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Abstract We consider Lifshitz-type scalar field theories
that exhibit anisotropic scaling laws near the ultraviolet fixed
point, with explicit breaking of Lorentz symmetry. It is shown
that, when all momentum dependent vertex operators are dis-
carded, actions with anisotropy parameter z = 3 in 3+1
dimensions generate Lorentz symmetry violating quantum
corrections that are suppressed by inverse powers of the
momentum, so that the symmetry is sensibly restored in the
infrared region. In the ultraviolet region, the singular behav-
ior of the corrections is strongly smoothened: only logarith-
mic divergences show up, producing very small changes of
the couplings over a range of momentum of many orders
of magnitude. In the particular case where all couplings are
equal, the theory shows a Liouville-like potential and quan-
tum corrections are exactly summable, giving an asymptot-
ically free theory. However, the observed weakening of the
divergences is not sufficient to avoid a residual fine tuning of
the mass parameter at a very high energy scale, in order to
recover a physically acceptable mass in the infrared region.

1 Introduction

Understanding the ultraviolet (UV) structure of field theories
is an essential issue to probe the mathematical consistency
of the theory itself, but also to explore possible extensions or
completions of models, such as the Standard Model of the
elementary particle interactions and its interplay with Gen-
eral Relativity. Along this line, much effort has been devoted
to find a way to smoothen the severe divergences that show
up for instance in scalar theories, which are not protected by
gauge symmetry. In particular, the inclusion of higher deriva-
tive operators has the effect of reducing the degree of UV
divergence of the diagrams. This approach has the desired
property of improving the renormalizability of the theory
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[1,2], and has been studied at length, both in the context of
quantum field theories and in gravity [3–10].

In this regard, a helpful insight comes from condensed
matter physics, where general properties of higher derivative
theories have been related to the presence of Lifshitz points,
i.e. points in the phase diagram at which it is observed the
co-existence of a disordered phase, a spatially homogeneous
ordered phase and a spatially modulated ordered phase, and
their appearance is typically related to a particular balance
between the standard two derivative term and a higher deriva-
tive term in the action [11–15]. Then, phase transitions asso-
ciated to Lifshitz points can be put in relation with continuum
limit and renormalizability properties of the related higher
derivative euclidean field theory.

In general, condensed matter systems admit the existence
of isotropic and anisotropic Lifshitz points as well, i.e. points
that maintain full rotational symmetry on all coordinates, the
former, and points that present anisotropic scaling proper-
ties and are described by two different correlation lengths in
different space directions, the latter. Accordingly, isotropic
points require a symmetric structure of the higher deriva-
tive terms that involves the same order of derivatives for
each coordinate, while anisotropic points are characterized
by different number of derivatives on different coordinates.
Therefore, properties of the transitions and dependence on
dimensionality are different in the two cases.

Although the isotropic case possesses a rich phase struc-
ture [11,15–20], only the anisotropic case can meaningfully
be connected with field theories defined in Minkowski space,
that are of interest in the high energy context. In fact, the pres-
ence of time derivatives of order larger than two directly leads
to the Ostrogradski instability, corresponding to Hamiltoni-
ans unbounded from below with violation of unitarity [4,21].
To avoid these complications, it is unavoidable to resort to
anisotropic Lifshitz systems where the time derivative is of
second order, while in the spatial sector higher derivative
terms are present (usually the anisotropy parameter z is intro-
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duced to specify the order of the spatial derivatives as equal
to 2z).

Even in anisotropic form, the Lifshitz points have the
effect of enhancing the UV sector of the theory, reducing
the degree of divergence. The price to pay is the breaking
of Lorentz invariance at high energy scales, and it becomes
essential to verify that Lorentz symmetry becomes manifest
in the infrared (IR) region [22], due to a suppression of the
Lorentz breaking terms below the level of the experimental
limits.

