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Abstract We investigate the possibility of existing a class
of compact charged spheres made of a charged perfect fluid
in the framework of Einstein–Gauss–Bonnet theory in five-
dimensional spacetime (5D EGB). In order to study spher-
ically symmetric compact stars in EGB gravity, we prefer
to apply a systematic and direct approach to decoupling
gravitational sources via the minimal geometric deforma-
tion approach (MGD), which allows us to prove that the
fluid must be anisotropic. In fact, we specify a well-known
Krori–Barua spacetime in the MGD approach that helps us to
determine the decoupling sector completely. Indeed, by using
this approach, we found an exact and physically acceptable
solution which satisfies all the elementary criteria of phys-
ical acceptability for a stellar solution via mimic approach.
Finally, we show that the compactness factor in the pres-
ence of gravitational decoupling satisfies the Buchdahal limit
under 5D EGB gravity.

1 Introduction

Various modifications of Einstein’s general relativity have
been emerged to address several shortcomings coming out in
the study of the evolution of Universe. In particular, instead
of introducing unknown fluids, the gravity action may be
modified by adding higher curvature corrections to the Ein-
stein action. Nonetheless, as found by Lovelock in the 1970s
[1] (see [2] for reviews on this topic) the most general sec-
ond order gravity theories in higher dimensional spacetimes.
From an epistemological point of view, Lovelock gravity
obeys generalized Bianchi identities which ensure energy
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conservation i.e., �μTi j = 0, and it is known to be free of
ghosts [3,4]. Such theory is physically motivated and capa-
ble of addressing phenomenology at galactic, extragalactic,
and cosmological scales [5]. In five dimensions, the Love-
lock Lagrangian consists of cosmological constant and the
Einstein–Hilbert action, respectively, while the second order
term is the Gauss–Bonnet (GB) Lagrangian. This leading
to second order equations for the metric, so-called Einstein–
Gauss–Bonnet (EGB) theory or Lovelock theory up to second
order.

The EGB gravity theory has attracted serious attention
over a wide span of years, because it can be obtained in the
low energy effective action of heterotic string theory [6,7].
In fact, the existence of spherically symmetric static black
hole solutions in such theories has been known for a long
time [8]. Followed by this, many other aspects like thermo-
dynamic properties associated with black hole horizon and
cosmological horizon have been studied for the GB solution
in de Sitter and anti-de Sitter (AdS) space [9,10]. Further-
more, there are also numerous solutions corresponding to
black hole have also been intensively investigated by some
authors, see e.g. Refs. [11–15]. A broad avenue followed
by many astrophysical solution such as the gravitational col-
lapse of an incoherent spherical dust cloud [16–19], geodesic
motion of a test particle [20], the phase transition of RN-AdS
black holes [21], Hawking evaporation of AdS black holes
[22], radius of photon spheres [23], regular black hole solu-
tions [24] and wormhole solutions satisfying the energy con-
ditions was proposed in [25,26]. There is considerable effort
[27–30] to study the mass–radius relation of compact stars
in EGB theories of gravity.

Investigation of EGB gravity could also be interesting for
the possibility of addressing some problems in strong field
regimes. In this direction the study of the stellar structure
can also provide important constraints on modified theo-
ries of gravity under consideration. Presently, a large num-
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ber of mass–radius relations are available form electromag-
netic, and more recently gravitational-wave (GW), obser-
vations of extreme phenomena, such as short gamma-ray
bursts (SGRBs). Moreover, the observational evidence for
neutron stars (NSs) with masses around 2 M� [31,32] pro-
vide a strong constraint on the theoretical construction of the
NS equation-of-state (EoS). But, the constitution and inter-
nal structure of relativistic compact objects is not known in
detail.

Under the assumption of static and spherical symmetry,
a large number of solutions of Einstein’s gravitational field
equations describing the interior structure of relativistic com-
pact objects have been obtained. But it is always a difficult
task to derive physically acceptable exact solutions in GR due
to the complexity of the Einstein field equations. This situa-
tion becomes more complicated when we deal with modified
theories of gravity. It is for this reason that researchers use a
variety of mathematical techniques to attain exact solutions.
Several such ideas have been explored including an algorithm
based on the choice of a single monotone function which gen-
erates all regular static spherically symmetric perfect-fluid
solutions of Einstein’s equations [33] and its extension to
locally anisotropic fluids in [34]. On the other hand, there is
freedom in choosing the specific interior solution for the com-
pact star. The first exact solution of Einstein’s field equations
was obtained by Schwarzschild in 1916 [35], which allowed
us to make many physical predictions with increased preci-
sion. The simplest model for describing stellar interior was
initially proposed by Tolman [36] using spherically symmet-
ric perfect fluid solutions of the Einstein equations.

In recent times there is another approach to decou-
pling gravitational sources in GR, which was developed
from the so-called Minimal Geometric Deformation (MGD)
approach. The MGD approach was initially proposed in
[37,38] to study the exterior geometry around spherically
symmetric spacetime with a perfect fluid source in the context
of Randall–Sundrum brane-world gravity. Before discussing
literature review for the MGD works, we highlight the ori-
gin of the gravitational decoupling (GD) which is to adopt a
simple matter distribution Ti j and then extended to a more
complex source without violating the spherically symmetry
condition by adding a new source through a dimensionless
coupling constant β as

Ti j �→ T̃ (1)
i j = Ti j + β(1) T̂ (1)

i j . (1)

Similarly we can extend the new energy momentum tensor
T̃ (1)
i j as,

T̃ (1)
i j �→ T̃ (2)

i j = T̃ (1)
i j + β(2) T̂ (2)

i j (2)

and repeat the similar procedure up to n times. Using this
procedure, the simple initial solution of Einstein–Gauss–
Bonnet (EGB) field equation linked with the source Ti j can

be extended into more generalised form associated with the
source Ti j = T̃ (n)

i j , step by step and systematically. This is
a new procedure to anisotropise the initial or seed solutions
obtained from perfect fluid matter distributions. It is neces-
sary to highlight that each distinct component for the source
T n
i j is independently conserved, i.e.

