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Abstract The aim of this paper is to discuss the theory
of relativistic charged double polytropes with generalized
polytropic equation of state. A general framework is pre-
sented to develop the Lane-Embden equations for spherically
symmetric charged configuration. The stability of developed
polytropes is investigated by means of Tolman mass. We will
also examine the structure of these polytropes under various
constraints.

1 Introduction

In astronomy, polytropic equation of state (EoS) is used
extensively in the study of stellar structure of compact objects
(CO) [1,2]. The idea of polytropes is crucial because of the
availability of a simple EoS and the resulting Lane–Emden
equation (LEe), which helped us in understanding a variety of
phenomena related to CO. Chandrasekhar [1] explained how
Newtonian polytropes emerge from the principles of thermo-
dynamics for polytropic spheres. Tooper [3,4] developed the
fundamental formalism of polytropes for compressible flu-
ids. He extended his discoveries to an adiabatic process and
set up the basic structure for the development of relativistic
polytropes.

Polytropes are widely used for different kinds of analy-
sis in general relativity (GR) by utilizing the LEe, which is
obtained from hydrostatic equilibrium configuration of stars.
Herrera et al. [5] examined anisotropic polytropes with a
conformally flat condition obtained relativistic LEe. Crack-
ing of anisotropic polytropes is discussed by Herrera et al.
[6,7]. The existence of charge plays very significant role in
understanding the dynamics of celestial objects. Azam et al.
[8–11] studied the existence of cracking points in charged
CO models. The electromagnetic field, as well as the EoS,
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chosen, are found to have an impact on the stability of these
objects. Noureen et al. [12] examined the impact of charge
and anisotropy with the help of generalized polytropic equa-
tion of state (GPEoS) in CO.
The GPEoS depends is a combination of linear EoS and reg-
ular polytropic EoS and can be written as

P = α1ρ1 + κρ
�
1 = α1ρ1 + κρ

1+ 1
ar

1 , (1)

where the isotropic pressure, mass (baryonic) density are
denoted by P and ρ1, the polytropic constants, polytropic
exponents, and polytropic index are referred to as κ , �, and
ar , respectively.
The existence of pressure anisotropy is a very common issue
in CO (see [13–15] and references therein) as it occurs due
to unbalance pressure stresses. Furthermore, system vari-
ables such as dissipation, energy density inhomogeneity, and
shear cause the isotropic pressure state to become unstable,
as demonstrated recently in [16]. We propose to use the same
approach as in [13,17], expecting that both radial and tan-
gential pressure fulfill GPEoS as

Pr = α2ρ + κrρ
�r = α2ρ + κrρ

1+ 1
ar , (2)

P⊥ = α2ρ + κ⊥ρ�⊥ = α2ρ + κ⊥ρ
1+ 1

a⊥ , (3)

where energy density is represented by ρ. This plan of this
work is as follows: Sect. 2 is devoted for the derivation of
Einstein–Maxwell field equations and development of hydro-
static equilibrium condition. In Sect. 3, two different cases of
relativistic polytropes will be discussed. We will examine the
theory of relativistic double polytropes in Sect. 4. In Sect. 5,
we will conclude our results and discussion.
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2 Einstein–Maxwell field equations

A static spherically symmetric charged anisotropic fluid dis-
tribution is considered and the line element is given by

ds2 = eν(r)dt2 − eλ(r)dr2 − r2(dθ2 + sin2 dφ2), (4)

where ν and λ are function of r only. The energy momentum
tensor for anisotropic fluid is given by

Tkl = (ρ + P⊥)ukul − P⊥gkl + (Pr − P⊥)sksl , (5)

where, uk = (e− ν
2 , 0, 0, 0) and Sk = (0, e− λ

2 , 0, 0) are
defined as the four-velocity and four-vectors respectively
having the properties skuk = 0, sksk = −1. The electro-
magnetic part of energy–momentum tensor is defined as

