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Abstract We consider the interacting Tsallis Holographic
Dark Energy (THDE), with the Granda–Oliveros (GO) scale
as the infrared (IR) cutoff, as dynamical vacuum. We ana-
lytically solved for the Hubble parameter, in a spatially flat
FLRW universe with dark energy and matter as components,
and the solution traces the evolutionary path from the prior
decelerated to the late accelerated epoch. Without interaction,
the model predicts a ΛCDM like behavior with an effective
cosmological constant. We used Pantheon Supernovae type
Ia, observational Hubble data (OHD), cosmic microwave
background (CMB), and baryon acoustic oscillation (BAO)
data to constrain the free parameters of the model. The esti-
mated values of the cosmological parameters were consistent
with observational results. We analyzed the behavior of the
model using the statefinder and ω′

e − ωe plane where ωe and
ω′
e corresponds to the effective equation of state and its evolu-

tion, respectively. The model shows a quintessence behavior
in general, and the model trajectory ends in a point that cor-
responds to the de Sitter phase. We performed a dynamical
analysis of the model, concluding that the prior decelerated
and late accelerated phases are unstable and stable equilib-
ria, respectively. We also investigated the thermodynamical
nature of the model and found that the generalized second
law remains valid in the dynamical vacuum treatment of the
model.

1 Introduction

After the discovery of the accelerated expansion of the uni-
verse [1,2], the desire to understand the universe spired,
resulting in intensive works in recent literature. The nature
and origin of the accelerated expansion of the universe are
a mystery even now. Postulating dark energy models and
modified theories of gravity are the two approaches that try
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to unwind the mystery of the universe’s accelerated expan-
sion. One of the simplest and best dark energy candidates is
the cosmological constant, Λ as given in the most successful
model,ΛCDM. However, this model suffers mainly from two
problems; one is the cosmological constant problem where
there is a discrepancy in the observational and the theoret-
ical value (10121 times larger) of the energy density of the
cosmological constant. The other is the coincidence problem
that is the unknown reason for the coincidence of matter den-
sity and the cosmological constant during the current epoch,
despite their different evolutionary nature. Dynamical dark
energy models were suggested to mitigate these problems.
Some representatives of this category are quintessence [3,4],
k-essence [5], and phantom [6] models.

One of the dynamical dark energy models is the holo-
graphic dark energy (HDE) model, which pivots on the black
hole thermodynamics, proposed mainly to allay the coinci-
dence problem. The underlying idea of these models is the
holographic principle [7,8] which states that the entropy of
a gravitating system is related to its surface area, not its vol-
ume, which implies that the maximum entropy of any region
of space should be less than or equal to the entropy of a black
hole of similar size. The limit set by this principle implies
a relation between the short distance (ultraviolet-UV) cutoff
and the long distance (infrared-IR) cutoff [9]. This idea rec-
onciles the breakdown of the quantum field theory to describe
a black hole [9,10]. The initial proposal of the holographic
principle considers the entropy of the cosmological horizon
as the Bekenstein-Hawking entropy and the dark energy den-
sity scales as the square of the Hubble parameter. However,
it could not explain the current accelerated expansion of the
universe [11,12]. HDE model with particle horizon [13,14]
as IR cutoff also could not explain the present acceleration.
Taking future event horizon [14] as IR cutoff successfully
explained the present accelerated expansion, but it suffered
from causality problem. Since any known symmetry does not
dodge the interaction between the dark sectors [15], mod-
els considering such interactions were proposed, and they
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yield better consistency with the cosmic observations than
non interacting models [16–19].

Holographic Ricci dark energy model with Ricci scalar
curvature as IR cutoff introduced in [20] is a phenomenolog-
ically viable model which avoids causality and coincidence
problems. Inspired by this model and on a pure dimensional
basis, Granda and Oliveros proposed a new IR cutoff [12], a
combined function of Hubble parameter and its time deriva-
tive. The resulting model also successfully avoids the coin-
cidence problem, causality problem and explains the current
accelerated expansion. Further explorations in HDE models
with different IR cutoffs can be found in [21–25]. In order to
incorporate the quantum corrections [26–35], conventional
HDE required modifications.

Tsallis and Cirto [36] introduced a generalized non addi-
tive entropy, popularly known as Tsallis entropy, to solve
the thermodynamic inconsistencies in non standard systems
like a black hole. The pioneer works on the analysis of dark
energy models with Tsallis non extensive statistical formu-
lation can be found in [37] and further possibilities in cos-
mology are probed in [38]. This kind of entropy agrees well
with the Friedmann equations and Padmanabhan’s proposal
of the emergence of space time [39]. Like in the conventional
HDE model, it is possible to construct dark energy models
using Tsallis entropy, and as a result, Tsallis holographic dark
energy (THDE) with Hubble horizon as IR cutoff was intro-
duced in [40]. Taking inspiration from the aforementioned
study, dynamics of FRW universe having dark matter and
THDE with the apparent horizon, the particle horizon, the
Ricci scalar curvature scale, and the Granda–Oliveros (GO)
scale as IR cutoffs was studied considering non interacting
and interacting scenarios [41–44]. It is found that the THDE
model with particle horizon as IR cutoff explains the current
accelerated expansion of the universe, unlike the correspond-
ing conventional HDE model. The results from [41] show that
the THDE model is not always stable for the GO scale and
the Ricci scalar cutoffs in both interacting and non interacting
cases. Whereas in [42] THDE model with the GO scale as IR
cutoff shows stability in (n + 1) dimensional FRW universe.
Thermodynamical stability studies of THDE with the appar-
ent horizon as IR cutoff in [45] shows that the model does
not satisfy the stability conditions in both interacting and non
interacting cases. The investigations on the evolution of the
THDE with Hubble horizon as IR cutoff, by considering time
varying deceleration parameter in FRW universe is discussed
in [46], in Brans–Dicke cosmology is discussed in [47,48].
Geometrical diagnosis of THDE model of the universe with
the apparent horizon as IR cutoff, considering the interaction
between dark sectors of the universe, was made in [49]. Cos-
mological model in higher dimensional Kaluza–Klien the-
ory, having THDE with Hubble horizon as IR cutoff, and
with Generalized Chaplygin Gas (GCG) as cosmic compo-
nents are studied in [50]. THDE with Hubble horizon as IR