∇ i T̃i j = ∇ i T (1)
i j = ∇ i T (2)

i j = · · · = ∇ i T (n)
i j = 0. (3)

Furthermore, this MGD technique can be also applied in
reverse order as well to find solution for the self-gravitating
compact objects. For applying this reverse procedure, ini-
tially we need to separate more complex energy–momentum
tensor (EMT) T ∗

i j into many distinct and simpler EMT com-

ponents such as T 1
i j , T 2

i j , . . . , T
n
i j (n − components). After

these separations, the field equations corresponding to each
distinct EMT components is solved individually and obtain
several solutions associated with the above distinct source
T n
i j . At last, the complete solution of the field equations for the

original EMT T ∗
i j can be achieved by combining of above

each distinct solution for T n
i j source through decoupling con-

stant β. Particular, this procedure can be understand through
a specific example, which is given as: suppose the gi j metric
associated with total energy–momentum tensor (EMT) Ti j
which is connected to field equations

Gi j + αHi j = 8πTi j , where Ti j = T̂i j + β θi j , (4)

where T̂i j is source EMT and θi j is additional gravitational
anisotropic source of EMT connected to metric ĝi j and gθ

i j ,
respectively whose field equations are,

Ĝi j + α Ĥi j = 8π T̂i j , to find {ĝi j , T̂i j } (5)

Gθ
i j + αH θ

i j = 8πT θ
i j , to find {gθ

i j , θi j } (6)

After solving both systems, we can find the gravitational
potential gi j by combining of ĝi j and gθ

i j . This procedure can
be continued many times based on specified number of grav-
itational sources. In each iterations, we have to deduce EMT,
and ‘merge’ together the connected gravitational potentials
of the total EMT. Indeed, by using this approach, an exact
and physically acceptable solution have been found, see Refs.
[39–43]. Extending the isotropic version an anisotropic solu-
tions for self-gravitating systems from perfect fluid solutions
were studied in [44,45]. MGD-decoupling methods represent
a realistic algorithm that generate physically acceptable inte-
rior solutions for stellar systems (for reviews see [46–68]).
Further, the MGD approach has been applied to study exten-
sions of the theory of GR in a cosmological context [69].
This method is successfully applied in black hole scenarios
[70–76] and one can extended to convert any non-rotating
black hole spacetime into a rotating one [77,78]. According
to the literature mentioned above, investigations of the struc-
ture of compact stars are carried out under the supposition
that their matter is described by an anisotropic fluid [79,80].
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In the present paper our goal will be to examine the possibil-
ity of existing charged compact spheres in 5D EGB gravity
made of a charged fluid in the background of EGB gravity via
the MGD approach, which allows us to prove that the fluid
must be anisotropic. An interesting result of this analysis is
that the introduction of MGD in the self-gravitating system
enhances the mass and stability of the model.

The present paper is organized as follows: After a brief
introduction in Sect. 1, we review the fundamentals of the
MGD-decoupling applied to a static and spherically sym-
metric configuration made of a charged perfect fluid within
the framework of EGB gravity in Sect. 2. Section 3 is devoted
to study stellar interior solution generated by using the well
known Krori–Barua spacetime through the MGD approach,
which contains two subsections namely, Sect. 3.1: mimicking
of the density constraint (ρ + E2

8π
= θ0

0 ), and Sect. 3.2: mim-
icking of the pressure constraint (θ1

1 = p̂r ). In Sect. 4 we
match of the interior solution governed by the anisotropic
fluid to an exterior Boulware–Deser vacuum solution at a
junction interface. Section 5 is devoted to study the physi-
cal properties of compact stars that obtained from the MGD
approach to gravitational decoupling. Under this constraint,
we emphasize all the possible situation where EGB gravity
lead to significant deviations from GR and EGB+MGD sep-
arately.We draw final conclusions from our results in Sect. 6

2 Basic equations of EGB gravity under gravitational
decoupling

The gravitationally decoupled action for the 5D EGB gravity
with matter field reads:

IG = 1

16π

∫
d5x

√−g [R − 2� + αLGB] + Sm

+
∫

(SE + βSθ )
√−g d5x, (7)

where R and � are the 5D Ricci scalar and the cosmological
constant, respectively. The termSm is the matter action, while
SE andSθ represent the Lagrangian for electromagnetic field
tensor and the Lagrangian density of the new source not
described by standard EGB gravity. This new sector always
can be seen as corrections to 5D EGB and be consolidated as
part of an effective energy–momentum tensor θi j . The main
purpose of introducing this extra source in original action
(7) is to generalize perfect fluid charge matter distribution to
anisotropic domain using gravitational decoupling approach.
The Gauss–Bonnet (GB) constantα is related with the inverse
string tension with dimension of [length]2, while β is dimen-
sionless. Within string theory, in five dimensions α can be
considered as an arbitrary real number with the appropriate
dimensions, but here we consider the positive value of α, see
Ref. [81,82] for more. The Gauss–Bonnet Lagrangian LGB

is defined in terms of Ricci scalar, Ricci tensor, and Riemann
curvatures,

LGB = Ri jkl Ri jkl − 4Ri j Ri j + R2. (8)

Varying the action (7) with respect to the metric, one
obtains the following gravitational field equations

Gi j +αHi j =8π(Ti j + Ei j ) , where Ti j = T̂i j + β θi j ,

(9)

with

T̂i j = − 2√−g

δ
(√−gSm

)
δgi j

, (10)

θi j = 2√−g

δ
(√−gSθ

)
δgi j

, (11)

Ei j = 2√−g

δ
(√−gSE

)
δgi j

. (12)

where Gi j is the Einstein tensor and Hi j is the contribution
of the GB term with the following expression

Gi j = Ri j − 1

2
R gi j ,

Hi j = 2
(
RRi j − 2Rik R

k
j − 2Ri jkl R

kl − RiklδR
klδ
j

)

−1

2
gi j LGB, (13)

and T̂μν is usually associated with some known solution of
EGB gravity with θμν may contain new fields or a new grav-
itational sector. Interestingly, this source may contain new
fields, like scalar, vector and tensor fields, and it will gener-
ally produce anisotropies in self-gravitating systems. More-
over, it is noted that the GB term has no effect on the grav-
itational dynamics in 4D spacetime i.e., Hi j ≡ 0, since it
becomes a total derivative.