Tkl = 1

4π

(
F f
k Fl f − 1

4
F f gF f ggkl

)
, (6)

where Fkl = ϕl,k − ϕk,l , is the Maxwell field tensor and it
satisfy the following relations

Fkl
;l = c1 J

k, F[kl,m] = 0, (7)

with four potentials is denoted by ϕk , four current is repre-
sented by J k and magnetic permeability is c1. In comoving
coordinates, following identities must be satisfied

ϕk = ϕ(r)δ0
k , J k = σuk , k = 0, 1, 2, 3. (8)

In the above relations ϕ is scalar potential and the charge
density is denoted by σ . Then from Eq. (7)

ϕ′′ +
(2

r
− ν′

2
− λ′

2

)
ϕ′ = 4σπe

ν+λ
2 , (9)

where the prime denotes derivative with respect to r and

ϕ′ = q(r)

r2 e
ν+λ

2 . (10)

The entire charge inside the sphere is represented by q(r) =
4π

∫ r
0 μe

λ
2 r2dr and Einstein-Maxwell field equations for the

line element given in Eq. (4) are given by

λ′re−λ + (1 − e−λ) = 8πr2ρ − q2r−2, (11)

ν′re−λ − (1 − e−λ) = 8πr2Pr − q2r−2, (12)

r4e−λ
[

− ν′λ′

4
+ ν′′

2
+ ν′2

4
+ λ′ − ν′

2r

]
= 8πr4P⊥ + q2,

(13)

The external metric is considered as Reissner–Nordström
metric. Also for smooth matching of interior and exterior
regions, following conditions must be satisfied [18–21]

eν∑ =
(

1 − 2M

r∑
+ Q2

r2∑

)
= e−λ∑

,

q(r) = Q m(r) = M, Pr∑ = 0. (14)

where M is total mass, r∑ total radius and Q is the charge on

sphere. Now using ν′ = 8π Prr4−2q2+2mr
r(r2−2m+q2)

, with mass function

e−λ = 1− 2m
r + q2

r2 , the conservation law’s ∇kT kl = 0, leads
to modified Tolman–Oppenheimer–Volkoff equation

P ′
r − 2

r

(
� + qq ′

8πr3

)
= −4πr4Pr − q2 + mr

r(r2 − 2mr + q2)
(ρ + Pr ),

(15)

with boundary conditions

m(0) = 0, m
(
r∑

)
= M, Pr

(
r∑

)
= 0. (16)

In the above equation � = (P⊥ − Pr ), is the anisotropy
factor. In the next section, the development of LEe will be
discussed with the help of GPEoS.

3 Generalized relativistic polytopes

In this section, we will briefly describe the theory generalized
polytropes for two different cases of GPEoS.

3.1 Case 1

For case 1, the GPEoS is written is

Pr = α2ρ + κρ�r , (17)

and we define a variable χ as

ρ = ρcχ
ar , (18)

where ρc shows the central energy density, then Pr can be
written as

Pr = α2ρcχ
ar + κρ

�r
c χ1+ar = α2ρcχ

ar + hrcχ
1+ar , (19)

with hrc = κρ
�r
c , Also the derivative Pr is given by

P ′
r = α2ρcarχ

ar−1χ ′ + hrc(1 + ar )χ
ar χ ′, (20)

and as a result of which Eq. (15) can be written as

2arρcα2
χ ′

χ
+ 2hrc(1 + ar )χ

′

− 4

rχar

(
� + qq ′

8πr3

)
+ ν′(ρc + α2ρc + hrcχ) = 0,

(21)

we define jc = hrc
ρc

, which implies

2arα2
χ ′

χ
+ 2 jc(1 + ar )χ

′

− 4

rρcχar
(� + qq ′

8πr3 ) + ν′(1 + α2 + jcχ) = 0, (22)
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and ν′ can be calculated as

ν′ = 4(� + qq ′
8πr3 )

rρcχar (1 + α2 + jcχ)