cutoff in Rastall framework and on Randall–Sundrum brane
has been considered in [51,52]. Dynamical system studies
on interacting and non interacting THDE in a fractal uni-
verse with Hubble radius and apparent horizon as IR cutoff
can be found in [53–56]. The equivalence between Tsallis
entropic dark energy and generalized HDE with cutoffs in
terms of particle horizon, future horizon, and its derivatives
are established in [57]. Cosmological analysis of the THDE
with Hubble horizon as IR cutoff in the axially symmetric
Bianchi-I universe within the framework of general relativ-
ity has been explained in [58,59]. Sign changeable mutual
interactions between dark sectors are also considered to study
the effects of anisotropy in the Bianchi universe [60]. Similar
analysis of THDE with Hubble horizon and GO scale as IR
cutoff in Bianchi-III universe has been discussed in [61,62].
Investigations on dynamics of THDE with Hubble horizon
as IR cutoff, by assuming power law-exponential form for
the scale factor have been studied in [63]. Geometrical evolu-
tionary studies in THDE models with Hubble horizon, future
event horizon, and GO scale as IR cutoffs corresponding to
different interactions have been explored in [64–70]. Investi-
gations on THDE with GO scale as IR cutoff [71], presuming
that this energy density is responsible for inflation, show the
potentiality of the model in explaining the early universe.
Comparison of THDE model with other HDE models using
statefinder analysis was reviewed in [72]. The evolution of
cosmological perturbations in THDE models with Hubble
horizon and future event horizon as IR cutoff and Bayesian
model comparison with ΛCDM as reference model has been
scrutinized in [73–75]. In [76–93], the THDE model with dif-
ferent IR cutoffs within various modified gravity theories and
scalar field theories has also been explored. The growth rate
of clustering for different IR cutoffs for the THDE model
in the FRW universe can be found in [94]. Cosmological
implications through non linear interactions between THDE
with Hubble horizon as IR cutoff and cold dark matter in the
framework of loop quantum cosmology has been discussed
in [95]. Investigations on the THDE model with Hubble hori-
zon as IR cutoff in the higher derivative theory of gravity in
[96] show that it is not compatible with late time acceleration
as it could not acquire the required value of the equation of
state parameter. Due to the quantified non extensivity in Tsal-
lis entropy, studies on modification of Friedmann equation
and gravity theory, including emergence proposal of gravity
[97–102], also flourish in this field. All these works were car-
ried out considering the equation of state parameter of dark
energy as varying with the expansion of the universe.

It is to be noted that, in formulating the HDE density,
one has to compare the UV cutoff, corresponding to the vac-
uum energy, with the IR cutoff, representing the large length
scale of the universe. There is a broad consensus that the
cosmological constant in the standard ΛCDM model can
be the vacuum energy, having an equation of state param-
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eter, −1. Hence, the UV cutoff involved in the HDE models
indicates that the corresponding dark energy density is of
dynamical vacuum. As a result, reconsidering the THDE as
the dynamical vacuum in analyzing the evolutional history of
the universe is of practical significance. We are considering
the THDE as the dynamical vacuum in the present work. We
study the evolution of the universe by considering the inter-
action, between dark matter and dark energy in conformity
with the total conservation of energy, in the THDE model
with the GO scale as IR cutoff. Our analysis shows that the
model predicts a transition to the late accelerating universe.
This work also involves the geometrical and dynamical anal-
ysis and thermodynamical study of the model to check the
feasibility of explaining the accelerating universe.

The structure of this paper is as follows. In the next section,
we present an interacting THDE as a dynamical vacuum. We
analytically solve for the Hubble parameter and investigate
its evolutionary behavior. In Sect. 3, we constrain the param-
eters with observational data and discuss its cosmological
implications. Along with that, we also analyze the evolution-
ary trajectory of the model in geometrical plane r − s and
phase plane ω′

e−ωe plane. In Sect. 4, we perform the dynam-
ical analysis on the interacting THDE model. In Sect. 5, we
study the thermodynamical properties of the model. In the
last section, we summarize the conclusions of the work.

2 Interacting THDE model as dynamical vacuum

A generalization of the Boltzmann–Gibbs (BG) theory, now
known as the non extensive statistical mechanics, was pro-
posed [32] to address the complexities in non standard sys-
tems. For large scale systems, the thermodynamical entropy
must be modified to non additive entropy [36]. According to
Tsallis and Cirto [36], the quantum correction modified the
entropy area relation as,

S = γ Aδ, (1)

where A is the horizon area of the black hole, γ is a positive
[97] constant, and δ is the positive non additive parameter
[36]. This will reduces to the Bekenstein entropy for γ = 1

4L2
p

and δ = 1, with L2
p as the Planck length. Following the

holographic principle, Cohen et al. [9] have found a relation
between the entropy, IR cutoff (L), and the UV cutoff (Λ) as,

L3Λ3 ≤ S3/4. (2)

Following the Tsallis entropy in (1) and substituting for area,
A = 4πL2, leads to the relation Λ4 ≤ γ (4π)δL2δ−4, and it
gives a measure of the vacuum energy density. Taking con-
sideration of the equality in this relation, a modified energy
density, known as the Tsallis HDE (THDE) density, can be

defined as,

ρde = CL2δ−4, (3)

where the constant, C = γ (4π)δ with dimension [L2−2δ] (in
units of 8πG = h̄ = c = 1). The simplest choice for scale is
L = H−1, the Hubble horizon. In [40], authors have estab-
lished that the corresponding model of the universe, with non
interacting dark sectors, can show a transition into the late
time accelerated epoch. This contrasts with the conventional
HDE model, which failed to predict a transition into the late
accelerated epoch if cosmic components are non interacting.

