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Abstract We discuss the physical features of two recent
classes of analytical solutions of the Einstein equations
sourced by an exotic perfect fluid with equation of state
P = −ρ/5. These geometries depend on up to four parame-
ters and are static and spherically symmetric. They describe
compact spaces with naked central singularities.

1 Introduction

Recently, two new families of static and spherically symmet-
ric solutions of the Einstein equations (without cosmologi-
cal constant) were proposed by Semiz [1]. The matter source
is a perfect fluid with constant barotropic equation of state
P = −ρ/5, where ρ and P are the fluid energy density and
pressure, respectively [1]. One would like to understand the
physical nature of these solutions and assess whether they
can be useful to model regions of stars, at least as toy mod-
els. The equation of state P = −ρ/5 is clearly unphysical,
as one would be hard put to find realistic situations described
by this fluid, but dark energy-like stars (and even phantom
energy stars [2]) have been studied in the literature [3–10],
as well as halos of exotic energy [11]. Although dark energy
has pressure P < −ρ/3 and there are all indications that, if
it is responsible for the present acceleration of our universe,
it has equation of state P � −ρ [12], our situation with
P = −ρ/5 could still serve as a toy model for hypotheti-
cal objects formed by a negative pressure fluid. Moreover,
from the mathematical point of view, simple solutions of the
Einstein equations describing perfect fluids are relatively dif-
ficult to find. Although there are over one hundred analytical
solutions of the Einstein equations sourced by perfect (and
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even imperfect) fluids that constitute potential candidates to
model relativistic stars, or at least stellar regions [13,14],
almost all of them turn out to be unphysical for one reason
or another [14]. Here we examine the new solutions of [1]
to understand their physical features (or lack thereof). These
geometries are written in Buchdahl coordinates but it is more
instructive from the physical point of view to rewrite them in
terms of Schwarzschild-like coordinates, which we do here.

We follow the notation of Ref. [15]: the metric signature
is −+++ and we use units in which the speed of light in
vacuo c and Newton’s constant G are unity, while κ ≡ 8πG
to keep with Ref. [1].

Semiz’s proposal consists of a four-parameter family of
solutions of the Einstein equations with zero cosmological
constant

Rab − 1

2
gabR = κ Tab , (1)

where Rab is the Ricci tensor of the metric gab and R is
the Ricci scalar. The matter source is a perfect fluid with
stress-energy tensor

Tab = (P + ρ) uaub + Pgab , (2)

where ua is the fluid 4-velocity and the equation of state is
P = −ρ/5 [1]. These geometries are spherically symmetric
and static in the appropriate coordinate range. There are two
new classes of solutions in [1]: the most general family is
parametrized by four constants (C0,C1,C2,C3) and has line
element

ds2 = −3C1 (C0 + C1r)

f (r)
dt2 + f (r)

3C1 (C0 + C1r)
dr2

+ f 2(r)

9C2
1

dΩ2
(2) , (3)
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with C1 �= 0, C0 + C1r �= 0, and where

f (r) = 3 (C1C2 + r) + C3 (C0 + C1r)
3 , (4)

while dΩ2
(2) ≡ dϑ2 + sin2 ϑ dϕ2 is the line element on the

unit 2-sphere. The energy density is [1]

ρ(r) = −5P(r) = −45κ C3
1C3 (C0 + C1r)2

f 2(r)
(5)

and is non-negative provided that

C1C3 ≤ 0 , (6)

which we assume in the following, while the limiting situa-
tion given by C3 = 0 corresponds to vacuum. The solution
for C1 = 0 is not obtained continuously from Eqs. (3) and
(5) in the limitC1 → 0 but requires a separate discussion [1].
This second family is parametrized by the remaining three
constants [1]: we begin by analyzing this second family (or
“special solution” in the nomenclature of [1]) in the following
section.

2 Special solution C1 = 0

This 3-parameter (C0,C2,C3) family of solutions is
described by the line element [1]

ds2 = − C2
0

g(r)
dt2 + g(r)

C2
0

dr2 + g2(r)

C2
0

dΩ2
(2) (7)

with C0 �= 0 and where

g(r) = C0 (C2 + C3r) − r2 (8)

ρ(r) = −5P(r) = 5κ C2
0

g2(r)
. (9)

In order to preserve the metric signature it must be g(r) > 0
(if g(r) becomes negative, the coordinates t and r switch
their timelike and spacelike natures, as in the Schwarzschild
geometry at the horizon r = 2m).