−2 jc

(
arα2

χ jc
+ (1 + ar )

)
χ ′

1 + α2 + jcχ
, (23)

The integration of Eq. (23) results in following expression

ν = νc + 4

ρc

∫ r

0

(� + qq ′
8πr3 )dr

rχar (1 + α2 + jcχ)

−2

(
arα2

χ jc
+ (1 + ar ) log

(
1 + α2 + jcχ

1 + α2 + jc

))
, (24)

also the boundary conditions from Eq. (14) can be used to
obtain νc as

νc = log

( 1 − 2M
r∑ + Q2

r2

(1 + α2 + jc)
2
(
ar α2
χ jc

+(1+ar )
)
)

− 4

ρc

∫ r∑

0

(� + qq ′
8πr3 )dr

rχar (1 + α2 + jcχ)
, (25)

now by using Eq. (25) into Eq. (24), we obtain

ν = log

( 1 − 2M
r∑ + Q2

r2

(1 + α2 + jcχ)
2
(
ar α2
χ jc

+(1+ar )
)
)

− 4

ρc

∫ r∑

0

(� + qq ′
8πr3 )dr

rχar (1 + α2 + jcχ)
. (26)

Also by using mass function and Eq. (23) into Eq. (12) yields

dm

dr
(α2 + jcχ) + m

r
− q2

r2

+
r dχ
dr

(
jc

(
arα2
χ jc

+ (1 + ar )
))

(1 − 2m
r + q2

r2 )

(1 + α2 + jcχ)

−
2

(
� + qq ′

8πr3

) (
1 − 2m

r + q2

r2

)

ρcχar (1 + α2 + jcχ)
= 0. (27)

Now we define dimensionless variables as

ψ = m

4πρc(α3)3 , r = α3x,

(α3)
2 = ε(1 + ar ) jc

4πρc
, (28)

then Eq. (27) can be written as

ψ ′x(α2 + jcχ) + ψ − q2

4πρcx
+

(
xχ ′

− 2(� + qq ′
8πr3 )

jcρcχar
( arα2

χ jc
+ (1 + ar )

)
)( 1

1 + α2 + jcχ

)

×
( xarα2

4πρcχ
+ εx − 2marα2

4πρcχ
− 2 jc(1 + ar )ψ

+q2

x

( jc
4πρc

(arα2

χ jc
+ (1 + ar )

)))
= 0, (29)

where ψ ′ = x2χar and either ε = +1 for ar > −1 or
ε = −1 for ar < −1.
From this point onward prime ”′” represents the derivative
with respect to variable x . Also by taking jc = qc

ρcc2 , we
obtain

ψ ′xα2 + ψ − q2

4πρcx

+ 1

1 + α2

(
xχ ′ − 2(� + qq ′

8πr3 )

hrcχar
(
arα2
χ jc

+ (1 + ar )
)
)

×
(
x + xarα2

4πρcχ
− 2α2ψar

χ
+ q2arα2

4πρcxχ

)
= 0. (30)

Now using ψ ′ = x2χar , we get

χar + q2

4πρcx4 + 3α2χar +
( 1

1 + α2

)[
χ ′′

+2χ ′
x

− 2

hrcxχar (1 + ar )

×
(�

x
+ �′ − ar�χ ′

χ
+ qq ′

8πr3

( 1

x
− arχ ′

χx

))

+ α2ar
4πρcx2 (2xχχ ′ + x2χ ′′χ−1

−x2(χ ′)2χ−2) − 2arα2

(1 + ar )4πρchrcx2

×
(
xχ−ar−1�′ + �χ−ar−1

+x�χ−ar−2(−ar − 1)χ ′ + qq ′
8πr3

×(χ−ar−1 + x(−ar − 1)χ−ar−2χ ′)
)

−2

3

α2ar
x2

(
4x3χ ′χar−1 + x4χ ′′χar−1

+x4(χ ′)2(ar − 1)χar−2
)