In the present study we adopt the GO scale as IR cutoff,
which was originally proposed in reference [12] to study the
conventional HDE model and is given by,

L−2 = (αH2 + β Ḣ), (4)

where α and β are unknown dimensionless constants and
Ḣ , is the derivative of Hubble parameter with respect to the
cosmic time. Using (4) in (3), THDE density can be written
as

ρde = 3(α′H2 + β ′ Ḣ)2−δ, (5)

where α′ = α
3C

1
2−δ and β ′ = β

3C
1

2−δ have dimension

[L 2−2δ
2−δ ].
The Friedmann equation for the flat FRW universe is given

by

3H2 = ρm + ρde. (6)

where ρm and ρde is the dark matter and dark energy den-
sity respectively. The conservation equations including the
interaction between THDE and dark matter are given by

ρ̇de + 3H(ρde + Pde) = −Q,

ρ̇m + 3H(ρm + Pm) = Q, (7)

where ρ̇de and ρ̇m are the derivatives of dark energy and
dark matter densities with respect to the cosmic time, Pde
and Pm are the pressure of dark energy and matter respec-
tively and Q represents the interaction, which determines the
rate of exchange of energy between the dark sectors. From
Eq. (7) it is clear that Q has to be a function of energy den-
sity and inverse of time. We are adopting a simple function,
Q = 3bHρm where b is the coupling constant. None of
the previous works has considered this form of interaction
in combination with the GO scale in studying the evolution
of the FLRW universe. Since the THDE is considered as
a dynamical vacuum, its equation of state is Pde = −ρde
and the matter is considered as pressureless. Considering the
above assumptions, the equations in (7) reduces to

ρ̇de = −3bHρm, ρ̇m = −3(1 − b)Hρm . (8)

The above equations (8) can be rewritten in terms of density
parameter Ω = ρ

3H2
0

where H0 denotes the present value of
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Hubble parameter and x = ln a as

dΩde

dx
= −3bΩm, (9)

dΩm

dx
= −3(1 − b)Ωm . (10)

The solution of Eq. (10) is Ωm = Ωm0e−3(1−b)x where
Ωm0 = ρm0

3H2
0

is the present matter density parameter. In sim-

ilar manner, Ωde0 = ρde0
3H2

0
is the present dark energy density

parameter. The Eq. (6) reduces to, 1 = Ωm0 + Ωde0, for
H = H0. Considering this result and using Eqs. (10), (9)
and (6), a second order differential equation can be formu-
lated as below

d2h2

dx2 + 3
dh2

dx
+ 9bΩm0e

−3(1−b)x = 0. (11)

where h2 = H2/H2
0 . The solution of the above differential

equation in terms of scale factor is [103],

h2 = Ωm0

1 − b
a−3(1−b) + 1

3
c′a−3 + c′′, (12)

which tells us how the Hubble parameter evolves with respect
to the scale factor of the universe. In the previous works of
THDE model with GO scale as IR cutoff [41,68,94], such
an exact solution has not been obtained. Initial conditions to
evaluate the constants c′ and c′′ are

h2|a=1 = 1,
dh2

dx

∣
∣
∣
∣
a=1

= 2

β ′

⎡

⎢
⎢
⎣

(

Ωde0

H2(1−δ)
0

)
1

2 − δ − α′

⎤

⎥
⎥
⎦

.

(13)

The constants are then obtained as

c′ = 2

β ′

⎡

⎣α′ −
(

Ωde0

H2(1−δ)
0

) 1
2−δ

⎤

⎦ − 3Ωm0, (14)

c′′ = 1 − bΩm0

1 − b
− 2

3β ′

⎡

⎣α′ −
(

Ωde0

H2(1−δ)
0

) 1
2−δ

⎤

⎦ . (15)

In the asymptotic limit a → 0, the constant c′′ can be
neglected due to domination of the first two terms in the
Hubble parameter equation (12) for b � 1, consequently
the resulting solution represents the decelerated expansion.
In the future limit, a → ∞, the constant term in the Hubble
parameter will dominate over the rest of the terms, indicating
an end de Sitter phase. Hence the model predicts a transition
into a late accelerating epoch in the evolution of the universe.
For b = 0 Eq. (12) will reduce to

h2 = Ω̃m0a
−3 + Ω̃de0, (16)

where Ω̃m0 and Ω̃de0 are the mass density parameters [104]
which have the form

Ω̃m0 = 2

3β ′

⎡

⎣α′ −
(

1 − Ωm0

H2(1−δ)
0

) 1
2−δ

⎤

⎦ ,

Ω̃de0 = 1 − Ω̃m0. (17)

This shows that, in the absence of interaction, the present
model is similar to that of the standard ΛCDM, with an
effective cosmological constant corresponding to the mass
density parameter Ω̃de0. Even though the dark energy den-
sity in Eq. (5) is varying with H, the behavior of it as effective
vacuum energy with equation of state, ωde = −1 is the pri-
mary reason for this ΛCDM like behavior, in the absence of
the interaction. Further, the coupled conservation equations
in (7) become independent conservation, in which matter and
dark energy are separately conserved. Under such a condi-
tion, the dark energy density, equivalent to the vacuum energy
density, will effectively become a constant. In contrast, the
previous works on the non interacting THDE models [40–
42,44–46,66,69,72,73,105–107] shows quintessence like,
phantom like, or phantom divide crossing behavior according
to the value of model parameters.

3 Observational constraints and its cosmological
implications

3.1 The model parameter estimation

In this section, we estimate the constant model parameters,
δ, α′, β ′, b, H0 and Ωm0 by contrasting the model with
cosmological observational data. The dataset consists of the
type Ia supernovae data [109], observational Hubble data
(OHD) [110,111], cosmic microwave background (CMB)
data [112], and baryon acoustic oscillation (BAO) data [113].
We have applied the Markov chain Monte Carlo (MCMC)
method by employing the emcee python package [114] using
the lmfit python library [115] to constrain the model param-
eters. To perform the analysis, we assume uniform priors for
parameters specific to the model as follows: δ ∈ (0.1, 5.0),
b ∈ (−0.1, 0.5), α′ ∈ (0.7, 1.2), and β ′ ∈ (0.001, 0.6),
considering the recent literature [40–42,44–46,49,55,64–
66,68,69,72,73,75,94,105–107,116]. We have considered
uniform priors from the recent literature suitably for other
general parameters like H0, Ωm0, and M .