We rewrite the line element (7) in terms of the areal radius
R(r) = g(r)/|C0|. This relation is inverted by first obtaining

r2 − C0C3r + (|C0|R − C0C2) = 0 (10)

and solving for

r(R) = 1

2

(
C0C3 ±

√
C2

0C
2
3 + 4 (C0C2 − |C0|R)

)
. (11)

The argument of the square root in the right-hand side must
be non-negative to keep r real, which gives the limitation

0 ≤ R <
C2

0C
2
3 + 4C0C2

4|C0| ≡ Rmax (12)

on the range of the areal radius. The latter begins from zero at

r1 = 1
2

(
C0C3 −

√
C2

0C
2
3 + 4C0C2

)
, increases to the max-

imum

Rmax = R

(
C0C3

2

)
, (13)

and then decreases until it vanishes again at r2 = 1
2 (C0C3+√

C2
0C

2
3 + 4C0C2

)
. The two coordinate charts r1 ≤ r ≤

C0C3/2 and C0C3/2 ≤ r ≤ r2 cover the same physical
region 0 ≤ R ≤ Rmax. We restrict ourselves to r1 ≤ r ≤
C0C3/2, in which dR/dr > 0, by choosing the negative sign
in Eq. (2.5).

We write

C0C3 − 2r = ∓
√
C2

0C
2
3 + 4 (C0C2 − |C0|R) (14)

and, substituting the relation between differentials

dr = |C0|
C0C3 − 2r

dR (15)

and using Eq. (14), the line element (7) becomes

ds2 = −|C0|
R

dt2 + dR2

4
(
Rmax
R − 1

) + R2dΩ2
(2) . (16)

The equation ∇c R∇c R = gRR = 0 locating the apparent
horizons (see, e.g., [16]) has Rmax as the only root, which is
a single root and therefore there are no apparent horizons for
R < Rmax (we discuss the physical meaning of the formal
root Rmax below).

The energy density [1]

ρ(R) = 5κ C2
0

g2(r)
= 5κ

R2 (17)

and the pressure P = −ρ/5 (which are always non-zero)
diverge at the origin R = 0, which corresponds to r = r1,
together with the Ricci scalar

R = −κ T = κ (ρ − 3P) = 8κ

5
ρ = 8κ2

R2 , (18)

therefore there is a naked spacetime singularity at the origin
R = 0.
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The Misner-Sharp-Hernandez mass MMSH(R) defined in
spherical symmetry by [17,18]

1 − 2MMSH

R
= ∇c R∇c R = gRR (19)

reads

MMSH(R) = 1

2
(5R − 4Rmax) (20)

for the geometry (16) and is negative in the region 0 <

R < 4Rmax/5 around the naked singularity. This fact is
not surprising: it has been argued that the Misner-Sharp-
Hernandez mass (to which the Hawking-Hayward quasilo-
cal mass [19,20] reduces in spherical symmetry [21]) is
misbehaved near naked singularities, Cauchy horizons, or
regions with the wrong asymptotic flatness [22,23]. This is
the case, for example, for the inner region of the Reissner–
Nordström black hole near the Cauchy horizon, for the entire
Schwarschild spacetime with negative mass, and for the
Fisher–Janis–Newman–Winicour–Buchdahl–Wyman scalar
field solution of the Einstein equations [24–31] for the param-
eter values for which there is a naked singularity [32].

Let us come to the maximum value Rmax of the areal
radius which, in spite of being a formal root of the equa-
tion ∇c R∇c R = 0, does not describe a horizon but is
instead the antipode of the origin R = 0 in a compact space.
To see this fact, it is instructive to study the behaviour of
radial null geodesics in this geometry. Consider the outgoing
(+) and ingoing (−) congruences of radial null geodesics
with tangents lμ(±) = dxμ/dλ, where λ is an affine param-
eter along these curves. These tangents have components
lμ(±) = (

l0, l1, 0, 0
)

and the normalization l(±)
a la(±) = 0 yields

l1(±) = ± 2

R

√
(Rmax − R) |C0| l0(±) ; (21)

since a null vector can be rescaled by a function, we can
choose l0 = 1 (which means choosing the coordinate time t
as the affine parameter along these null geodesics), obtaining

lμ(±) =
(

1,± 2

R

√
(Rmax − R) |C0|, 0, 0

)
. (22)

We then have the first order equations

dt

dλ
= 1 (23)

R√
Rmax − R

dR

dλ
= ±2

√|C0| , (24)

which integrate to

t (λ) = λ − λ0 , (25)√
Rmax − R (R + 2Rmax) = ∓3

√|C0| (λ − λ0) (26)

where λ0 is an integration constant. Unfortunately this rela-
tion cannot be inverted explicitly.