Consider the following line element in curvature coordi-
nates for a static and spherically symmetric metric in 5D
spacetime

ds2
5 = −e2ν(r)dt2 + e2λ(r)dr2 + r2d�2

3, (14)

where the metric potentials ν(r) and λ(r) are radial depen-
dent functions and denoted the mass and the redshift func-
tions, respectively. In the above expression d�2

3 is the met-
ric of a 3-sphere. To achieve our goal for charged compact
star, we first consider the perfect fluid form of the energy–
momentum tensor, T̂i j , given by

T̂i j = (
ρ̂ + p̂

)
uiu j + p̂gi j , (15)

where ρ̂(r) is the energy density, p̂(r) is the pressure of the
fluid which are measured by local observer, respectively, and
u j is the five-velocity satisfying the conditions u ju j = −1.

The electromagnetic energy–momentum tensor of Eq. (9)
is is given in terms of the Faraday–Maxwell tensor Fi j by
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the relation

Ei j = 1

4π

(
Fi

γ Fjγ − 1

4
gi j FγβF

γβ

)
. (16)

Since, Fi j satisfies the covariant Maxwell equations

[(−g)1/2F ji ],i = 2π2 J j (−g)1/2, (17)

where J i is the five-current density. Since the present choice
for static stellar configurations, the only non-vanishing com-
ponent of Maxwell’s tensor is F01 and the last equation is
satisfied if F01 = −F10. From Eq. (16) one obtains the fol-
lowing expression for the electric field,

E(r) = F01(r) = 1

r2 e
−(ν+λ)2π2

∫ r

0
r ′3ρcheλdr ′, (18)

where ρch = eν j0(r) is the electric charge distribution inside
the star, and the charge of the system is defined as

q(r) = 2π2
∫ r

0
r ′3ρcheλdr ′, (19)

which does not depend on the timelike coordinate t , or equiv-
alently

q ′(r) = 2π2r3ρche
λ, (20)

where the electric charge is connected to the electric field
through the relation E(r) = q(r)/r2.

It is noted that if the new gravitational sector θi j follows the
relation θ1

1 − θ2
2 
= 0, then the matter distribution inside the

fluid sphere will no longer remain in perfect fluid form. This
leads to the system as an anisotropy fluid sphere. Assuming
this we define the effective stress-energy tensor Ti j ,

Ti j = (ε + P⊥) u ju j + P⊥ gi j + (P − P⊥)χi χ j , (21)

where χ i = √
1/grr δi1 is the unit space-like vector in

the radial direction, satisfying χ iχi = 1. Here, the radial
and tangential pressures are given by Pr = p̂ − β θ1

1 and
P⊥ = p̂ − β θ2

2 , and the energy density for the effective
stress-energy tensor is given by ε = ρ̂ + β θ0

0 , respectively.
Moreover, the anisotropy of the decoupled system is,

� = P⊥ − Pr = β �θ, where �θ = θ1
1 − θ2

2 . (22)

It is obvious that EGB gravity satisfies the Bianchi Identity
which give conservation equation of the energy–momentum
tensor, ∇ i Ti j = 0, which yield

− ν′(ε + Pr ) − P ′
r + 3�

r
+ E E ′

4π
+ 3E2

4πr
= 0. (23)

The Eq. (23) is the hydrostatic equation for 5D EGB gravity.
Now, inserting Eqs. (12) and (21) into the equation of motion
(9), the components of the field equations become

8πε + E2 = −3

e4λr3

[
4αλ′ − re4λ − e2λ(r2λ′

+4α λ′ − r)
]
, (24)

Fig. 1 The above diagram describes that how pure EGB solutions can
be extended via MGD to anisotropic domains

8π Pr − E2 = 3

e4λr3

( (
r2ν′ + r + 4αν′) e2λ − re4λ

−4αν′), (25)

8π P⊥ + E2 = 1

e4λr2

( − e4λ − 4αν′′ + 12αν′λ′ − 4αν′2)

+ 1

e2λr2

(
1 − r2ν′λ′ + 2rν′ − 2rλ′ + r2 ν′ 2)

+ 1

e2λr2

(
r2ν′′ − 4αν′λ′ + 4α ν′2 + 4αν′′) .

(26)

where prime denotes the differentiation with respect to redial
coordinate. The continuity equation (23) follows

−ν′(ε + Pr ) − P ′
r + 3�

r
+ E E ′

4π
+ 3E2

4πr
= 0

�⇒ ν′(ρ̂ + p̂) + p̂′ − q q ′

4π r4 − q2

4πr5
+ β

[
ν′(θ0

0 − θ1
1 )

−(θ1
1 )′ + 3�θ

r

]
= 0. (27)

We have also focused our attention on the parameter β to
consider the effects of the additional source term θi j on the
perfect fluid sphere. These effects can be encoded in the geo-
metric deformation approach [83] where the metric functions
are deformed as

ν(r) −→ ξ(r) + β h(r), (28)

e−2λ(r) −→ μ(r) + β f (r), (29)

where h and f are the geometric deformations undergone by
the radial and temporal metric components and β is a free
parameter that controls the deformation. It is worthwhile to
mention here that if β = 0 one may recover the domain
of EGB gravity. The Fig. 1 shows that how the pure EGB
solutions can be extended via MGD to anisotropic domains.
Since we use the deformation along only one metric function,
specifically called a minimal geometric deformation (MGD)
approach, therefore we shall restrict our-self in the particular
case of h(r) = 0 with f (r) 
= 0 which implies that the
temporal deformation is unchanged. Thus, the metric in Eq.
(12) is minimally deformed by θi j source.