We use the latest supernovae data, the Pantheon Sample,
which comprises 1048 SNe Ia data points in the redshift range
of 0.01 < z < 2.3. The luminosity distance of SN Ia can be
obtained using the relation,
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Table 1 The best estimated values and 68.3% confidence limit for interacting THDE model parameters

Data δ b α′ β ′ Ωm0 H0 M

SNIa 1.021+0.017
−0.020 −0.027+0.062

−0.054 0.963+0.139
−0.121 0.309+0.201

−0.185 0.300+0.035
−0.034 69.977+3.514

−3.436 −19.359+0.107
−0.109

OHD 1.021+0.021
−0.024 0.024+0.100

−0.053 0.962+0.153
−0.150 0.283+0.220

−0.202 0.297+0.037
−0.034 69.789+2.609

−2.533 −19.054+0.735
−0.672

SNIa+OHD 1.020+0.016
−0.021 0.023+0.033

−0.026 0.960+0.138
−0.125 0.337+0.184

−0.207 0.296+0.038
−0.033 69.241+1.230

−1.229 −19.381+0.037
−0.037

SNIa+OHD+CMB 1.021+0.012
−0.014 0.014+0.016

−0.022 0.970+0.129
−0.094 0.256+0.227

−0.158 0.271+0.022
−0.015 68.867+1.199

−1.159 −19.393+0.035
−0.034

SNIa+OHD+BAO 1.020+0.016
−0.022 0.028+0.033

−0.029 0.974+0.142
−0.132 0.352+0.172

−0.205 0.294+0.020
−0.019 69.267+1.209

−1.204 −19.379+0.036
−0.037

SNIa+OHD+CMB+BAO 1.021+0.012
−0.015 0.005+0.016

−0.017 0.981+0.128
−0.099 0.308+0.201

−0.181 0.281+0.017
−0.015 68.672+1.196

−1.141 −19.399+0.034
−0.034

(a) (b)

Fig. 1 The two dimensional posterior contours with 68% and 95% confidence limits and one dimensional posterior distribution (using pygtc open
python package [108]) from the (a) SNIa+OHD+CMB and (b) SNIa+OHD+CMB+BAO datasets for the free parameters of THDE model

dL (δ, α′, β ′, b, H0,Ωm0, zi )

= c(1 + zi )
∫ zi

0

dz′

H(δ, α′, β ′, b, H0,Ωm0, z′)
, (18)

where zi is the redshift of the SN Ia, c is the speed of light
and H(δ, α′, β ′, b, H0,Ωm0, z′) is the Hubble parameter in
terms of model parameters and redshift.

The theoretical distance modulus of SN Ia is given by

μth (δ, α′, β ′, b, H0,Ωm0, zi )

= 5 log10

[
dL(δ, α′, β ′, b, H0,Ωm0, zi )

Mpc

]

+ 25. (19)

The χ2 function of SN Ia data can be expressed as

χ2 (δ, α′, β ′, b, H0,Ωm0, M)SN Ia

=
n

∑

i=1

[μth(δ, α
′, β ′, b, H0,Ωm0, zi ) − μi ]2

σ 2
i

, (20)

where μi = m−M is the observational distance modulus of
SN Ia, m and M are the apparent and the absolute magnitude
of the SN Ia, n = 1048, the total number of data points
and σ 2

i is the variance of i th measurement. We treat M as a
nuisance parameter throughout this analysis. The estimated
values of the model parameters using the SNIa data are given
in the first row of Table 1. The minimum χ2 is obtained as

1035.485. The χ2
dof = χ2

min
n−n p

is the minimum χ2 function per
degrees of freedom where n is the number of data points, and
n p is the number of model parameters. The obtained value
of χ2 goodness of fit, χ2

d.o. f. = 0.995, i.e., around unity. The
estimated value of the coupling constant is obtained to be
negative, contributing a negative interaction term. It conveys
the possibility of energy transfer from dark matter to THDE.

Another independent observable we use is the Hubble
dataset consisting of 36 H(z) data points in the redshift
range of 0.07 ≤ z ≤ 2.36, out of which 31 data points
are determined using the cosmic chronometric technique, 3
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data points from the radial BAO signal in the galaxy distri-
bution and 2 data points from the BAO signal in the Lyman α

forest distribution alone or cross correlated with quasi stellar
objects [110]. The following χ2 function is minimized for
this Hubble parameter measurement

χ2 (δ, α′, β ′, b, H0,Ωm0)OHD

=
n

∑

i=1

[H(δ, α′, β ′, b, H0,Ωm0, zi ) − Hi ]2

σ 2
i

, (21)

where Hi is the observational Hubble parameter measure-
ment, and σ 2

i is the variance of i th measurement. The esti-
mated values of the model parameters using the OHD data
are given in the second row of Table 1. The minimum χ2 is
obtained as 22.034. The obtained value of χ2 goodness of
fit, χ2

d.o. f. = 0.760.
Combining the type Ia supernovae data and the OHD, the

total χ2 function takes the form

χ2
f = χ2(δ, α′, β ′, b, H0,Ωm0, M)SN Ia

+ χ2(δ, α′, β ′, b, H0,Ωm0)OHD.
(22)

The estimated values of the model parameters using the
SNIa data and OHD are given in the third row of Table 1. The
minimum χ2

f is obtained as 1071.352. The obtained value of

χ2 goodness of fit, χ2
d.o. f. = 0.995, i.e., around unity.

The distance prior, shift parameter, R, which influences
the CMB temperature power spectrum, is defined in terms of
THDE model parameters as follows

R(δ, α′, β ′, b, H0,Ωm0)

= √

Ωm0

∫ z∗

0

dz

h(δ, α′, β ′, b, H0,Ωm0, z)
,

(23)

where z∗ is the redshift at the photon decoupling epoch. We
adopt the distance prior measurement value Robs = 1.7502±
0.0046 at the redshift z∗ = 1089.92 from the Planck 2018
observations [112]. The corresponding χ2 [117] from the
CMB data is

χ2(δ, α′, β ′, b, H0,Ωm0, M)CMB

= [R(δ, α′, β ′, b, H0,Ωm0) − Robs]2

σ 2
R

,
(24)

where σR is the variance of the Robs measurement. The esti-
mated values of the model parameters using the
SNIa+OHD+CMB are given in the fourth row of Table 1.
The minimum χ2 is obtained as 1203.630. The obtained
value of χ2 goodness of fit, χ2

d.o. f. = 1.117, i.e., around
unity.