Since

dR

dt
= dR

dλ
= ±2

√|C0|
√
Rmax − R

R
(27)

(with the upper sign for outgoing and the lower one for
ingoing radial geodesics), near the origin R = 0 it is
dR/dt ∼ +∞ for outgoing and dR/dt ∼ −∞ for ingoing
geodesics. Furthermore, dR/dt = 0 at R = Rmax. Outgoing
radial null geodesics starting near the origin do so extremely
fast but they slow down as they approach the maximum
possible radius Rmax, which can only be reached with zero
velocity (see Fig. 1). A null geodesic starting exactly at Rmax

does so with zero velocity dR/dλ and remains there. Ingo-
ing radial null geodesics starting near the maximum radius
Rmax are slow and accelerate as they get closer to the central
naked singularity, which they approach with infinite velocity
dR/dλ → −∞.

We can also study radial timelike geodesics with tangents
uμ = (

u0, u1, 0, 0
)
. The normalization ucuc = −1 gives

u1 = ± 2√
R

√
(Rmax − R)

[ |C0|(u0)2

R
− 1

]
, (28)

with the upper sign for outgoing and the lower one for ingoing
geodesics. The timelike Killing vector ξa = (∂/∂t)a guaran-

Fig. 1 The areal radius R versus the affine parameter λ along the radial
null geodesics of the geometry (16), for the parameter values C0 =
C2 = 2, C3 = 3, and λ0 = 1. Outgoing geodesics slow down as they
approach Rmax, where they stop. Ingoing geodesics starting near Rmax
do so extremely slowly but accelerate as they approach R = 0
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tees the conservation of the energy per unit mass of the test
particle E along these geodesic curves:

E = −gab ξaub = |C0|u0

R
= const. , (29)

whereu0 > 0 because these curves are future-oriented, hence
E is strictly positive. Equation (28) then gives

u1 = ± 2√
R

√
(Rmax − R)

(
E2R

|C0| − 1

)
, (30)

which tells us that:

• For a given energy E determined by the initial condition(
R0, Ṙ0

)
, radial motion is only possible if

R > Rmin ≡ |C0|
E2 (31)

(otherwiseu1 becomes imaginary). Ingoing radial motion
stops at Rmin and a test particle cannot approach the ori-
gin, which is consistent with the fact that, according to
Eq. (29), u0 = ER/|C0| → 0 as R → 0.

• Outgoing radial motion stops at Rmax, where u1 vanishes
for both outgoing and ingoing radial geodesics, and a par-
ticle starting initially at Rmax remains there irrespective
of its initial energy.

• Since R is limited by Rmax, the possible energies are
bounded from below,

E >

√
|C0|
Rmax

= 2|C0|√
C2

0C
2
3 + 4C0C2

≡ Emin ; (32)

particles with energy below, or equal to, the minimum
threshold Emin do not move.

2.1 Case C2 �= 0, C3 = 0

In this case we are left with only two parameters (C0,C2).
Now g(r) = C0C2 − r2, which requires

C0C2 > 0 , 0 ≤ r ≤ √
C0C2 . (33)

The areal radius is

R(r) = g(r)

|C0| = C0C2 − r2

|C0| (34)

with r = 0 corresponding to R = C0C2/|C0|, while
r = √

C2 sign(C0) corresponds to the origin R = 0 of the

physical radial coordinate. The areal radius R(r) varies in
the range

0 ≤ R ≤ C2 sign(C0) = |C2| (35)

(where, in the last equality, we used the fact that C0C2 > 0)
and is a decreasing function of r since dR/dr = −2r/|C0| is
always negative in the allowed range. Inverting the relation
between radial coordinates, one obtains

r(R) = √
C0C2 − |C0|R (36)

which, in conjunction with

dr = − |C0|dR
2
√
C0C2 − |C0|R (37)

yields the line element

ds2 = −|C0|
R

dt2 + dR2

4
( |C2|

R − 1
) + R2dΩ2

(2) . (38)

This geometry is the same as that of the previous caseC1 = 0,
C3 �= 0 given by the line element (16), but now Rmax = |C2|.
Again, the energy density is non-zero and the Ricci scalar
diverges at the origin R = 0.