The next task is to separate the gravitational field equations
(16)–(18) into two sets: the first set of equations for EGB
gravity under charge matter distributions, and the second set
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of equations corresponds to the θ -sector. In arriving at the
first set of equations we have used linear decomposition (21)
corresponding to β = 0, and depending on the gravitational
potentials μ and ν the system reduces to

8πρ̂ + E2 = 1

2r3

[
12αμ′(μ−1) − 3r(μ′r+2μ − 2)

]
,

(30)

8π p̂ − E2 = 1

r3

[
12αν′μ(1−μ) + 3 r(ν′μr+μ − 1)

]
,

(31)

8π p̂ + E2 = 1

2r2

[ − 8αμ(μ − 1)(ν′′ + ν′2) + 4αμ′ν′

×(1 − 3μ) + 2μ(ν′′r2 + ν′2r2 + 2ν′r + 1)

+μ′ν′r2 + 2μ′r − 2
]
. (32)

With this separation the Eq. (19) reduce to

ν′(ρ̂ + p̂) + p̂′ − q q ′

4π r4 + q2

4πr5
= 0, (33)

and the interior spacetime turns out to be

ds2
5 = −e2ν(r)dt2 + dr2

μ(r)
+ r2d�2

3. (34)

The second set contains the source θi j and reads

8πθ0
0 = 3

2r3

[
4α( f ′( fβ + μ − 1) + μ′ f )

−r( f ′r + 2 f )
]
, (35)

8πθ1
1 = −3 f

r3

[
ν′ (−4 α fβ − 8 α μ + 4 α + r2) + r

]
, (36)

8πθ2
2 = − 1

2r2

[ − 4α {2ν′′ f ( fβ + 2μ − 1) + f ′ν′(3 fβ

+3μ − 1) + ν′ f (3μ′ + 2ν′( fβ + 2μ − 1))}
+2 f ′ r+ f ′ν′ r2+2 f (ν′′r2+ν′2r2 + 2ν′r + 1)

]
.

(37)

As for the matter energy–momentum tensor, the conservation
equation (23) yields ∇ i θi j = 0, which leads to the expression

ν′(θ0
0 − θ1

1 ) − (θ1
1 )′ − 3�θ

r
= 0. (38)

Separation of two sets of equations implies that we have suc-
cessfully decoupled the two sources Ti j and θi j by means of
the MGD. In [84] it was shown that there is no exchange of
energy–momentum between Ti j and θi j , so that their inter-
action is purely gravitational.

3 Minimally deformed charged stellar model

As a consequence of deformations in radial and temporal
metric functions, we have now two sets of equations (22–24)
and (26–28), which are highly non-linear differential equa-
tions in ν, μ and f , respectively. Since, the second set of

equations are dependent on the first set of equations and thus
the system of equations is underdetermined. Here, our main
findings is to build an exact and physically acceptable solu-
tion by using the MGD approach [84] in 5D EGB gravity.

The first step is to turn off β and find a solution for charged
perfect fluid EGB Eqs. (22–24). We called it a seed solution.
Since the electrically charged fluid with isotropic pressure
constitutes the next level of physical complexity, thus we
decide to choose a simple and known solution with physical
relevance, namely, the Krori–Barua (KB) metric ansatz. The
Krori–Barua spacetime has widely been used for studying
static and spherically static compact objects in GR [85–87]
as well as in modified theories of gravity [88–91]. The KB
spacetime is specified by the following metric functions

ν(r) = (Ar2 + B) and μ(r) = e−Cr2
, (39)

where A and C are positive constants with dimension of
[Length]−2 and B is a constant without dimension. In our
view, the above form of metric potentials will serve our pur-
pose, and decoupling function f (r) should be tractable. Sub-
sequently, based on metric potentials, the solution of Eqs.
(22)–(24) become

8π ρ̂ =e−2Cr2

r2

[
eCr

2
(
ACr4− 2A2r4 + 4Cr2+ 2eCr

2− 2
)

−4α
{

2A2r2
(
eCr

2 − 1
)

+ A
(
3Cr2

−eCr
2
(
Cr2 + 2

)
+ 2

) − 3C(eCr
2 − 1)

}]
, (40)

8π p̂ = e−2Cr2

r2

[
4αA

(
eCr

2
(

2Ar2 − Cr2 + 4
)

− 2Ar2

+3Cr2 − 4
)

− eCr
2( − 2A2r4 + ACr4 − 6Ar2

+Cr2 + 2eCr
2 − 2

)]
, (41)

E2 = e−2Cr2

r2

[
4αA

(
eCr

2
(

2Ar2 − Cr2 − 2
)

− 2Ar2

+3Cr2 + 2
)

+ eCr
2(

2A2r4 − C
(
Ar4 + r2

)

+eCr
2 − 1

)]
. (42)

With the same metric functions, the θ -sector components
(26–28) are given by

8π θ0
0 = 1

2r3

[
3
(

4αe−Cr2
{
ζ(r)eCr

2
( f (r)β − 1) − 2C f (r)r

+ζ(r)
}

− r [ζ(r)r + 2 f (r)]
)]

, (43)

8π θ1
1 = −

3 f (r)
(

8αA
(

1 − 2e−Cr2 − f (r)β
)

+ 2Ar2 + 1
)

r2 ,

(44)

8π θ2
2 = − 1

r2

[
f (r)

( 4αA

eCr2

(
eCr

2
(

4Ar2 − 3ζ(r)βr + 2
)

− 8Ar2
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+ 6Cr2 − 4
) + 4A2r4 + 6Ar2 + 1

)
+ ζ(r)r

[
4αA(1

−3e−Cr2
) + Ar2 + 1

] − 8αA f 2(r)β(2Ar2 + 1)
]
,

(45)

where ζ(r) = d f/dr . Now, we need to define the deforma-
tion function f (r) to get the complete spacetime geometry
for gravitationally decoupled system. In the following, we
adopt the well-known mimic approach [84], which have two
avenues (i) mimicking of θ0

0 with the ρ̂ + E2

8π
, and (ii) θ1

1
mimicking with only radial pressure ( p̂r ). We now discuss
step by step

3.1 Mimicking of θ0
0 with (ρ + E2

8π
): ρ + E2

8π
= θ0

0

Using Eqs. (24) and (29), we find the differential equation of
the form,

3[4α( f ′( f k + μ − 1) + μ′( f − μ + 1)) + r(− f ′r + μ′r
−2 f + 2μ − 2)] = 0, (46)

After plugging the spacetime geometry (33), the solution of
differential equation yield the deformation function f as,

f (r) = −4αe−Cr2 + 4α + r2 − e−Cr2

×
√

16α2
[

(1 + Fβ2)

e−2Cr2 − 2(β + 1)

e−Cr2 + β + 1

]
+ �1(r),

(47)

where

�1(r) = 8α(β + 1)r2eCr
2
(
eCr

2 − 1
)

+ r4e2Cr2
.

and F is constant of integration which is be determined by
setting the necessary condition f (0) = 0 that yields F = 1

β
.

