 + κ2

M2
p
p4, (6)

to leading order. It is possible to consider higher terms in
the momentum p, but in this work as the propagator modifi-
cations are inversely proportional to momentum transfer we
will restrict ourselves to third and fourth powers of p.

Defining α = 1
Mp

, for a massless particle at constant

momentum, one could consider the terms κ1αp3 and κ2α
2 p4

to behave like a pseudo mass term in the EOM. Using
m2

e(p) = κ1αp3 + κ2α
2 p4 to denote this pseudo-mass term,

one can rewrite the equation of motion equivalent to this dis-
persion relationship as,

(
� + m2

e(p)
)
� = 0. (7)

The presence of this pseudo mass will affect the propagation
of this particle, particularly at high momenta, but crucially
will not contribute non-physical polarization states in the case
of gauge bosons such as photons or gravitons. The particles
remain massless, but their interactions will be modified by
the additional terms as we shall demonstrate in Sect. 2.

This, in essence, is our approach to obtaining corrections
to the Newtonian inverse square law. Instead of a massless
scalar propagator, however, we will need to consider modifi-
cations to the graviton propagator, and then use this to com-
pute tree level scattering terms that can be compared to the
Born approximation in order to extract the effective potential.

Once we have obtained our modified potential, it is
straightforward to use this to compute the deviation of a ray of
light that passes through this potential, and thereby compute
any measurably difference to θclass . We provide the details
of this calculation in Sect. 3, but our computation yields a
non-zero result, which although small, could in principle be
used to detect a modification to the bending of light rays
from very distant objects. As mentioned earlier we can use
the error tolerance of the latest measurements of gravitational
light deflection in the solar system to estimate an upper bound
for α, which we obtain numerically in the same section. Our

Fig. 2 The scattering of two massive scalars by the exchange of a
graviton in the t-channel. The particles have mass m1 and m2, and the
off-shell momentum k = p1 − p2 = k4 − k3

calculation is consistent with the definition of α as the inverse
Planck mass.

2 The modified graviton propagator and effective
potential

The computation of scattering amplitudes in quantum grav-
ity was originally thought to be intractable, due to the non-
renormalizability of QG. However, it is possible within the
context of an EFT [7], to compute a set of Feynman rules that
can be applied in the normal way to scattering problems. The
benefit of EFT is to seperate out the low energy phenomena
which can be consistently regularized from the high energy
ones which cannot. The approach commences by linearizing
GR, by expanding the metric gμν = ημν + κhμν around the
Minkowski background ημν = diag(+1,−1,−1,−1), with
κ2 = 32πG. In this scheme [7,22], the relevant Feynman
rules are,

with the following definitions for ταβ and Dαβμν ,

ταβ(p1, p2,m) = − iκ

2

{
pα

1 p
β
2 + pβ

1 pα
2 − ηαβ [(p1.p2) − m2]

}
,

(8)

Dαβμν(k) = i Pαβ,μν

k2 + iε
, (9)

Pαβμν = 1

2
[ηαμηβν + ηβμηαν − ηαβημν ]. (10)

Using these Feynman rules we can construct a matrix ele-
ment for the process depicted in Fig. 2. The contraction of

123



571 Page 4 of 9 Eur. Phys. J. C (2022) 82 :571

the indices that results is vastly simplified by considering a
non-relativistic limit where �p2 � m2, that is the particles are
slow moving, and �p is the three-momentum of the particle.
Following [8,23] we obtain for the non-relativistic matrix
element M12(p1, p3 → p2, p4) of Fig. 2, appropriately nor-
malized by 1

2m12m2
,

iM12(p1, p3 → p2, p4) = i
1

2m12m2
M12 = −κ2

8

m1m2

�k2
.

(11)

We compare this with the Born approximation for the
same scattering process to extract an effective potential, after
Fourier transform as follows,

V (�r) = −κ2m1m2

8

∞∫

0

d3�k
(2π)3

ei �k·�r
�k2

, (12)

= −G
m1m2

r
. (13)

Our approach is to modify Dαβμν(k) to account for the
modified dispersion relationships from DSR [10], as out-
lined in Eqs. 5, 6. We consider the massless case. We have
essentially two choices, one which is cubic in the exchanged
momentum �k, and a further option which is quartic. With
α = 1

Mp
, we set κ1 = κ2 = 1 in Eq. 6, noting that we can

reinsert a non unity value for the constants in our calculations
later. This leads to two alternatives for the propagator.

i Dμναβ(k) = i

k2(1 + iαk)
Pμναβ, (14)

i Dμναβ(k) = i

k2(1 + α2k2)
Pμναβ. (15)

The factor of i in Eq. 14 suggested by the imaginary right
hand side of Eq. 4, is in fact necessary for this propagator to
yield a physically real potential.