The distance–redshift relation determined by a BAO mea-
surement is given by the acoustic peak parameter, A, which

is defined in terms of THDE model parameters as follows

A(δ, α′, β ′, b, H0,Ωm0)

=
√

Ωm0

h(zA)1/3

(
1

zA

∫ zA

0

dz

h(δ, α′, β ′, b, H0,Ωm0, z)

) 2
3

,

(25)

where zA is the redshift of the acoustic peak parameter. We
adopt the value of Aobs = 0.484 ± 0.016 at the redshift
zA = 0.35 from the SDSS-BAO distance data [118]. The
corresponding χ2 from the BAO data is

χ2(δ, α′, β ′, b, H0,Ωm0, M)BAO

= [A(δ, α′, β ′, b, H0,Ωm0) − Aobs]2

σ 2
A

,
(26)

where σA is the variance of the Aobs measurement. The esti-
mated values of the model parameters using the
SNIa+OHD+BAO are given in the fifth row of Table 1. The
minimum χ2 is obtained as 1067.240. The obtained value of
χ2 goodness of fit, χ2

d.o. f. = 0.990, i.e., around unity.
Combining the type Ia supernovae data, the OHD, the

CMB, and the BAO data, the total χ2 function takes the form

χ2
s = χ2(δ, α′, β ′, b, H0,Ωm0, M)SN Ia

+ χ2(δ, α′, β ′, b, H0,Ωm0)OHD

+ χ2(δ, α′, β ′, b, H0,Ωm0, M)CMB

+ χ2(δ, α′, β ′, b, H0,Ωm0, M)BAO .

(27)

The estimated values of the model parameters using the
type Ia supernovae data, the OHD, the CMB, and the BAO
data are given in the sixth row of Table 1. The minimum χ2

s
is obtained as 1174.015. The obtained value of χ2 goodness
of fit, χ2

d.o. f. = 1.088, i.e., around unity. The estimated value
of the coupling constant is obtained to be positive and is
smaller than the value obtained from all the other datasets
except SNIa for the present THDE model and the previ-
ous THDE models [116] with Hubble horizon and future
event horizon as IR cutoff. The positive value of the cou-
pling constant contributes to a positive interaction term, con-
sequently the energy exchange is from THDE to dark mat-
ter and thereby satisfying the Le Chatelier–Braun princi-
ple [55,119]. The uncertainty on b is relatively high com-
pared to the value at which the maximum likelihood function
peaks for all datasets. Evidence for such plausibility using
SNIa and OHD can be observed in the work of C. P. Singh
[120] on Holographic dark energy. The best fit value of δ

obtained using all the datasets is similar to the previous results
from THDE models with future event horizon as IR cutoff
[105,116], which are stable against the background pertur-
bations. Concurrently, it is smaller than the best fit value
(δ > 2) obtained from the studies on the THDE model with
Hubble horizon as IR cutoff [116], which is unstable against
the background perturbation. Furthermore, it is greater than
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Fig. 2 The evolution of Hubble parameter with redshift for the best
estimated values of the model parameters using the fourth and sixth
datasets, compared with H(z) data points

the best fit δ value (less than 1) obtained from the study
on the growth of matter fluctuations of the THDE model
[73] with future event horizon as IR cutoff using the Gold-
2017 dataset of 18 uncorrelated σ8 measurements, SNIa data,
and OHD.

3.2 Evolution of cosmological parameters

Estimating luminosity and redshift from the cosmological
observables contributes to determining the present Hub-
ble parameter of the universe. Here, we studied the back-
ground evolution of the Hubble parameter using the inter-
acting THDE solution. The predicted evolution of the Hub-
ble parameter with redshift using this model has been
compared with the 36 H(z) data points and is shown in
Fig. 2. The Hubble parameter decreases as the cosmic
time evolves and the present value of the Hubble param-
eter is obtained as 68.867+1.199

−1.159 km s−1 Mpc−1 (fourth

dataset) and 68.672+1.196
−1.141 km s−1 Mpc−1 (sixth dataset)

which is slightly lower than the observational value H0 =
70.5 ± 1.3 km s−1 Mpc−1 from WMAP + BAO + SN data
[121] and slightly higher than observational value H0 =
67.37 ± 0.54 km s−1 Mpc−1 from Planck data [122] assum-
ing ΛCDM model. The estimated present value of the Hubble
parameter in our model is close to the best estimated values of
Hubble parameter in interacting and non interacting THDE
models with Hubble horizon and future event horizon as IR
cutoff [73,105,116]. The theoretical evolution of apparent
magnitude with respect to the redshift using this model is
compared with the 1048 SNe Ia data points as shown in Fig. 3.
Both the error bar plots show proximity between theoretical
and observational results.

The deceleration parameter which measures the rate of
cosmic expansion is obtained in the following form

Fig. 3 The evolution of apparent magnitude with redshift for the best
estimated values of the model parameters using the fourth and sixth
datasets, compared with type Ia SNe data points

q = −1 − Ḣ

H2

= −1 + 3Ωm0(1 + z)3(1−b) + c′(1 + z)3

2Ωm0

1 − b
(1 + z)3(1−b) + 2

3
c′(1 + z)3 + 2c′′

.

(28)

In the limit z → −1, the deceleration parameter q → −1
and in the limit z → ∞, the deceleration parameter will
tend to a positive value since second term in Eq. (28) domi-
nates in that case. The evolution of the deceleration parameter
q(z), as a function of z, for the best estimated model param-
eters from the fourth and sixth datasets is plotted in Fig. 4.
It is lucid from the figure that the model explains the current
accelerated universe and also the transition from the prior
decelerated phase to the present accelerated phase. The inset
figure in Fig. 4 shows the transition in small scale to reveal
precisely the difference in the transition redshift for different
datasets. The transition redshift zt (i.e., q(zt ) = 0) is found
to be 0.799 using the fourth dataset and 0.763 using the sixth
dataset, which is slightly greater than the transition redshift
obtained for interacting THDE model with Hubble horizon
and future event horizon as IR cutoff (zt = 0.634+0.051

−0.045 and

zt = 0.649+0.010
−0.025 respectively) [116]. The current value of

deceleration parameter (q0 = q(z)|z=0) obtained for the esti-
mated values of the model parameters is q0 = −0.602 using
the fourth dataset and −0.594 using the sixth dataset, is closer
to the observational value q0 = −0.63 ± 0.12 from ΛCDM
based CMB priors [123]. Our estimated cosmological param-
eter values are in good concordance with previous results
from model independent methods, parametric reconstruction
techniques as well as other dark energy models mentioned in
[124–127].