After substituting F in (47), we get

f (r) = 1

4αβ

[
− e−Cr2

√
16α2(β + 1)

(
eCr2 − 1

)2 + �1(r)

−4αe−Cr2 + 4α + r2
]
. (48)

3.2 Mimicking of θ1
1 with p̂r : θ1

1 = p̂r

Using Eqs. (31) and (36), we find the differential equation of
the form,

4α

[
2ν′′(μ − 1)μr + 2ν′2(μ − 1)μr + ν′(12 f 2β − 6μμ2

+6 + 12 f (2μ − 1) − μ′r + 3μ′μr
)] − r

[
2μ′r − 8

+μ′ν′r2 + 12 f (1 + ν′r)

+2μ
(

4 + 5ν′r + ν′′r2 + ν′2r2
) ]

= 0, (49)

Again plugging the metric functions μ and ν from Eqs.(39)
into Eq.(49) and integrate for f , we find deformation function
f (r) as,

f (r) = 1

48αAβ
e−2Cr2

[
− √

3�2(r) − 48αAeCr
2 + 24αA

×e2Cr2 + 6Ar2e2Cr2 + 3e2Cr2
]
. (50)

with

�2(r) = e2Cr2
[

3
(

8αA
(
eCr

2 − 2
)

+
(

2Ar2 + 1
)
eCr

2
)2

−32αAβ
(
eCr

2( − 2A2r4 + ACr4 − 6Ar2 + Cr2

+2eCr
2 − 2

) − 4αA
(
eCr

2
(

2Ar2 − Cr2 + 4
)

−2Ar2 + 3Cr2 − 4
))]

.

Since we have generated deformation function f (r) by
using the mimic approaches which determines the compo-
nents of θ -sector. Then the deformed charged solution for
the system of field Eqs. (24)–(26) in EGB gravity can be
given by the following spacetime,

ds2
5 = −e2(Ar2+B)dt2 + eCr

2

1 + β f (r) eCr2 dr
2 + r2d�2

3,

(51)

where, f (r) is given in Eqs. (48) and (50). Now, we will
move to the boundary conditions in order to find the constant
parameters involve in the solutions.

4 Matching conditions

We now specialize the exterior geometry to charged Boulware–
Desser solution [8] (see [92] for more). Here, we match the
internal solution described by Eq. (12) to the exterior vacuum
solution, and the metric takes the simple form

ds2
5 = −F(r)dt2 + dr2

F(r)
+ r2d�2

3, (52)

where

F(r) = K + r2

4α

⎛
⎝1 −

√
1 + 16αM

r4 − 16αQ2

3r6

⎞
⎠ . (53)

where α is a coupling constant and K is an arbitrary con-
stant. Note that M and Q represent the gravitational mass
and charge of the fluid as measured by an observer at spatial
infinity. It is easy to check that in the limit α → 0 the five-
dimensional Einstein–Maxwell solution is recovered. On the
hypersurface itself, r = R, the metric is that of a 3-sphere
with an additional time dimension, such that the line element
is
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By matching the line elements (12) and (52) across the
boundary, one can suitably fix the model parameters. The
resulting manifolds have boundaries given by the time–like
hyper–surfaces

ds2
� = −dτ 2 + R2(τ )�2

3, (54)

with the intrinsic coordinates of � being ξ i = (τ, θ, φ, ψ)

in �, and τ is the proper time on the boundary. Following
[93,94], the field equations projected on the shell � (general-
ized Darmois–Israel formalism for Einstein–Gauss–Bonnet
theory) are

2〈Ki j − Khi j 〉 + 4α〈3Ji j − Jhi j + 2Pikl j K
kl〉 = −κ2Si j ,

(55)

where the 〈·〉 is the jump of a given quantity across the hyper–
surface �. Since, hi j = gi j −nini is the induced metric on �

with the divergence free part of the Riemann tensor is defined
by

Pi jkl = Ri jkl + (R jkhli − R jlhki ) − (Rikhl j − Rilhk j )

+1

2
R(hikhl j − hilhk j ), (56)

and J is the trace of

Ji j = 1

3

[
2KKik K

k
j + Kkl K

kl Ki j − 2Kik K
kl Kl j − K 2Ki j

]
.

(57)

where Kk
j is the extrinsic curvature tensor defined by

K±
i j = −n±

μ

(
∂2Xμ

∂ξ i∂ξ j
+ �

μ
αβ

∂Xα

∂ξ i

∂Xβ

∂ξ j

)
r=R

, (58)

with ξ i are the intrinsic coordinates of the surface and the sign
± depends on the signature of the junction hyper–surface.

Here, the interior solution under gravitational decoupling
via MGD approach can be written through the following line
element

ds2
5 = −e2ν(r)dt2 + dr2

μ(r) + f (r)
+ r2d�2

3, (59)

where μ(r) and ν(r) are related with seed spacetime given
by Eq. (39), and f (r) i.e., the deformation functions for the
Solution A and Solution B corresponding to θ -sector is given
by Eqs. (48) and (50), respectively. Now, applying the first
fundamental form associated with the two sides of the junc-
tion implies that g−

t t = g+
t t and g−

rr = g+
rr , which yield

e2λ−|r=R = e2λ+|r=R and e2ν−|r=R = e2ν+|r=R, (60)

where the symbols − and + denote the inner and outer space-
time and gives

e−2λ(R) = μ(R) + β f (R) =
[
K + R2

4α

×
(

1 −
√

1 + 16 αM

R4 − 16 α Q2

3R6

)]
, (61)

e2ν(R) =
[
K + R2

4 α

(
1 −

√
1 + 16 αM

R4 − 16 α Q2

3R6

)]
,

(62)

where μ(R) = [
1+ R2

4 α

(
1−

√
1 + 16 α MEGB

R4 − 16 α Q2

3R6

)]
with

MEGB = mEGB(R) is the total mass of the compact object
for the metric (34). With the aid of the Eq. (61), we get