This kind of anisotropic models received much attention,
especially after the introduction of the Hořava–Lifshitz for-
mulation of the gravitational theory [23] with the aim of
deriving a renormalizable approach to quantum gravity, and
a lot of work has followed in various contexts ranging from
gravity, black holes, cosmology [24–35], to gauge, scalar or
fermionic field theory [36–43]. In particular, in [37] and sub-
sequently in [41] it was pointed out that anisotropic scalar
theories which include all possible renormalizable operators
(according to the Lifshitz scaling), have the serious drawback
of producing large Lorentz violating quantum corrections
that are not compatible with the experimental observations,
unless a quite severe fine tuning of various couplings in the
UV region is performed.

In this paper, we reconsider this problem and select a spe-
cific class of scalar theories that avoids the occurrence of
the large Lorentz violating corrections. We shall focus on a
3 + 1-dimensional theory with anisotropy parameter z = 3,
because of its particular Lifshitz point structure and then,
after reducing the bare action to momentum independent
vertices only, we analyze the generated quantum corrections.
Since Lorentz symmetry is absent from the beginning, we are
allowed to treat divergent terms by means of a non-Lorentz
invariant regulator, namely a three-momentum cut-off and,
due to the very simple nature of the divergent diagrams, we
are able to carry out our computations without resorting to
the rotation to Euclidean coordinates, in the spirit of [44,45].
Within this approach the main interesting properties of the
renormalized theory are pointed out and the crossover from
the UV to the IR region is analyzed.

In Sect. 2, we study the properties of Lifshitz scaling of
higher derivative scalar field theories and their consequently
modified renormalizability. In Sect. 3, we analyze one spe-
cific model with z = 3 and its diagrammatic expansion, while
in Sect. 4 the RG flow of the various couplings in the UV and
IR regimes. The conclusions are reported in Sect. 5.

2 Lifshitz scaling

We are specifically interested in the following Minkowskian
Action

S =
∫
d3x dt

(
1

2
(∂tφ)2 − âz

2

(
∂ zi φ

)2 − âz−1

2

(
∂ z−1
i φ

)2

− · · · − â1

2
(∂iφ)2 − V

)
, (1)

where we included higher derivatives of the spatial coor-
dinates labelled by the index i (and i is summed over
i = 1, 2, 3), up to order 2z (with z > 1). Hatted couplings
indicate that they are dimensionful quantities. This is a par-
ticular case of the general problem of anisotropic Lifshitz
scaling where the full set of Euclidean coordinates is com-
posed of two subsets which have different scaling properties
in proximity of a Lifshitz point. In the case of Eq. (1), one sub-
set is represented by the time coordinate and the other by the
3 spatial coordinates, with scaling dimensions respectively
[t]s = −z and [xi ]s = −1, so that for a scale transformation
with rescaling parameter b > 1, one observes the following
non-uniform scaling of space and time

t → bz t, xi → b xi . (2)

This leads to a substantial difference with respect to the stan-
dard scaling associated with the canonical dimensions of the
parameters entering Eq. (1) which occurs in proximity of the
gaussian fixed point.

So, for instance, the coefficients â j (with j > 1) of the
higher derivative terms appearing in Eq. (1), have negative
canonical dimension and, accordingly, the corresponding
terms are perturbatively non-renormalizable. However the
presence of another fixed point, the Lifshitz point, ensures
different scaling rules that redefine the renormalization prop-
erties of the various terms and, in accordance with the scaling
rules in Eq. (2), we derive the scaling dimension of the field
from the scaling properties of the term proportional to âz
(which is assumed to have scaling dimension [̂az]s = 0) :

[φ]s = 3 − z

2
. (3)

Actually, this is a particular case of a more general anal-
ysis of a d-dimensional system with ds dimensions in one
subset of coordinates, instead of the 3 spatial dimensions,
and d − ds dimensions in the other subset, instead of the
only time dimension. In fact, in general by allowing for an
anomalous dimension η of the ds-dimensional subset, i.e. by
redefining the scaling dimension [̂az]s = −η, one obtains
[φ]s = [z (d − ds − 2) + ds + η]/2, that clearly reproduces
Eq. (3) for d = 3 + 1, ds = 3 and η = 0. Nevertheless, for
our purposes of analyzing a (3+1)-dimensional Minkowskian
space-time theory, it is sufficient to retain the scaling rule in
Eq. (3) with zero anomalous dimension.