A juxtaposition of the evolution of matter density and
THDE density in logarithmic scale is shown in Fig. 5. The
figure very well implies that THDE will dominate the uni-
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Fig. 4 The evolution of deceleration parameter with redshift for the
best estimated values of the model parameters using the fourth and
sixth datasets. The inset figure clearly distinguishes the continuous and
dot-dashed lines

Fig. 5 Evolution of matter density and THDE density with scale factor
of the universe in logarithmic scale using the fourth and sixth datasets

verse in the future. The evolution of the densities of matter
and dark energy are comparable with each other for the high
redshift values even though the matter density is dominating
in the early universe and is diminishing in the late phase of the
universe, that solves the coincidence problem as the acceler-
ation began at low redshifts and this is well demonstrated in
the Fig. 5. The current value of the matter density parameter
estimated using the observational constraints is slightly lower
than the observational value Ωmo = 0.3147 ± 0.0074 from
Planck data [122] and the derived value Ωmo = 0.29 ± 0.07
from WMAP results [128]. Our estimation of the current val-
ues of the matter density parameter are similar to the current
value obtained for past THDE models [105,116] and slightly
higher than the value for the THDE model with future event
horizon as IR cutoff [73].

3.3 The age of the universe

The age of the universe can be estimated using the present
cosmological observational data, even though systematic and
statistical uncertainties will arise during observation and
estimation. Theoretically, considering the interacting THDE
model, the age of the universe can be calculated by slightly
rearranging the Eq. (12) and the resultant equation takes the
form

H = ȧ

a
= H0

(
Ωm0

1 − b
a−3(1−b) + 1

3
c′a−3 + c′′

) 1
2

. (29)

Above equation can be solved by considering the value of
scale factor a = 0 for the big bang time tb and a = 1 for the
present time t0 in the following way

∫ t0

tb
dt = H−1

0

∫ 1

0
a−1

(
Ωm0

1 − b
a−3(1−b) + 1

3
c′a−3 + c′′

)−1
2

da.

Using the best estimated values of the parameters, the
age of the universe is evaluated as 14.327 Gyrs using the
fourth dataset and 14.190 Gyrs using the sixth dataset, which
is closer to the age calculated for interacting THDE model
with future event horizon as IR cutoff (14.20+0.18

−0.32 Gyrs) and
slightly greater than the age calculated for interacting THDE
model with Hubble horizon as IR cutoff (13.71+0.24

−0.41 Gyrs,
upper bond of 13.43 and lower bond of 13.04 Gyrs) [107,
116]. Our results are closer to the standard value of age 13.8±
0.02 Gyrs obtained from Planck mission and 13.72 ± 0.12
Gyrs from WMAP + BAO + SN data assumingΛCDM model
[121,122] and 13.5+0.16

−0.14(stat.) ±0.23(0.33)(sys.) Gyrs from
the oldest globular cluster [129].

3.4 Evolution in r − s plane and ω
′
e − ωe plane

To check further, the reliability of THDE model being a gen-
eralized model of dark energy in contrast to the present obser-
vational data we studied the evolution using the geometrical
pair called the statefinder pair {r, s} constructed from the
scale factor and its derivatives, first defined by Sahni et al.
[130,131]. The relationship connecting the statefinder pair
and the scale factor of the universe are given by

r =
...
a

aH3 , s = r − 1

3(q − 1
2 )

. (30)

It is lucid from (30), r is third order derivative of ‘a’ and s
is related to ‘r ’ and ‘q’ linearly. The statefinder pair {r, s}
can also be expressed in terms of Hubble parameter and its
derivatives as

r = 1

2h2

d2h2

dx2 + 3

2h2

dh2

dx
+ 1,

s = −
1

2h2
d2h2

dx2 + 3
2h2

dh2

dx
3

2h2
dh2

dx + 9
2

.

(31)
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Fig. 6 The statefinder evolutionary trajectory for interacting THDE in
the r − s plane for the best estimated values of the model parameters
using the fourth and sixth datasets

Using Eq. (12) in the above equations will results in the fol-
lowing two expressions in terms of model parameters

r = 1 − 9bΩm0a−3(1−b)

2(Ωm0
1−b a

−3(1−b) + 1
3c

′a−3 + c′′)
,

s = −bΩm0a−3(1−b)

c′′ + b
1−bΩm0a−3(1−b)

.

(32)

The parametric plot of {r, s} is obtained as shown in Fig. 6.
Using this diagnostics THDE model can be differentiated
from the ΛCDM model. The statefinder pair {r, s} for ΛCDM
is {1, 0}. Applying the limit a → ∞, shows that the {r, s} pair
for the model approaches {1, 0}. Thus this model approaches
ΛCDM asymptotically at late times. The present value of
{r, s} pair from the evolutionary trajectory of the model is
obtained as {0.983, 0.005}and {0.994, 0.002} for the best fit
parameter values using the fourth and sixth datasets, respec-
tively. For the quintessence models the {r, s} pair lies in
r < 1 and s > 0. The trajectory in its early phase and in
the present shows aforesaid behavior. Comparing the evolu-
tionary trajectories in Fig. 6 for the best fit parameter values
from the fourth and sixth datasets tells us that the distance to
the ΛCDM point from the present is larger for the larger val-
ues of coupling constant and the distance to the ΛCDM point
from the present is small for the smaller values of coupling
constant.

The statefinder evolutionary trajectory of the non interact-
ing THDE model with the Hubble horizon as IR cutoff in the
flat FRW universe in the past works [65,66,106] shows that
for 1 < δ < 2, the model is quintessenc like and approaches
ΛCDM in the future. The interacting THDE model with
the Hubble horizon as IR cutoff in flat FRW universe in
past works [49,65] shows Chaplygin gas like behavior for
1 < δ < 2 and the distance to the ΛCDM point from the
present time will be larger or smaller depending on the cor-
responding larger or smaller value of coupling constant. In

contrast to these results, the evolution of the present model
shows a quintessence behavior that finally approaches the
ΛCDM behavior without showing, Chaplygin gas like behav-
ior. In the absence of interaction, the present model shows a
behavior almost similar to ΛCDM. The effect of interaction
(i.e., with respect to the value of coupling constant) will only
increase or decrease the distance of approach to the ΛCDM
from the present. In general, for the estimated value of δ,
the present THDE model shows quintessence behavior and
will finally approach ΛCDM for the form of the interaction
considered here (devoid of the coupling constant value) and
shows ΛCDM like behavior in case of zero interaction.