M = MEGB + 1

2
β f (R)

[
2α β f (R) − 1√

3 R

×
√

3R6 − 16α
(
Q2 − 3R2MEGB

)
. (63)

Let us define the extrinsic curvature or second fundamental,
which leads to the condition
[
(Gi j + α Hi j ) r

j ]
�

= 0, (64)

where r j is a unit radial vector. Now, depending on the above
criterion one may quantify the Eq. (9) as
[
Ti j r

j ]
�

= 0 (65)

which gives,
[
Pr

]
�

= 0 �⇒ [
p̂r − β θ1

1

]
�

= 0, (66)

where the surface � defined by r = R. This condition deter-
mines the radius of the star, where the pressure vanishes at the
surface of the star. Thus, the matching condition (66) takes
the final form

p̂r (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R), (67)

where (θ1
1 )−(R) and (θ1

1 )+(R) are the θ–components for
interior and exterior space–times, respectively. The above
condition is the general expression for the second funda-
mental form associated with the equation of motion for EGB
gravity given in Eq. (9).

Now, plugging the expression for θ1
1 form (67) into the

Eq. (27), we obtain the second fundamental form as

p̂r (R) − β (θ1
1 )−(R) = −β (θ1

1 )+(R), (68)

p̂r (R) + 3 β fR
(
ν′
R(−4 α β fR − 8 α μR + 4α + R2) + R

)
8 π R3

= −β (θ1
1 )+(R), (69)

where the notations are fR = f (R), μR = μ(R), and ν′
R =

∂rν
∣∣
r=R , respectively. Moreover, using the Eq. (27) in the

outer solution in Eq. (69), which gives

p̂r (R) + 3 β fR
(
ν′
R(−4 α β fR − 8 α μR + 4α + R2) + R

)
8 π R3

= 3 β f ∗
R

8 π R3

123



552 Page 8 of 14 Eur. Phys. J. C (2022) 82 :552

[3r3
√

3r6 − 16α
(
Q2 − 3Mr2

) − 8
√

3αQ2 − 3
√

3r6

6 α r2
√

3r6 − 16α
(
Q2 − 3Mr2

)

×
{

− 4 α β f ∗
R − 8 α

[
K + R2

4 α

(
1 −

√
1 + 16 αM

R4 − 16 α Q

3R6

)]

+4 α + R2
}

+ R

]
, (70)

where f ∗
R is the decoupling function for the outer space–

time at r = R (i.e. f ∗
R = f ∗(R)) due to the source θi j ,

which represents exterior charged Boulware–Deser solution
[92]

ds2
5 = −

[
K + r2

4 α

(
1 −

√
1 + 16 αM

r4 − 16 α Q

3r6

)]
dt2

+
[
K + r2

4 α

(
1 −

√
1 + 16 αM

r4 − 16 α Q

3r6

)

+β f ∗(r)
]−1

dr2 + r2d�2
3. (71)

One sees that the above conditions are necessary and suffi-
cient conditions for matching the interior MGD metric (12)
to the exterior vacuum solution given in (71). The condition
(71) implies that if the exterior geometry represents exact
charged Boulware–Deser metric then we get f ∗

R = 0 in Eq.
(71), which implies the following relations

Pr (R) = p̂r (R) + 1

8 π R3

[
3 β fR

(
ν′
R(−4 α β fR − 8 α μR

+4α + R2) + R
)] = 0, (72)

Pr (R) = p̂r (R) − β θ1
1 (R) = 0. (73)

Further, using the boundary conditions (51) and (73), we
determine the constants A, B and total mass M for both
cases as follows:

i. Constants for the solution A

A = 1

4R2
(
4α

(
eCR2 − 1

) + R2eCR2)
[
24α f 2(R)β2e2CR2

+48α f (R)βeCR2 − 24α f (R)βe2CR2

+√
�1(R) − �2(R) + 4αCR2eCR2 − 12αCR2

−16αeCR2 + 16α − 6 f (R)βR2 × e2CR2 − 6R2eCR2

+CR4eCR2
]
, (74)

M = α e−2CR2
[
eCR2

(β f (R) − K ) + 1
]2 + 1

2
R2

(
K

−e−CR2 − β f (R)
)

+ Q2

3R2 , (75)

B = ln[e−CR2 + β f (R)] − AR2. (76)

ii. Constants for the solution B

A = 1

4R2
(
4α

(
eCR2 − 1

) + R2eCR2)
[
4αCR2eCR2 − 12α

×CR2 − 16αeCR2 +
√

8R2eCR2
�3(R) + �4(R)

+16α − 6R2eCR2 + CR4eCR2
]
, (77)

M = α e−2CR2
[
eCR2

(β f (R) − K ) + 1
]2 + 1

2
R2

(
K

−e−CR2 − β f (R)
)

+ Q2

3R2 , (78)

B = ln[e−CR2 + β f (R)] − AR2. (79)

where,

�1(R) =
[
R2eCR2

(
6 f (R)βeCR2

−CR2 + 6
)

− 4α
(
6 f (R) × βe2CR2

( f (R)β − 1)

+eCR2
(
CR2 + 12 f (R)β − 4

)
− 3CR2 + 4

)]2
,

�2(R) = 8R2eCR2
[
4α

(
eCR2 − 1

)

+R2eCR2
] [

eCR2
(3 f (R)sβ − 2) − CR2 + 2

]
,

�3(R) =
(
CR2 + 2eCR2 − 2

) (
4α

(
eCR2 − 1

)
+ R2eCR2

)
,

�4(R) =
[
4α

(
−3CR2 + eCR2

(
CR2 − 4

)
+ 4

)
+ R2eCR2

×
(
CR2 − 6

) ]2
.

5 Physical analysis of the solution

In the following sections, we will study the physical proper-
ties of gravitationally decoupled solutions obtained via the
MGD approach for constructing the compact star model. For
this purpose, we plot the Figs. 2, 3, 4, 5 and 6 that contain the
curves for the GR, EGB and EGB+MGD solutions. To bet-
ter understand the properties of solutions within the compact
star, we will discuss all situations GR, EGB and EGB+MGD
separately.