+ 4α2ar
3hrc(1 + ar )

(
3x2χ−1� + x3�′χ−1

+x3�(−1)χ−2χ ′ + qq ′
8πr3

×(3x2χ−1 + x3(−1)χ−2χ ′)
)

+ q2arα2

4πρc

(
χ ′′χ−1

+(χ ′)2(−1)χ−2
)

−2
( arα2q

2

hrc(1 + ar )

)(
− x−2�χ−ar−1 + x−1�′χ−ar−1

+x−1�(−ar − 1)χ−ar−2χ ′

+ qq ′
8πr3 (−x−2χ−ar−1 + x−1(−ar − 1)χ−ar−2χ ′)

)]
= 0,

(31)

which is the required results [13].
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3.2 Case 2

In this section, we will discuss the isothermal case: a = ±∞,
� = 1, we define

ρ = ρce
−χ , (32)

then, we may rewrite (32) as

pr = α2ρce
−χ + hrce

−χ , (33)

with κrρc = hrc. Also from Eq. (15), we get

dν

dr
= 4(� + qq ′

8πr3 )

re−χ (ρc + α2ρc + hrc)

+ 2(α2ρc + hrc)
dχ
dr

(ρc + α2ρc + hrc)
, (34)

now by using Eqs. (12) and mass function, with jc = hrc
ρc

,
we obtain

2eχ (� + qq ′
8πr3 )(1 − 2m

r + q2

r2 )

ρc(1 + α2 + jc)

+ r(α2 + jc)

1 + α2 + jc

(
1 − 2m

r
+ q2

r2

)dχ

dr

+q2

r2 − m

r
− dm

dr
(α2 + jc) = 0, (35)

which leads to generalized LEe as

[
xχ ′ + 2eχ (� + qq ′

8πr3 )

α2ρc + hrc

][ xα2

4πρc(1 + α2 + jc)

+ x

(1 + α2 + jc)
− 2mα2

4πρc(1 + α2 + jc)

− 2ψ jc
(1 + α2 + jc)

+ x(α2 + jc)

4πρc(1 + α2 + jc)

q2

r2

]

−ψ − ψ ′x(α2 + jc) + q2

4πρcx
= 0, (36)

with ψ ′ = x2e−χ

1

1 + α2

[ α2

4πρcx2

(
2xχ ′ + x2χ ′′)

+ 2α2eχ

4πρcx2(α2ρc + hrc)

(
� + x�χ ′ + x�′

+ qq ′

8πr3 (1 + xχ ′)
)

+ 2
χ ′

x
+ χ ′′ + 2eχ

x(α2ρc + hrc)

(
�′

+�

x
+ �χ ′ + qq ′

8πr3

( 1

x
+ χ ′))

−2α2

( xe−χχ ′

3
+ xe−χχ ′ + x2

3
e−χχ ′′)

− 4α2

(α2ρc + hrc)

(
� + x

3
χ ′� + x

3
�′ + qq ′

8πr3

×
(

1 + x

3
χ ′))

+ q2χ ′′

4πρcx2 + 2q2eχ

4πρcx2(α2ρc+hrc)

×
(

− �

x2 + �χ ′

x
+ �′

x
+ qq ′

8πr3

(−1

x2

+χ ′

x

))]
− α2(3e

−χ ) − q2

4πρcx4 = e−χ , (37)

4 Double polytrope

In this section, we will discuss the theory of double general-
ized polytropes for different cases of GPEoS.