In addition, we have obtained the effective equation of
state parameter using the relation,

ωe = P

ρ
= −1 − 2Ḣ

3H2 , (33)

where P and ρ are the effective pressure and energy density
respectively. Using the Eq. (12) in (33) the effective equation
of state parameter for this model takes the following form

ωe = −1 + 3Ωm0e−3(1−b)x + c′e−3x

3Ωm0
1−b e−3(1−b)x + c′e−3x + 3c′′ . (34)

The asymptotic limit of this is as follows. As x → −∞, the
effective equation of state, ωe → 0 and as x → +∞, ωe →
−1. In the former case, the decelerated epoch, the matter
component could be the dominant component, while in the
latter case, the accelerated epoch, the dominant component
is the dark energy. The derivative of ωe with respect to x is
obtained to be

ω′
e = 3

(
x3

x1

)2

− x2

x1
, (35)

where

x1 = 3Ωm0

1 − b
e−3(1−b)x + c′e−3x + 3c′′,

x2 = 9Ωm0(1 − b)e−3(1−b)x + 3c′e−3x ,

and

x3 = 3Ωm0e
−3(1−b)x + c′e−3x .

The evolutionary trajectory of the model in the phase plane
of ω′

e − ωe, the effective equation of state parameter and its
derivative, is depicted in Fig. 7. It complements the results
from statefinder analysis by showing that the trajectory is
initially confined in the quintessence region ωe > −1, ω′

e <

0 and approaches de Sitter phase in the late time as ωe → −1,
ω′
e → 0. The late time cosmic evolution of non interacting

THDE model with the Hubble horizon as IR cutoff in flat
FRW universe [65,66,106] using the ωde −ω′

de plane, where
ωde is the equation of state parameter of dark energy and ω′

de
is its evolution, shows that for 1 < δ < 2, the model shows
quintessence behavior. In the presence of interaction [49,65],
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Fig. 7 The evolutionary trajectory for interacting THDE in the ω′
e−ωe

plane for the best estimated values of the model parameters using the
fourth and sixth datasets

the model shows completely phantom behavior with higher
coupling constant values. Whereas the present THDE model
shows quintessence behavior in general and approaches de
Sitter phase in the late time in the ω′

e − ωe plane as well.

4 Dynamical analysis of interacting THDE model

The dynamical system analysis enables us to see whether the
model shows the stable evolution consistent with the obser-
vations. For the phase space analysis of the model, a set of
dimensionless variables is introduced as follows:

u = ρm

3H2 , v = ρde

3H2 . (36)

The autonomous equations in terms of phase space vari-
ables can be obtained using the Friedmann equation as,

u′ = u2 − 2uv + (3b − 1)u, (37)

v′ = (2 − δ)[2(α′ − β ′)(v2 − v) − uv((α′ − β ′) + 3β ′
2 (3b − 1))]

α′ + β ′(v − u
2 − 1)

−2v2 + uv + 2v, (38)

where prime (′) denotes differentiation with respect to x =
ln a. Both the equations are functions of u and v. By equating
u′ = 0 and v′ = 0, the real and physically meaningful critical
points obtained are (ũ, ṽ) = (0, 1), (1 − 3b, 0) and they
corresponds to the de Sitter phase and the matter dominated
phase respectively.

The behavior of the trajectory near the critical points can
be analyzed by considering the small neighbourhood of crit-
ical points as

u = ũ + ξ, v = ṽ + η. (39)

in which ξ and η are small compared to ũ and ṽ. Linearizing
the set of Eqs. (37) and (38) with respect to ξ and η, will
result in a matrix equation

[

ξ ′

η′

]

=
⎡

⎢
⎣

(
∂u′
∂u

)

(ũ,ṽ)

(
∂u′
∂v

)

(ũ,ṽ)
(

∂v′
∂u

)

(ũ,ṽ)

(
∂v′
∂v

)

(ũ,ṽ)

⎤

⎥
⎦

[

ξ

η

]

, (40)

where 2 × 2 matrix on the right hand side of the above equa-
tion is the Jacobian at the critical points corresponding to the
autonomous system and the partial derivatives are calculated
about the critical points (ũ, ṽ).

The eigenvalues of the 2 × 2 Jacobian matrix can be
obtained by diagonalizing the matrix, and its nature decides
the asymptotic stability nature of critical points. The critical
points (equilibrium points) can be source point or past attrac-
tor if the eigenvalues were positive values, or a saddle point
if at least one of the eigenvalues were of a different sign, and
future attractor if all the eigenvalues were negative values
[132].

The eigenvalues corresponding to the Jacobian matrix
are evaluated and are given in Table 2. The critical points
(0.958, 0) and (0.985, 0) for which the matter is the domi-
nant component, are unstable since their eigenvalues are pos-
itive. All trajectories diverge from (0.958, 0) and (0.985, 0),
which is clear from Figs. 8 and 9. The critical point (0, 1),

for which dark energy is the dominant component, is stable
since its eigenvalues are negative. This represents a future
stable point. The convergence of all trajectories to the future
attractor at (0, 1) is well depicted in the phase space diagram
shown in Figs. 8 and 9. Universe undergoes a de Sitter expan-
sion at this point. Our analysis shows that the system emerges
from a decelerated expansion and ends on a de Sitter epoch.
The previous works [64,107] in the dynamical system anal-
ysis of interacting and non interacting THDE with Hubble
horizon as IR cutoff also show a stable point corresponding
to the de Sitter phase in the future.

5 Thermodynamics of interacting THDE model

Any isolated macroscopic system advances to the maximum
entropy state in compliance with the constraints of the gen-

Table 2 Critical points and stability of the corresponding eigenvalues
calculated using the best estimated model parameter values

Data Critical points Eigenvalues Nature

SNIa+OHD+ (0.958, 0) (0.958, 0.045) Unstable

CMB (0, 1) (−2.958,−0.559) Stable

SNIa+OHD+ (0.985, 0) (0.985, 0.054) Unstable

CMB+BAO (0, 1) (−2.985,−0.657) Stable
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Fig. 8 The evolution of the phase space trajectories in the u − v plane
for the best estimated model parameters using SNIa+OHD+CMB
dataset

Fig. 9 The evolution of the phase space trajectories in the
u − v plane for the best estimated model parameters using
SNIa+OHD+CMB+BAO dataset

eralized second law (GSL) of thermodynamics [133]. From
the aforesaid statement, it can be deduced that the entropy S,
of isolated systems, cannot decrease, i.e., S′ ≥ 0, where the
prime means derivative with respect to the scale factor a and
it must be a convex function of the scale factor, S′′ < 0, at
least at the last juncture of the evolution so that the system
attains a stable equilibrium state.