2.2 Case C2 = 0 ,C3 �= 0

For these parameter values, g(r) = r (C0C3 − r) requires
C0C3 to be positive and, therefore, we have the range 0 ≤
r ≤ C0C3 of the Buchdahl radius. Correspondingly, the areal
radius

R(r) = r (C0C3 − r)

|C0| (39)

varies in the interval

0 ≤ R ≤ |C0|C2
3

4
, (40)

beginning from zero at r = 0, increasing to the maximum

Rmax ≡ R

(
C0C3

2

)
= |C0|C2

3

4
, (41)

and then decreasing until it vanishes again at r = C0C3.
There are two coordinate charts 0 ≤ r ≤ C0C3/2 and
C0C3/2 ≤ r ≤ C0C3 covering the same physical region
0 ≤ R ≤ Rmax and we restrict ourselves to the former, in
which dR/dr > 0. Equation (39) yields

r2 − C0C3r + |C0|R = 0 (42)
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with roots

r(R) = 1

2

(
C0C3 ±

√
C2

0C
2
3 − 4|C0|R

)
, (43)

where we choose the lower sign for consistency with
dR/dr > 0 and 0 ≤ r ≤ C0C3/2. Then g(r) = |C0|R
and

dr = |C0|√
C2

0C
2
3 − 4|C0|R

dR (44)

give the line element

ds2 = −|C0|
R

dt2 + dR2

4
(
Rmax
R − 1

) + R2dΩ2
(2) (45)

which is the same as the line element (16), but with Rmax

now given by Eq. (41). The Ricci scalar

R = 8κ

5
ρ = 8κ2

R2 = 8κ2C2
0

r2 (C0C3 − r)2 , (46)

diverges at the origin R = 0 (which corresponds to r = 0
in the chart with dR/dr > 0), therefore there is a naked
spacetime singularity there.

3 General solution C1 �= 0

The line element for the generic family of Semiz solutions
is (3) [1]. The presence of four parameters with relatively
wide ranges now makes it difficult to reach definite conclu-
sions and we focus on special cases.

3.1 C3 = 0 is Schwarzschild

When C3 = 0, the energy density (5) and the pressure
P = −ρ/5 vanish identically and this spacetime is empty.
Since the geometry is also spherically symmetric and asymp-
totically flat (as we are going to show) it must be the
Schwarzschild one, according to the Jebsen-Birkhoff theo-
rem [15]. In fact, we have f (r) = 3 (C1C2 + r), the areal
radius is

R = C1C2 + r

|C1| , (47)

and

C0 + C1r = C1|C1|R + C0 − C2
1C2 , (48)

then dr = |C1|dR, yielding the line element

ds2 = −C2
1 R + (

C0 − C2
1C2

)
sign(C1)

R
dt2

+ C2
1 R

C2
1 R + (

C0 − C2
1C2

)
sign(C1)

dR2 + R2dΩ2
(2)

(49)

� −dt̄2 + dR2 + R2dΩ2
(2) as R → +∞ , (50)

where dt̄ ≡ |C1|dt . This geometry is asymptotically flat: by
introducing the constant

m ≡ 1

2C2
1

(
C2

1C2 − C0

)
sign(C1) (51)

(which is not necessarily positive) and rescaling the time
coordinate according to t → t̄ = |C1| t , the line element (49)
is written as the Schwarzschild one

ds2 = −
(

1 − 2m

R

)
dt̄2 + dR2

1 − 2m/R
+ R2dΩ2

(2) (52)

describing a black hole if m > 0 and a naked central singu-
larity if m < 0.