4.1 Case 1: double polytrope with � �= 1

Here, we will discuss the case �r �= 1, �⊥ �= 1, the GPEoS
is fulfilled by radial and tangential pressure

Pr = α2ρr + κrρ
�r , (38)

and

P⊥ = α2ρ⊥ + κ⊥ρ�⊥ , (39)

then, by the definition of anisotropy factor, we obtain

� = α2ρ⊥ + κ⊥ρ�⊥ − α2ρr − κrρ
�r . (40)

We introduce χ by

ρ = ρcχ
ar , (41)

and substituting (41) in (40), we may write

� = α2(ρ⊥ − ρr ) + ρc jcχ
ar (χϑ − χ), (42)

where ϑ = ar
a⊥ . Inside this model, the Lane-Emden condition

gives

ψ ′x(α2 + jcχ) + ψ − q2

4πρcx

+
(
xχ ′ − 2(α2(ρ⊥ − ρr ) + ρc jcχar (χϑ − χ) + qq ′

8πr3 )

jcρcχar
(
arα2
χ jc

+ (1 + ar )
)

)

×
( 1

1 + α2 + jcχ

)

×
( xarα2

4πρcχ
+ εx − 2marα2

4πρcχ
− 2 jc(1 + ar )ψ + q2

x

×
( jc

4πρc

(arα2

χ jc
+ (1 + ar )

)))
= 0, (43)

with ψ ′ = x2χar . The integration of Eq. (43) is illustrated in
Fig. 1. The upsides of the boundaries displayed in the subtitle
of the figure. It is significant to observe that χ is continuous
function with no singularities.

Now we will calculate Tolman mass, which is a the mea-
sure of active gravitational mass [22] in order to discuss the
stability of our framework, which is defined as

mT = 1

2
r2e

ν−λ
2 ν′, (44)
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Fig. 1 Case 1. plot χ is function of x. For ar = 3, jc = 0.1 and
ϑ = 0.5 (blue line), ϑ = 2 (orange line), ϑ = 4 (green line)

and Tolman mass expression is given by [15]

mT = e
ν+λ

2

(
m − q2

r2 + 4πr3Pr
)
. (45)

Now the hydrostatic equilibrium equation can written as

hrcχ
′(arα2

χ jc
+ (1 + ar )

)
= −ν′ρc

2

(
1 + α2 + jcχ

)

+ 2

rχar

(
α2(ρ⊥ − ρr )

+ρc jcχ
ar (χϑ − χ) + qq ′

8πr3

)
, (46)

from which we obtain

∫ χ(r∑)

χ(r)

dχ

1 + α2 + jcχ

= − ρc

2 jrc(
arα2
χ jc

+ (1 + ar )
)

∫ ν(r∑)

ν(r)

dν

+ 2(
arα2
χ jc

+ (1 + ar )
)

∫ r∑

r

( (α2(ρ⊥ − ρr ) + qq ′
8πr3 )

χar hrc(1 + α2 + jcχ)

+ χϑ − χ

1 + α2 + jcχ

)dr
r

. (47)

Next, characterize G(r) as

G(r) =
∫ r∑

r

( (α2(ρ⊥ − ρr ) + qq ′
8πr3 )

χar hrc(1 + α2 + jcχ)
+ χϑ − χ

1 + α2 + jcχ

)dr
r

,

(48)

from Eq. (47), we have

−2
(arα2

χ jc
+ (1 + ar )

)
log(1 + α2 + jcχ)

= ν(r) − ν(r∑) + 4 jcG(r), (49)

Fig. 2 Case 1. Surface potential p for a pair ( jc, ar ) is function of the
anisotropy parameter ϑ . Blue line (0.1, 1.0), Orange line (0.1, 2.0),
green line (1.0, 1.0), red line (1.0, 2.0)

and the value of metric potential eν is derived as

eν = 1 − 2M
r + Q2

r2

(1 + α2 + jcχ)
2

(
ar α2
χ jc

+(1+ar )

)
e4 jcG(r)

. (50)

Eventually, after some simple calculation the ψT becomes

ψT =
( 1 − 2p + Q2

r2

1 − 2ε(1 + ar ) jc
ψ

x∑q + q2

r2

) 1
2

×
(χar x3∑q3(α2 + pcχ) − q2

4πρcx∑q + ψ

(1 + α2 + jcχ)

(
ar α2
χ jc

+(1+ar )

)
e2 jcG(q)

)
, (51)

where

ψT = mT

4πρcα3
, p = M

r∑
, q = x

x∑ , (52)

and

G(q) =
∫ 1

q

((
α2(ρ⊥ − ρr ) + qq ′

8πr3

)

χar hrc(1 + α2 + jcχ)

+ χϑ − χ

1 + α2 + jcχ

)
dq ′

q ′ , (53)

We take Tolman mass as an function of metric potentials.
The curves are qualitatively consistent over a wide range of
parametric values and it ensure the stability of the model.