Once the scaling dimension of the field is known, we
can investigate the constraints on the various parameters that
characterize the existence of a non-trivial Lifshitz point and,
in general, this means finding the upper and lower critical
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dimension for the action considered. In our case, where the
dimensions are kept fixed, this reduces to a constraint on z. In
fact, by considering the potential in Eq. (1) as an expansion
in powers of the field

V =
n∑

n=2

ĝn
n! φ

n , (4)

we easily derive the scaling dimension of the generic ĝn :

[̂gn]s =
(

1 − n

2

)
(z + 3) + nz (5)

and therefore, the marginality condition [̂gn]s = 0 corre-
sponds to the constraint

(2 + n) z = 3 (n − 2) . (6)

From Eq. (6), we find that, when z = 1, the marginal coupling
corresponds to n = 4, as is well known, and when z = 2 to
n = 10, and when z=3 no finiten satisfies Eq. (6) as [̂gn]s = 6
for any n.

By inverting the argument, if we require the marginal cou-
pling to be ĝ4 so that, at least for theories with Z2 symmetry
(or O(N ) symmetry for a multicomponent field), no term in
the potential (4) has positive scaling dimension (apart from
the quadratic mass term), we find that in Eq. (6), [̂g4]s = 0
implies z = 1. This indicates that our 3+1 dimensional sys-
tem with z = 1 corresponds to the upper critical dimension
which instead becomes larger at larger values of z. On the
other hand, the lowest dimension below which the non-trivial
Lifshitz point disappears, corresponds to the vanishing of the
scaling dimension of the field. According to Eq. (3), for our
3+1 dimensional system this implies z = 3.

The above analysis indicates that for a O(N ) theory in
3+1 dimensions, a non-trivial Lifshitz point is expected for
z = 2 only, while when z = 1 and z = 3 we are respec-
tively at the upper and lower critical dimension of the system
where only the trivial Lifshitz point solution of the Renor-
malization Group analysis is found. Namely, it corresponds
to the quadratic action with, respectively, z = 1 and z = 3:

SFP =
∫
d3x dt

(
1

2
(∂tφ)2 − âz

2

(
∂ zi φ

)2
)

. (7)

These results are totally in agreement with those of [12,
14,46] where the existence of a Lifshitz point solution is
investigated for generic number of dimensions of the two
subsets of coordinates and with z = 2 fixed. Clearly, if z = 1
in Eq. (7), we are left with the standard Gaussian fixed point,
while z = 3 yields a non-standard higher derivative action
that we expect to be responsible for a well behaved UV sector
of the theory.

In fact, it is easy to realize that when z = 3, the scal-
ing dimension of the field vanishes according to Eq. (3), and
therefore all possible interaction terms (and mass term) that
can be added to SFP have couplings with positive scaling

dimension, which means that these operators are relevant
with respect to to this fixed point solution and get suppressed
in the UV regime. This is in agreement with the naive expec-
tation that the UV divergences of such a higher derivative
theory with z = 3 are strongly (if not totally) suppressed by
the enhanced power of the momentum (k6 instead of k2) in
the propagator.

Therefore, since we want to investigate how much the
fixed point solution (7) does protect from the UV divergences,
we shall consider the most favourable case with z = 3. More-
over, for z = 2, the appearance of the non-trivial Lifshitz
point in addition to the one of (7), does certainly modify the
structure of Renormalization Group flow and this could gen-
erate some complication in the renormalization process. On
the other hand, larger values of z, such as z = 4, imply a
negative scaling dimension of the field, thus producing an
unstable theory.

In conclusion we will focus on the action in Eq. (1) with
z = 3 and the potential V specified in Eq. (4), with generic
n. In fact, as it will be shown next, the divergence of the loop
diagrams of this theory does not depend on the index n that
defines the number of legs of each vertex.

We turn now to the analysis of the degree of divergence of
the various loop diagrams of such a theory and, since we are
including in the action (1) an explicit violation of the Lorentz
symmetry, we are allowed to treat space and time coordi-
nates separately in the loop integrals. Then, we find con-
venient to maintain Minkowskian coordinates, thus avoiding
the rotation to Euclidean coordinates, and to first perform the
integration on the energy component in the four-momentum
integral along the Feynman contour, so that the divergences
appear only in the integration on the three momentum. We
shall take care of them by means of a Lorentz violating three-
momentum cut-off �.