3.2 Special case C2 = 0

We have three parameters (C0,C1,C3) with C1C3 ≤ 0 and
now f (r) = 3r + C3 (C0 + C1r)3; the areal radius is

R(r) = 3r + C3 (C0 + C1r)3

3|C1| . (53)

We have

dR

dr
= 1

|C1|
[
1 − |C1C3| (C0 + C1r)

2
]

, (54)

which is positive for

∣∣∣∣r + C0

C1

∣∣∣∣ <
1

|C1|√|C1C3| . (55)

To proceed, let us consider the situation r ≥ −C0/C1, in
which case R increases in the interval

rmin ≡ −C0

C1
≤ r ≤ 1

|C1|√|C1C3| − C0

C1
≡ rmax (56)

with Rmin ≤ R ≤ Rmax and

Rmin ≡ R (rmin) = −C0

C1|C1| (57)

Rmax ≡ R (rmax) = 1

3|C1|
[

3

|C1|√|C1C3| − 3C0

C1
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+C3

(
sign(C1)√|C1C3|

)3
]

= 1

3|C1|
[

3 + sign(C1C3)

|C1|√|C1C3| − 3
C0

C1

]

=

⎧⎪⎪⎨
⎪⎪⎩

1
3|C1|

(
2

|C1|√|C1C3| − 3C0
C1

)
if C1C3 < 0 ,

1
C2

1

[
1√|C1C3| − C0 sign(C1)

]
if C1C3 = 0 .

(58)

We have again a compact space. Rewriting the line ele-
ment (3) in terms of the areal radius produces a cumbersome
expression that does not depend only on R but contains also
r(R) because the relation R(r) cannot be inverted explicitly.

3.3 The even more special case C0 = C2 = 0

In this case we have only two parameters (C1,C3), f (r) =
r
(
3 + C3

1C3r2
)
, and the areal radius is

R(r) = f (r)

3|C1| = 3r + C3
1C3r3

3|C1|
= r

[
3 + (C1C3)C2

1r
2
]

3|C1| ≤ r

|C1| , (59)

where the last inequality follows from C1C3 ≤ 0. Since

dR

dr
= 1 − |C1C3|C2

1r
2

|C1| ≥ 0 ∀r ∈
(

0,
1

|C1|√|C1C3|
)

,

(60)

the areal radius is an increasing function of r in the interval(
0, 1

|C1|√|C1C3|
)

with R(0) = 0, is maximum at 1
|C1|√|C1C3|

and then decreases, vanishing again at r =
√

3
|C1C3|C2

1
. This

compact space corresponds to the range

0 ≤ R ≤ Rmax = 2

3C2
1

√|C1C3|
(61)

of the areal radius, with R � r/|C1| as r → 0+. Equa-
tion (59) is inverted by first obtaining

C3C
3
1r

3 + 3r − 3|C1|R = 0 (62)

and then solving for

r = [A(R)]1/3

2C3C2
1

− 2

C1 [A(R)]1/3 (63)

where

A(R) =
(

12|C1|C1R + 4
√

9C4
1 R

2 + 4

)
C2

1C
2
3 , (64)

while the two remaining roots are imaginary. Substituting the
relation between differentials

dr = |C1|
1 + C3C3

1r
2
dR (65)

and using

1 + C3
1C3r

2 = [A(R)]2/3

4C1C3
+ 4C1C3

[A(R)]2/3 − 1 (66)

yield the line element

ds2 = − 1

|C1|R

{
[A(R)]1/3

2C3
− 2C1

[A(R)]1/3

}
dt2

+C2
1 |C1|R
B(R)

dR2 + R2dΩ2
(2) , (67)

where

B(R) = [A(R)]5/3

32C2
1C

3
3

− 32C3
1C

2
3

[A(R)]5/3
+ 5 [A(R)]1/3

2C3
− 3A(R)

8C1C2
3

+24C2
1C3

A(R)
− 10C1

[A(R)]2/3 . (68)

Again, the many combinations of parameters and the cumber-
some metric coefficients do not lend themselves to a straight-
forward and transparent analysis, but it is clear that also in
this case we have a compact 3-space of finite extent.