4.2 Case 2: �r = 1 and �⊥ �= 1

In this case, the radial pressure is Pr = α2ρr + κrρ and
tangential pressure P⊥ = α2ρ⊥ + κ⊥ρ�⊥ with ρ = ρce−χ ,
then

Pr = α2ρr + κrρce
−χ (54)

P⊥ = α2ρ⊥ + κ⊥ρ
�⊥
c e−χ�⊥ (55)
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Fig. 3 case 1. Plot ψT
(ψT )�

as a function of q for ar = 2.0, jc = 1.0,
and various p(ϑ) values. 0.4790(0.1) (blue line), 0.2350(0.5) (orange
line), 0.2249(1.0) (green line), 0.2142(1.5) (red line). The value of p
is taken from the graph in the Fig. 2

From above equation

� = α2(ρ⊥ − ρr ) + hrce
−χ (e

−χ
a⊥ − 1) (56)

then Eq. (36) becomes

[
xχ ′ + 2eχ (α2(ρ⊥ − ρr ) + hrce−χ (e

−χ
a⊥ − 1) + qq ′

8πr3 )

α2ρc + hrc

]

×
[ xα2

4πρc(1 + α2 + jc)

+ x

(1 + α2 + jc)
− 2mα2

4πρc(1 + α2 + jc)
− 2ψ jc

(1 + α2 + jc)

+ x(α2 + jc)

4πρc(1 + α2 + jc)

q2

r2

]

−ψ − ψ ′x(α2 + jc) + q2

4πρcx
= 0, (57)

with ψ ′ = x2e−χ . The integration of Eq. (57) is illustrated in
Fig. 4 for the parameters stated in the figure caption values.

Fig. 4 Case 2. Plot χ as a function of x. For jc = 0.1 and a⊥ = 1
(orange line), a⊥ = 2 (green line) and a⊥ = 3 (blue line)

4.3 Case 3: �r �= 1 and �⊥ = 1

We consider Pr = α2ρr+κrρ
�r withρ = ρcχ

ar , �r = 1+ 1
ar

and P⊥ = α2ρ⊥ + κ⊥ρ, then anisotropy of the system is
written as

� = α2(ρ⊥ − ρr ) + hrcχ
ar (1 − χ), (58)

Then Eq. (29) becomes,

ψ ′x(α2 + jcχ) + ψ − q2

4πρcx

+
(
xχ ′ − 2(α2(ρ⊥ − ρr ) + hrcχar (1 − χ) + qq ′

8πr3 )

jcρcχar
(
arα2
χ jc

+ (1 + ar )
)

)

×
( 1

1 + α2 + jcχ

)

×
(
xarα2

4πρcχ
+ εx − 2marα2

4πρcχ
− 2 jc(1 + ar )ψ + q2

x

×
( jc

4πρc

(arα2

χ jc
+ (1 + ar )

)))
= 0, (59)

with ψ ′ = x2χar . Figure 5 is the integration of Eq. (59) for
the values of the parameters given in the caption.