We substitute both of these propagators into Eq. 11 to
extract an expression for the classical potential by compari-
son with the Born approximation. The details of the compu-
tation of the Fourier transform are in the appendix, but they
both rely upon converting the integral in Eq. 12 into spheri-
cal polar �k space. Once this is performed, we are left with an
integral over k = |�k|. In the case of the quartic propagator
Eq. 15, we obtain,

V (r) = −G
m1m2

r

(
1 − e− r

α

)
, (16)

the details of the computation being described in Appendix
A. For the cubic denominator in Eq. 14, one obtains a very
similar result for the modified potential (details in Appendix

B),

V (r) = −G
m1m2

r

(
1 − 2e− r

α

)
. (17)

These potentials have a common general form,

V (r) = −G
m1m2

r

(
1 + βe−λr ) , (18)

with β and λ representing both the strength (β) and range λ−1

of the correction to the Newtonian potential, a convention
followed in [24].

3 Bending of gravitational waves around a massive
object

One of the earliest tests of GR was the bending of light by an
angle θclass around a massive object, with the classical result
for first order post-Newtonian approximation given by,

θ
(1)
class = 4GM

c2b
, (19)

where b, the impact parameter, is the closest distance to
the center of the mass M of the light ray [1]. This result
is obtained as a perturbative expansion of a geodesic com-
putation in the Schwarzchild metric [23], and this is the first
term. The second term in the expansion of O (

G2
)

is given
by,

θ
(2)
class = 15πG2M2

4c4b2 . (20)

Our computation in this section is firmly first order in the
gravitational coupling, but we will also compare our results
to Eq. 20 as well as the first order correction.

The bending of light has been analyzed using quantum
gravity in the effective field theory treatment [8,22,23] where
it is has been shown that the first two post Newtonian terms
are obtained. The first QG correction is obtained at one-loop,
but as we shall see our modified propagator actually affects
the tree level contribution. The deflection angle for a ray of
light is computable for a general potentialV (r), by evaluating
the following integral,

θ = − b

h̄ω

∞∫

−∞
V

′
(b

√
1 + u2)

du√
1 + u2

. (21)

where ω is the frequency of the radiation, and u = ct
b is a

convenient integration variable, introduced to simplify the
computation.
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Our strategy is to use the potential in Eq. 18 to solve the
above equation and determine the first order correction to
the classical result. Although this potential is obtained by
the scattering of massive scalar particles, we obtain a gen-
eral form for the classical limit to the potential. In [23], a
much more detailed computation using classical propagators
is undertaken, but our computation is at the tree level only.
Accordingly we compare our result to the first order post-
Newtonian result in Eq. 19. Substituting Eq. 18 into Eq. 21
and performing the relevant integration, we obtain our result
in terms of the Bickley–Naylor functions Kin(x) [25],

θ − θclass = 4GMβ

c2b
K i2

(
b

α

)
+ 4GMβ

c2α
Ki1

(
b

α

)
. (22)

The details of this calculation are in Appendix C.
The Bickley–Naylor functions have an asymptotic form

[26] form which can allow us to compute an order of magni-
tude calculation for Eq. 22. In particular for x � 1, we have,

Kin(x) �

√
π

2x
e−x

[
1 − (1 + 4n)

8x
+ O

(
1

x2

)
. . .