GR and EGB i.e., β = 0: The effective radial Pr and tan-
gential P⊥ pressures are described in the upper panels of
Fig. 2, where the orange and blue curves are correspond-
ing to the pure GR and EGB gravity in 5D, respectively. In
order to see the effect of Gauss–Bonnet constant, we chose
α = 5 for plotting the Fig. 2 and we see that that pres-
sure is decreasing towards the boundary and become zero at
the surface of the star, but the central pressure is increasing
when α increases (see blue and orange curves). The effective
energy density ρ(r) is behaving well as expected for a viable
compact configuration and magnitude of central and surface
density is increasing when α increases, which shows that the
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Fig. 2 The behavior of radial pressure Pr (r) - top left, tangential pressure P⊥-top right, energy density ρ(r) -bottom left, anisotropy factor
�(r)-bottom right versus radial coordinate r for the solution Sect. 3.1

Fig. 3 The behavior of deformation function f (r) - left panel and mass function m(r) - right panel versus r for solution Sect. 3.1

more dense object is obtained in EGB gravity as compare
to pure GR. However, the anisotropy is zero throughout the
stellar object because of β = 0. Now we will discuss the
physical features of the solutions A and B under the MGD
scenario in the next sections:

Analysis for solution Sect. 3.1: mimicking of the density
constraints i.e. ρ̂ + E2

8π
= θ0

0

GR+MGDandEGB+MGDWhen we use the MGD, the sit-
uation of the pressure and density behavior remains same but
magnitude of central pressure and central density decreases

when β move from 0 to −0.08. Now we will mention some
other physical features of the solution under the MGD intro-
duction: Since the MGD approach which allows us to set
h(r) = 0 in the Eq. (28), which means that metric poten-
tial temporal components of the spacetime remains same
and then the full alteration of the solution depends on the
radial metric potential via decoupler function f (r). Hence,
this deformation function f (r) is not only affect to main
physical quantities such as the density, pressures, but also
change the mass of the object. This happens as usual since
the mass function is directly related to radial metric poten-
tial. As can be observed from Fig. 2, when we fix the

123



552 Page 10 of 14 Eur. Phys. J. C (2022) 82 :552

Fig. 4 The behavior of radial pressure Pr (r) - top left, tangential pressure P⊥-top right, energy density ρ(r) -bottom left, anisotropy factor
�(r)-bottom right versus radial coordinate r for the solution Sect. 3.2

α = 0 and β decrease from 0 to −0.04, the magnitude
of effective pressures and effective density decrease but if
we increase the α by fixing β, the values of pressures and
density increases. This implies that Gauss–Bonnet constant
α introduce more pressure inside the compact configuration
and leads a more denser object, however decoupling con-
stant β plays an opposite impact on the pressure and den-
sity as compared to that Gauss–Bonnet constant α. On the
other hand, the anisotropy behavior shows in Bottom right
panel of Fig. 2. It is clearly observed that the anisotropy
is increasing for all values of β = −0.04,−0.08 but we
get a negative anisotropy at some points within the stellar
model in GR+MGD scenario which generates an attractive
force but when we introduce the Gauss–Bonnet constant α

i.e. EGB+MGD case, we overcome from this situation. This
means that the study of anisotropic solution in 5D under
gravitational decoupling is more compatible in EGB grav-
ity than pure GR gravity. Furthermore, it is already argued
that when β and radial deformation function both are nega-
tive in the framework of the density mimicking approach the
magnitude of the mass function will be less in EGB+MGD as
compare to pure GR or EGB gravity, see Fig. 3, which means
that the present minimally deformed solution will provide the
less massive object.

Analysis for solution Sect. 3.2: mimicking of the pressure
constraint i.e. p̂r = θ1

1

In this solution B, the situation will be same for GR and pure
EGB gravity as discussed before in Sect. A. Now only enough
to describe the GR+MGD and EGB+MGD cases, which are
as follows:

Figures for the solutions Sects. 3.1 and 3.2 obtained in
Sect. 3

GR+MGDandEGB+MGD Since in this solution B, we use
the pressure mimic constraint procedure p̂r = θ1

1 to analyze
the effect of MGD on the physical parameters. As, we present
the behavior of energy density, radial pressure and tangential
pressure along with the anisotropy inside the object by the
Fig. 4. It can be seen that when the magnitude of β and α

is increasing, then central density increases but central value
of the pressure decreases. On the other hand, if we increase
the decoupling constant β the surface value of the density
decreases (see the yellow and red curves for β = 0 and 0.3
corresponding α = 0). Since as any well–behaved compact
star model, the pressure and density should be maximum at
surface and decreasing monotonically for attaining their min-
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Fig. 5 The behavior of deformation function f (r) - left panel and mass function m(r) - right panel versus r for solution Sect. 3.2

Fig. 6 The behavior of electric field (E) versus r for solution Sect. 3.1 (left panel) and solution Sect. 3.2 (right panel)

imum value at surface. All these features are satisfied by our
obtained model but when we increase the value of β beyond
0.7 approx., the tangential pressure start showing its increas-
ing behavior. This implies that the gravitationally decoupled
charged solution is viable for higher values of decoupling
constant β. Moreover, the anisotropy is increasing under the
MGD and acting a stronger force in the outward direction
for higher value of β which helps in avoiding the gravita-
tional collapse. On the other hand, for the present condition
( p̂r = θ1

1 ), the deformation function f (r) has an exciting
behavior that can be observed from the left panel of Fig. 5.
The figure shows that the deformation function f (r) vanishes
at the center r = 0 as well as at the surface r = R of the
object when the seed pressure for electrically charged matter
distribution is proportional to the radial component of the θ–
sector. The same feature of f (r) is observed in other gravity
theories under the condition p̂r = θ1

1 , which shows that this
features of f (r) is independent of the theory. However, the
vanishing deformation function on the boundary shows that
there is no change in the total mass of the object in the con-
text of MGD i.e. remains the same for all values of β (see
Fig. 5-right panel). This implies that the mass due to MGD is
distributed inside the compact object. In this connection, the

compactness factor uEGB for 5D EGB gravity can be written
by the formula,

uEGB = 2MEGB

R2 , (80)

and corresponding Buchdahl limit [95]

uEGB ≡ 2MEGB

R2 ≤ 3

4
+ 9

8R2 α, ∀ α > − R2

3
. (81)

As mentioned in Sect. 3.1 that by imposing ρ̂ + E2

8π
= θ0

0 , the
total mass of the deformed object is less than the total mass
of the object in pure EGB gravity, then u < uEGB , where
uEGB = 2M

R2 . In this situation, the mass–radius ratio for the
deformed object will automatically satisfy the Buchdahl limit
in 5D EGB gravity. On the other hand, there is no changes in
the total mass for solution Sect. 3.2 corresponding to the case
p̂ = θ1

1 , i.e. u = uEGB , and hence the compactness u will be
less than the Buchdahl limit (uBL), where uBL = 3

4 + 9
8R2 α.