In this case, then hydrostatic equation is written as

hrcχ
′(arα2

χ jc
+ (1 + ar )

)
= −ν′ρc

2

(
1 + α2 + jcχ

)

+ 2

rχar

(
α2(ρ⊥ − ρr )

+hrcχ
ar (1 − χ) + qq ′

8πr3

)
, (60)

and from integration of above equation, we obtain

Fig. 5 Case 3. χ as a function of x for jc = 0.1 and ar = 1 (orange
line), ar = 2 (green line), ar = 3 (blue line)
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Fig. 6 Case 3. For varying jc values, the surface potential p is a func-
tion of the polytropic index ar . jc = 0.10 (blue line), jc = 0.18 (orange
line), jc = 0.24 (green line), jc = 0.30 (red line)

Fig. 7 Case 3. ψT
(ψT )�

as a function of q for jc = 0.3, and various p(ar )
values. 0.3729(0.1) (blue line), 0.3887(0.5) (orange line), 0.2897(1.0)

(green line). Figure 6 provides the p values

∫ χ(r∑)

χ(r)

dχ

1 + α2 + jcχ
= − ρc

2hrc(
arα2
χ jc

+ (1 + ar )
)

∫ ν(r∑)

ν(r)

dν

+ 2

( arα2
χ jc

+ (1 + ar ))

∫ r∑

r

(
(α2(ρ⊥ − ρr ) + qq ′

8πr3 )

χar hrc(1 + α2 + jcχ)

+ 1 − χ

1 + α2 + jcχ

)
dr

r
, (61)

G(r) for case 3 is calculated as

G(r) =
∫ r∑

r

(
(α2(ρ⊥ − ρr ) + qq ′

8πr3 )

χar hrc(1 + α2 + jcχ)
+ 1 − χ

1 + α2 + jcχ

)
dr

r
,

(62)

The surface potential and the normalized Tolman mass, for
an assurance of potential gains of the boundaries, are plotting
in Figs. 6 and 7 separately.

5 Conclusion

The GPEoS is used in this investigation to discuss relativistic
anisotropic double polytropes. GPEoS is the result of com-
bining linear and polytropic EoS. Accordingly, this inves-
tigation might be seen as a characteristic augmentation of
the methodology portrayed in [13] to the relativistic circum-
stance. Since pressure anisotropy present in the system pro-
vides the opportunity of in depth analysis. It is worth notic-
ing that, whether we utilize energy density or baryonic mass
density, there are two polytropic conditions of state for each
polytrope. So we have four possible cases for two polytropes
in this work.

Depending on � = 1 or � �= 1, we may distinguish
between two alternative scenarios. Since the framework’s
subjective conduct does not change much across a wide scope
of boundary, because the situation �r = �⊥ prompts the
isotropic pressing factor case pr = p⊥, there are just three
prospects. We have developed the LEe for these occurrences
over a genuinely wide scope of boundary values, regardless
of whether just a little set for each case is given. The system’s
qualitative behavior does not change much over a wide range
of parameter values. The protocol presented here, on the other
hand, is useful for dealing with a range of events that result in
anisotropic polytropes, with a focus on the physics of CO and
other related phenomena. The resulting models also revealed
several intriguing aspects that ought to be discussed.

As shown in Fig. 1, limited configurations occur for a
range of parameter values, whereas unbounded configura-
tions exist for the rest of the parameter values. There are more
elements in the later situation than in the isotropic example,
the criterion for the existence of finite radius distributions is
more complicated. The same is true for Case 3, as seen in
Fig. 5. On the other hand, all configurations are unbounded,
as seen in Fig. 4. This example corresponds to an isothermal
gas, this is an anticipated outcome. Figures 3 and 7 delineate
the technique embraced by the liquid conveyance to keep the
balance; it attempts to focus the Tolman mass in the external
areas. The conduct of Tolman mass was at that point noticed
for various groups of anisotropic polytopes examined in [23].

The chance of utilizing the strategies given here to the
investigation of super Chandrasekhar white dwarfs, which
have massed on the quest for 2.8M⊙ and are addressed utiliz-
ing a polytropic condition of state (see [24] and references in
that). The relativistic effects, charge and pressure anisotropy
are vital in the study of such systems.

Data Availability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: There is no external
data associated with the manuscript.]
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give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
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