]
. (23)

In our calculation b ∼ 7 × 108m and α ∼ 10−8kg, and
so we can neglect all of the terms in the square brackets.
This simplifies Eq. 22, as for x � 1, we note that Ki1(x) =
Ki2(x). Collecting terms we arrive at the asymptotic estimate
for the correction as,

θ − θclass = 1

c2

√
πα

2b
4GMβe−b/α

(
b + α

bα

)
. (24)

If we imagine a light ray grazing the sun we can com-
pute the order of magnitude of this deflection, assuming
α = 1/Mp = 4.587 × 107 kg, and b = 6.9 × 108 m. On
dimensional grounds we need to reinsert the values for κ1

and κ2 from Eqs. 5, 6 to convert the α to a length, and obtain
an angle of deflection. The presence of the exponential term
in this expression, however, would give a vanishingly small
correction for any value of κ1 or κ2 that is much smaller
than 1, and indeed the approximation requires that the ratio
b/α � 1, so for the purposes of estimation we retain their
value at unity. For completeness, however, we can quickly
see that if �θ = θ − θclass , we can extract the dependency
of the result on κ in the following manner,

�κ =1(θ) = f (κ, b, α)�κ=1(θ), (25)

f (κ, b, α) = b + κα√
κ(b + α)

e
b(κ−1)

κα . (26)

Insertion of the estimates above, we obtain for the deflec-
tion, �κ=1(θ) = −1.2998 × 10−11β radians, with β = −1
for the quartic propagator and β = −2 for the cubic. It

should also be remarked that for values of κ < 1, the scaling
function f (κ, b, α) decays to zero extremely rapidly, due in
large part to the exponential, and also that our asymptotic
expansion of the Bickley–Naylor functions become unreli-
able. It would seem that prospects for detection of such a
deviation are remote, given that in the most recent measure-
ments of light deflection by Bruns et al. [3] during the 2017
solar eclipse had an overall error of 1.536 × 10−8 radians.
However, the prospects of obtaining a meaningful deviation
are greatly improved when considering much more massive
bodies than the Sun. The term which dominates the cor-
rection to the angular deflection is the exponential e−b/α ,
which for b/α � 1 becomes infinitesimally small. As pre-
viously noted, the integrity of our approximation requires
it remains significantly greater than one, but it is interest-
ing to consider what physical systems would give a ratio that
approaches unity. If instead of a star, we consider a black hole,
we can set the parameter b to be the Schwarzchild radius.
The ratio of b/α is equal to one for a black hole of mass
M = 1.553 × 104M�, indicating that we should look at the
category of intermediate mass black holes. Such a candidate
would be the black hole believed to inhabit the galaxy NGC
4395, which has a consensus mass value of 3.6×105M� [27],
although other estimates place it somewhat lower. The ratio
has a value of b/α = 23.185 if we set κ = 1, and is at least
one order of magnitude larger than 1.0, and so our approx-
imation should have reasonable validity. Using the formula
Eq. 24, we obtain a value of �κ=1(θ) = −1.942×10−9 radi-
ans, for a value of b/α = 23.185 if we set κ = 1. If we push
the limits of the approximation of the Bickley–Naylor func-
tions and consider a black hole of M = −1.553 × 104M�,
we must abandon the approximation and instead use a table
of computed values for the Bickley–Naylor functions (see
for example [28] pg 489 for details on how to compute exact
values, or [29] for tabular values). When we do this the devia-
tion is − 0.383π radians, or − 68.97◦! This does indicate that
there may well be intermediate sized black holes for which
the quantum correction to the leading order classical light
deviation becomes appreciable, and in principal measurable.

Alternatively we can consider Eq. 22 for the solar system,
and ask what is the maximum value of α that would produce a
deflection that is not measurable given current experimental
constraints. This amounts to solving the equation numerically
for the value of α such that �θ ≤ 1.536 × 10−8 radians
from the Bruns et al. study [3]. This numerical solution can
be obtained by a combination of Newton’s method and a
fine tuned iteration of alpha using standard methods (a short
program implemented in python is available from the authors
on request). Intriguingly the result is equivalent to a value of
Mg ≥ 1.093 × 10−8 kg, which is within the accuracy of
the method one-half the theoretical value of the Planck mass
2.176 × 10−8 kg.
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Table 1 The deflection of light across a selection of gravitating bodies.
The impact parameter in the case of the Sun is its radius, and for the two
Black Holes their respective Schwarzchild radii. All results are stated
in radians and the values are computed using equations Eqs. 19, 20 and
22

Gravitating
body

GR O (G) GR O (
G2

)
DSR calculation

Sun (b =
6.951 ×
108 m)

8.493 × 10−6 5.311 × 10−11 −1.299 × 10−11

NGC
4395 (b =
1.069 ×
109 m)

1.989 2.915 −1.045 × 10−9

Extremal
black hole
(b =
4.587 ×
107 m)