In the present work, we consider Tsallis entropy, given
in Eq. (1) as the horizon entropy in place of the standard
Bekenstein-Hawking entropy. Then the horizon entropy of
the apparent horizon of a flat universe, SH becomes

SH = γ

(
4πc2

H2

)δ

kB, (41)

where c is the speed of light and kB is the Boltzmann constant.
The evolution of SH

γ
with respect to the scale factor is shown

in Fig. 10. The rate of change of horizon entropy with respect

Fig. 10 The evolution of SH
γ

with scale factor for the best estimated
values of the model parameters using the fourth and sixth datasets

Fig. 11 The evolution of
S′
H
γ

with scale factor for the best estimated
values of the model parameters using the fourth and sixth datasets

Fig. 12 The evolution of
S′′
H
γ

with scale factor for the best estimated
values of the model parameters using the fourth and sixth datasets

to scale factor is given by

S′
H = γ

(

4πc2
)δ

(−2δH ′

H2δ+1

)

. (42)

The second derivative of horizon entropy with respect to
the scale factor is given by

S′′
H = 2γ δ

(

4πc2
)δ

[

(2δ + 1)

(
H ′

H δ+1

)2

− H ′′

H2δ+1

]

. (43)
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The numerical simulations and analysis of the observa-
tional data on Hubble parameter shows that H ′ < 0 and
H ′′ > 0 [134–137]. Figure 11 clearly shows that the hori-

zon entropy satisfies
S′
H
γ

≥ 0, always, which in turn implies
that the horizon entropy is always increasing. Finally, in the
asymptotic limit a → ∞, the entropy S′

H approaches zero,
consequently horizon entropy attains a constant value. That
is, the horizon entropy asymptotically reaches constant at

the end de Sitter epoch. The behavior of
S′′
H
γ

with scale fac-
tor in Fig. 12 guarantees the convexity, thereby ensuring that
entropy does not grow unboundedly.

The GSL of thermodynamics stipulates that the entropy
of the horizon together with the entropy of the matter inside
the horizon must always increase with time [138]. Since it is
clear the matter entropy is much less than the horizon entropy
(smaller in the order of 35) [139,140], the total entropy of the
universe can approximately be taken as the horizon entropy
[141]. Since the horizon entropy is an increasing function as
shown in Figs. 10 and 11, the GSL is considered to be sat-
isfied. Certain past studies [55] of interacting THDE model
with Hubble horizon as IR cutoff with the form of interaction
Q = 3H(b2

1ρm + b2
2ρde), where b2

1,2 are the coupling con-
stants, and with the varying equation of state of DE, shows the
plausibility of violation of GSL depending on the evolution
of the universe. Unlike those studies, the present analysis by
considering DE as dynamical vacuum guarantees the validity
of GSL throughout the evolution of the universe.

As evident from the Eq. (16), when the interaction param-
eter b = 0, the present model reduces to a model, like ΛCDM
with an effective cosmological constant corresponding to
Ω̃de0, and the value of which is around 0.735 and 0.729
for the best estimated parameter values using the fourth and
sixth datasets, respectively. Results from various studies, like
in [142,143], support that a ΛCDM like model would sat-
isfy the GSL. Following this, it can be concluded that the
present model with b = 0 will satisfy the GSL throughout
the evolution.

6 Conclusion

Recently much interest has been arisen in the new holo-
graphic dark energy based on the non extensive entropy, Tsal-
lis entropy, and holographic principle. In the present work, we
have analyzed interacting Tsallis Holographic Dark Energy
(THDE) as dynamical vacuum to explain the recent accel-
erated cosmic expansion. We have considered the Granda–
Oliveros (GO) scale, a function of Hubble parameter and its
time derivative, as IR cutoff. The interaction between the dark
sectors has been accounted, by a simple form of interaction
term Q = 3bHρm .

An exact solution for the Hubble parameter in terms
of scale factor was obtained by analytically solving the
Friedmann equation with the energy conservation equa-
tion. The solution successfully explains the prior decel-
erated expansion and the late time accelerated expansion,
hence effectively elucidating the transition. We have imposed
the observational constraints on the cosmological param-
eters of the interacting THDE model using the Pantheon
sample, the OHD, the CMB and the BAO data. The esti-
mated current values of the Hubble parameter (H0 =
68.867+1.199

−1.159 km s−1 Mpc−1 from the fourth dataset and

H0 = 68.672+1.196
−1.141 km s−1 Mpc−1 from the sixth dataset)

and the matter density parameter (Ωm0 = 0.271+0.022
−0.015 from

the fourth dataset and Ωm0 = 0.281+0.017
−0.015 from the sixth

dataset) are consistent with the observational results. The
value of the coupling constant is positive, and hence it obeys
the Le Chatelier–Braun principle.

The cosmological evolution of the deceleration parameter
shows that the end phase will be a de Sitter one, q → −1
as z → −1 and the transition from prior matter dominated
epoch to the late THDE dominated epoch is found to occur
at a redshift around zt ∼ 0.8. The studies on the expansion
profile of the THDE density and the matter density explains
the dominating and diminishing nature of the matter density
in the early phase and late phase, respectively, and along
with that, similar nature of the evolution of THDE in the
early phase removes the coincidence problem. The universe’s
age that can be intuited from the interacting THDE model
is around 14 Gyrs from the best estimated values of model
parameters. Recent observations do subsistence the results.

The diagnosis of the interacting THDE model is carried
out using the statefinder analysis and the ω′

e − ωe pair. The
evolutionary trajectory of the interacting THDE model shows
that the model is distinguishably different from the standard
ΛCDM and shows a quintessence behavior in the early phase
and approaches ΛCDM in the far future. The trajectories of
the ω′

e−ωe affirm the results from the statefinder diagnostics.
The critical points obtained from the phase space analysis of
the model shows that the de Sitter phase is a stable equilib-
rium, and matter dominated phase is an unstable equilibrium.
Thus the dynamical system analysis of the interacting THDE
model portrays a consistent background evolution of the uni-
verse from the prior decelerated phase to the late accelerated
phase.

The thermodynamical analysis of the THDE model shows
that the horizon entropy increases with cosmic time and
achieve the maximization condition during the late epoch. It
can be concluded that the generalized second law of thermo-
dynamics remains valid in the dynamical vacuum treatment
of the model by considering the dominant contribution of the
horizon entropy to the total entropy of the universe. It is to
be noted that, for zero interaction parameter, the model will
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reduce to a ΛCDM like one, where the validity of the laws
of thermodynamics is guaranteed.
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