The M−R bounds are shown in Tables 1 and 2, respectively.
Further more, the electric field intensity has been also dis-

cussed for both charged anisotropic solutions. The variation
of the electric field inside the charged stellar model is given in
Fig. 6. As it can be observed that the electric field is increas-
ing away from the centre which prevents the star from grav-
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Table 1 The compactness and surface redshift values along with the Buchdahl limit (uBL ) in EGB gravity for R = 9 km and C = 0.001km−2

with different GB constant α and coupling parameter β corresponding to the MGD solution Sect. 3.1:

α and β u = 2M/R2 uBL zs

α = 0 and β = 0 0.0778326 0.7500 0.0413313

α = 5 and β = 0 0.0785782 0.8194 0.0413309

α = 0 and β = −0.04 0.0747192 0.7500 0.0395786

α = 5 and β = −0.04 0.0754358 0.8194 0.0395944

α = 10 and β = −0.08 0.0729796 0.8889 0.0378941

Table 2 The compactness and surface redshift values along with the Buchdahl limit (uBL ) in EGB gravity for R = 9 km and C = 0.001km−2

with different GB constant α and coupling parameter β corresponding to the MGD solution Sect. 3.2:

α and β u = 2M/R2 uBL zs

α = 0 and β = 0 0.0778326 0.7500 0.0413313

α = 10 and β = 0 0.0793255 0.8889 0.0413313

α = 0 and β = −0.3 0.0778327 0.7500 0.0413313

α = 10 and β = 0.3 0.0793255 0.8889 0.0413313

α = 20 and β = 0.6 0.0808185 1.0278 0.0413313

itational collapse. On the other hand, it is also pointed out
that the value of electric charge is decreasing for the solution
Sect. 3.1 when the magnitude of Gauss–Bonnet and decou-
pling constants increases, while no impact of MGD on the
electric charge in solution Sect. 3.2.

In the framework of EGB gravity, Zhou et al [96] have
discussed that GB terms will alter the redshift’s upper bound
of the spectral lines from the boundary of stars of constant
density. Remarkably, this upper bound is reliant on the value
of density rather than a constant in GR complement, and thus
it is not possible to found an upper bound for the redshift
[95,96]. The surface redshift is given by

z =
√
e−2ν(r) − 1. (82)

Moreover, we can find some information about the surface
zs redshift as [96],

zs = [
B (1 + AR2)

]−2 − 1. (83)

As we can see from Table 1, for solution Sect. 3.1 the sur-
face redshift zs is decreasing when magnitude of β increases
while there is no impact of β on zs for solution Sect. 3.2
(see Table 2). It is noted that the obtained values for zs are
consistent with the bound proposed in the GR scenario [97].

6 Concluding remark

In the present paper, we have investigated the physical prop-
erties of charged compact objects in the context of Einstein–
Gauss–Bonnet (EGB) gravity, which is known to be free
of ghosts while expanding about the flat space. An impor-

tant feature of this discussion is the possibility of apply-
ing minimal geometric deformation (MGD) decoupling for-
mulation, which we have used to study the interior of stel-
lar type objects. Using the MGD approach, one can extend
the charged isotropic model of compact object to charged
anisotropic domains. The decoupling of these gravitational
sources corresponding to matter distribution Ti j yields two
systems, namely, the charged isotropic sector corresponding
to an perfect fluid T̂i j and the additional source θi j that is
coupled with T̂i j through the constant β. These two sectors
must interact only gravitationally without exchange of energy
between them.

After specifying the field equations for Ti j and θi j , we
first solved the field equations for Ti j by known potentials
corresponding to Krori–Barua solution for charged matter
distribution while θ -sector has been solved by two different
Mimic approaches such as (i) ρ̂ + E2

8π
= θ0

0 , and (ii) p̂r =
θ1

1 . We next identify the surface of the star where the radial
pressure vanishes i.e., P(R) = 0. In particular, we apply
the generalized Darmois–Israel formalism for EGB theory,
where the interior solution is being matched to an exterior
Boulware–Deser vacuum spacetime which determines the
constants involved in the solutions. For our MGD approach
the effective radial pressure P = p̂r −β θ1

1 , contains both the
non-deformed matter source ı.e., anisotropic pressure and the
deformation function f (r) induced by the additional source
term θi j .

It is interesting to note that the first mimic approach pro-
vides a non-vanishing deformation function f (r) at boundary
while it vanishes at the boundary for the second case. This
implies that the total mass of the object remains the same
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under MGD for the second case. Moreover, the first solution
is physically valid when β is negative as well as the deforma-
tion function is also negative throughout the star for r > 0,
which shows that the total mass will decrease due to MGD
and will get less massive objects.

Finally, we found that the total mass of the deformed object
is less than the total mass of the object in pure EGB gravity for
solution Sect. 3.1. This, of course means that the Buchdahl’s
limit is automatically satisfied for 5D EGB+MGD model.
Interestingly, there is no changes in the total mass for solution
Sect. 3.2, where the compactness is less than the Buchdahl
limit (see Tables 1 and 2). Furthermore, the calculated surface
redshift for both solutions have been presented in the Tables 1
and 2. It is found that the surface redshift for deformed object
is always less than or equal to the objects in GR gravity.
We would like to mention here that the MGD is not only
generalize the previous known solutions but it also controls
the mass–radius ratio and surface redshift of the compact
objects.
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