1.999 2.945 −1.204

We summarize these results in Table 1, and include the
second order post-Newtonian corrections from Eq. 20. We
should treat the computations for light bending around the
black holes considered somewhat carefully as the perturba-
tive computation requires 2GM

c2b
� 1, and for both of our bod-

ies we have 0.995 for NGC 4395 and 1.000 for our extremal
black hole. Nevertheless, we note that in all cases our quan-
tum correction is smaller than the classical one, with the
extremal black hole yielding a result of similar size. Although
the correction we obtained for the bending of light around
the Sun is well below current experimental bounds, perhaps
in the era on non-earth bound astronomy it is conceivable
that this effect could be measured.

4 Conclusion and discussions

In this work we have applied the modified propagators of
DSR to the EFT treatment of quantum gravity. The modi-
fication of the propagator has an impact on the very high
energy short distance behavior of gravity, but however does
modify the EFT computation of the classical limit gravita-
tional potential. Using this modification we have success-
fully computed the correction to the first post-Newtonian
term in the deflection of a light ray, well understood from
General Relativity. These corrections are stated in terms of
the Bickley–Naylor functions in Eq. 22.

Unsurprisingly when applied to the Sun, these corrections
are well beyond the sensitivity of even the most recent mea-
surements. However, when we consider much more massive
and dense objects, such as intermediate mass black holes,
the corrections are much larger. Indeed for a Black Hole of
mass 1.5 × 104M� we obtain a correction of − 68.97◦. For
the solar system the error in the Bruns et al. study allows us
to place a bound on the coupling constants introduced in our

modified propagator. By numerical calculation we can show
that a coupling in the order of α = 1

Mp
is consistent with the

error tolerance of the experimental result.
Our calculation, of course, has many limitations. Not least

of which is the propagator we derived from DSR when used
with the other components of the Feynman diagram machin-
ery will cause the vertices to cease to observe Lorentz invari-
ance. Building a comprehensive and consistent set of EFT
Feynman rules incorporating the modified propagator is the
subject of further work, but is an acknowledged drawback.
Further, in terrestrial applications, the result for the variance
form the first order correction is not significant enough to be
measurable. We do however believe that the result for black
holes, particularly in the era of non-terrestrial astronomy does
at least hold out the prospect of being measurable.

Given that the result rests both on the assumption of a
quantized gravity field, and a minimum length, validation
of the existence of a quantum theory of gravity would be
achieved should the calculations in the work achieve exper-
imental confirmation. We accept that the result is somewhat
beyond feasibility at this stage, but at the very least it is not
in conflict with current experimental evidence.
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Fig. 3 Contour used to integrate the Fourier transformed potential in
Eq. 29. We note that the complex function has poles at 0 and ± i

α

the substitution we have,

V (�r) = −κ2m1m2

8

∞∫

0

d3�k
(2π)3

ei �k·�r
�k2(1 + α2�k2)

. (27)

We can approach this integral by converting to spherical
polar coordinates in momentum space (k, θ, ϕ), obtaining,

V (�r) = −κ2m1m2

8
I (k),

I (k) = 1

(2π)3

2π∫

0

π∫

0

∞∫

0

eirk cos θ

k2(1 + α2k2)
k2 sin2 θ dk dθ dϕ.

The angular integrals can be performed, after making the
substitution z = cos θ , obtaining the following integral in k,

I (k) = 1

(2πr)(2π i)
2

∞∫

0

keikr

k2(1 + α2k2)
dk. (28)

As the integrand is even, we can extend the limits 2
∞∫
0

=
∞∫

−∞
,

leaving the following integral to be performed,

I (k) = 1

(2πr)(2π i)

∞∫

−∞

keikr

k2(1 + α2k2)
dk. (29)

To perform this integral, we consider the contour in the
complex plane in Fig. 3, of the complex function,

f (z) = zeirz

α2z2(z2 + 1
α2 )

, (30)

This function Eq. 30 has poles at 0 and ± i
α

, with the pole
at + i

α
being included in the contour CR . These poles have

residues of 1 and − 1
2e

−r/α respectively. The integral around
the contour can be split as follows,

∫

CR

=
−ε∫

−R

+
∫

γ

+
R∫

ε

+
∫

�R

= 2π i

(
−e−r/α

2

)
.