Using (3.20), the energy density (5) reduces to

ρ(R) = −5P(R) = 5R
8κ

= −5κ C3
1C3r2

R2

≈ − 5κ

R2

[
(C1C3)

1/3 + 1

(C1C3)1/3 − 2

]
,

(69)

as R → 0+. Hence, ρ and P are singular at the origin,
together with the Ricci scalar R and

RabRab = 28κ2

25
ρ2 . (70)

As R → 0+, we have the asymptotics

A(R) ≈ 8C2
1C

2
3 , (71)

B(R) ≈
(
C4

1C3

)1/3 − 7

2
(
C1C4

3

)1/3 + 5

(
C2

1

C3

)1/3

− 3C1

+ 3

C3
≡ B0 , (72)

g00 ≈ − 1

|C1|R

⎡
⎣

(
C2

1

C3

)1/3

−
(
C1

C2
3

)1/3
⎤
⎦ , (73)

g11 ≈ C2
1 |C1|R
B0

, (74)
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and g00 → ∞ while g11 → 0 as R → 0.

4 Conclusions

We have studied the nature of the new classes of static
and spherically symmetric solutions of the Einstein equa-
tions given recently in Ref. [1] when the matter source is a
perfect fluid with equation of state P = −ρ/5. The ana-
lytical solutions of Ref. [1] that we analyzed (except for
the Schwarzschild solution obtained for C3 = 0) describe
compact spaces with naked central singularities. The “gen-
eral” family of solutions (3) and (5) always reduces to
Schwarschild when the parameterC3 vanishes. In most other
situations, the presence of three or four parameters and/or the
cubic nature of the function R(r) hamper a complete descrip-
tion of the geometry. However, in all cases analyzed, except
for the empty spacetime associated with C3 = 0, we find a
compact space of finite volume (a feature mentioned in [1]).

The fact that the geometry, together with the energy den-
sity and the pressure, is singular at R = 0 is not necessar-
ily the death knell for these solutions. In fact, it is deemed
acceptable for fluid solutions of the Einstein equations to only
model limited regions of relativistic stars, a procedure that is
reflected in the authoritative Ref. [13] and in the more spe-
cialized literature. Indeed, even Newtonian stars are rarely
modelled with a single fluid, corresponding to the fact that
different regions at different temperatures and densities are
described by different equations of state unless the stellar
material is well mixed, which only happens in certain types
of stars. Therefore, there is in principle the (physically well
motivated) possibility of excising the singularity and replac-
ing it with a more realistic geometry sourced by matter with a
different equation of state. However, if one wants to describe
a stellar interior with this exotic fluid, one must match it
with an asymptotically flat Schwarzschild exterior. The fact
that the solutions of [1] describe compact spaces points to
a possible analogy with the Oppenheimer-Snyder model of
gravitational collapse to a black hole [33]. In this model, a
compact, positively curved Friedmann-Lemaître-Robertson-
Walker universe collapsing to a Big Crunch is matched to
a Schwarzschild exterior on the surface of a 2-sphere of
symmetry [33], satisfying the Darmois-Israel junction con-
ditions [34,35]. However, in the Oppenheimer-Snyder model
the matching is possible because the collapsing interior uni-
verse is filled by a dust with zero pressure everywhere. It is
well known that the matching to a Schwarzschild exterior
can only be done on a surface on which the pressure P(R)

vanishes, otherwise the junction conditions are violated and
there is a material layer on the matching surface, which is
certainly not an ingredient of realistic stellar models. (This
fact is highlighted in many studies of relativistic fluid balls
[36–43] and fireballs [44].) However, for the fluid solutions

of [1] under discussion, the pressure P(R) never vanishes.
Therefore, the best that one could do is modelling a lim-
ited region of a stellar interior with the Semiz solutions for
P = −ρ/5. To be physical, this region should correspond to
a positive Misner-Sharp-Hernandez mass MMSH and, there-
fore, should be sufficiently far away from the singularity at
R = 0. The excised region containing the origin should be
modelled with a different, non-singular, solution of the Ein-
stein equations.1 Then, the w = −1/5 solution should be
matched continuously with another “intermediate” solution
with non-vanishing pressure on a surface of constant radius,
and the pressure in this layer should then go to zero at larger
radii to make it possible to match it to a Schwarzschild exte-
rior, satisfying again the Darmois-Israel junction conditions.
In the absence of a specific need for such an involved “star”
model in astrophysics, we will not pursue this object fur-
ther, limiting ourselves to pointing out the constraints for
such a construction. Probably some of the phenomenology
unveiled here for the geometries found in [1] also applies to
other classes of perfect fluid solutions of the Einstein equa-
tions. Whether this is the case will be established in future
work.
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