If we allow R → ∞ and ε → 0, the integral
∫
γ

→ −π i
(noting that the half semicircle contour γ is traversed in the

clockwise direction), and the integrals
−ε∫

−R
+

R∫
ε

→
∞∫

−∞
, whilst

∫
�R

→ 0.
We therefore obtain the following value for the integral,

∫ ∞

−∞
keirk

k2(1 + α2k2)
dk = π i(1 − e− r

α )

If we substitute this back into Eq. 27, and expand κ2, we
obtain our final result,

V (r) = −G
m1m2

r

(
1 − e− r

α

)
. (31)

Appendix B: Computation of effective potential: cubic
propagator

The computation here is essentially identical to that for the
quartic propogator, but it results in the integral of the follow-
ing compex function around a contour identical to that draw
in Fig. 3,

f (z) = zeirz

z2(1 + iαz)
. (32)

This function has poles at z = 0 and z = i
α

, with residues of 1
and −αe−r/α respectively. Following through the same anal-
ysis as in Appendix A, one obtains for the effective potential
for the cubic propagator,

V (r) = −G
m1m2

r

(
1 − 2e− r

α

)
. (33)

Appendix C: Computation of the quantum correction
from our modified propagator to the lensing of gravi-
tational waves around a massive object

Our starting point is Eq. 18, which when we differentiate
with respect to r we obtain the following three contributions,

dV (r)

dr
= − A

r2 − Aβe−r/α

r2 − Aβe−r/α

αr
, (34)
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with A = 2GMmg , and M is the mass of the object the light
ray is grazing, and mg is the mass of the graviton.

Performing the substitution r → b
√

1 + u2, and inserting
into Eq. 21, we are left with three integrals to perform,

θ = b

h̄ω
(I1 + I2 + I3) , (35)

I1 = A

b2

∞∫

−∞

du

(1 + u2)3/2 (36)

I2 = Aβ

b2

∞∫

−∞

e−C
√

1+u2

(1 + u2)3/2 du, (37)

I3 = Aβ

αb

∞∫

−∞

e−C
√

1+u2

1 + u2 du, (38)

C = b

α
. (39)

The first integral is elementary and may be solved by mak-
ing the substitution u = tan θ , which results in an integral∫ π/2
−π/2 cos θ dθ = 2.

The second integral is however more challenging, and
requires the use of Bickley–Naylor special functions [25],
first studied as solutions to certain thermal radiation prob-
lems. To make progress we note that the integrand is analytic
everywhere on the real line with constant limits. As such we
are free to differentiate under the integral sign with respect
to C , obtaining (ignoring the leading factors which we will
reintroduce later),

dI2(C)

dC
= −I4 = −

∞∫

−∞

e−C
√

1+u2

1 + u2 du. (40)

It will be noted that this is identical in form to Eq. 38. This can
be further simplified by making the substitution x = sinh(u),
which yields the following integral,

I4 = 2
∫ ∞

0

e−C cosh(x)

cosh(x)
dx .

This equation is the definition of the Bickley–Naylor function
Kin(C) of order n = 1. There is an extremely convenient
differential relation for the Bickley–Naylor functtions,

dKin+1(x)

dx
= −Kin(x), (41)

that allows us to immediately solve our differential equation
for I2(C), to obtain

I2 = 2Ki2(C) + const. (42)

The constant of integration can be determined to be zero by
noting that for C = 0, I2 = 2, and that Ki2(0) = 1.

The work invested in computing our second integral,
involved solving I3 as an intermediate step, and so we can
conclude I3 = 2Aβπ

αb K i1(C) without further work.
Bringing all of our results together and substituting for C ,

we have,

θ = b

h̄ω
(I1 + I2 + I3)

= 1

h̄ω

[
2A

b
+ 2Aβ

b
K i2

(
b

α

)
+ 2Aβ

α
Ki1

(
b

α

)]
.

We note that the factor h̄ω is the energy of the gravitons,
which is equivalent to the factor mg , as we are working in
units of c = 1. Substituting this result into Eq. 35, we obtain
our final result,

θ = 4GM

b
+ (43)

4GMβ

b
K i2

(
b

α

)
+ 4GMβ

α
Ki1

(
b

α

)
, (44)

and note that the leading term is the first contribution to the
classical deviation term obtainable from GR, θclass .
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