In order to compute the degree of divergence of a generic
diagram, we recall the well known fact that each propagator
can be split into the product of two factors, with one of the
two being a pole of the energy integral. So for instance, in
a one loop integral with two propagators we end up with
the product of four terms, two of which give poles that are
relevant in the Feynman contour integration :

R1(p) =
∫

d3k dk0

(2π)4

1[
k2

0 − A2 + iε
]

1[
(p0 + k0)2 − B2 + iε

]

=
∫

d3k dk0

(2π)4

1

[k0 − A + iε] [k0 + A − iε]

× 1

[(p0 + k0) − B + iε] [(p0 + k0) + B − iε]
,

(8)
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where we defined, according to the action (1) with z = 3 and
the potential (4),

A =
√
â3 �k 6 + â2 �k 4 + â1 �k 2 + ĝ2 ,

B =
√
â3 ( �p + �k) 6 + â2 ( �p + �k) 4 + â1( �p + �k) 2 + ĝ2. (9)

We then perform the integration over k0 by reducing the dou-
ble pole to a sum of simple poles, according to the expression:

1

x − P1

1

x − P2
=

(
1

x − P1
− 1

x − P2

)
1

(P1 − P2)
, (10)

where x indicates the integration variable and P1, P2 are
x-independent expressions.

The outlined procedure can be extended also to multi-
loop diagrams and this allows us to infer the rule to count
the degree of divergence of each diagram. In fact, after per-
forming the integrations on the energy component of every
loop, we find for generic z (which is then set to z = 3 in
our model) that each loop brings 3 powers of momentum
from the three-momentum integration, while each internal
line contributes with −2z powers of momentum, with the
exception of one internal line for each loop that contributes
with a power equal to −z, because of the cancellation pro-
duced by the integration over k0. With the help of this rule
we compute the degree of divergence of a diagram (i.e. the
powers of the three-momentum cut-off � ) D�:

D� = [3L − 2z (I − L) − z L] |z=3 = 6(L − I ) (11)

where L is the number of loops and I the number of internal
lines of the diagram (below, we shall label the number of
external lines as E and the number of vertices with n lines
as Vn).

If we now recall the well known relations due to the dia-
gram topology, L = I−∑

n Vn+1 and
∑

n(n Vn) = E+2I ,
where the sum is understood over the kind of vertices entering
the diagram, we obtain from Eq. (11) :

D� =
[(∑

n

(nVn) − E

)
(3 − z)

2
+ (3 + z)

(
1 −

∑
n

Vn

)]

∣∣∣∣
z=3

= 6

(
1 −

∑
n

Vn

)
. (12)

Incidentally, the same conclusions would have been obtained
had we inspected the divergence structure of the theory after
Wick rotation to Euclidean coordinates and adopted a sym-
metric cut-off on the modulus of the four-momentum in the
loop integrals.

It is now evident that, in the presence of modified ’higher
derivative’ propagators with z = 3, only logarithmic diver-
gences show up in diagrams containing only one vertex,
whatever is the value of n and the number of external legs E .
Consequently the UV sector of such a theory turns out to be
rather simple and we shall analyze it in Sect. 3.

One could object that the action (1) with z = 3 does not
include all renormalizable terms, because the scaling dimen-
sion of the field is vanishing, as shown in Eq. (3). Therefore,
besides including any possible value of n, which character-
izes the vertex in the potential (4), it is admissible to include
also vertices like

wm,s φm (
∂si φ∂si φ

)
, (13)

with positive integer m and s = 1, 2, 3, still maintaining
non-negative scaling dimension of the corresponding cou-
pling (higher values of s would instead yield negative scal-
ing dimension). Clearly, such kind of vertex that brings a
dependence on the momentum of two lines, does increase the
degree of the divergence when the momentum of these two
lines involves the integrated internal momentum of a loop,
and therefore it requires a more accurate rearrangement of
all the diverging integrals in the renormalization procedure;
but nevertheless the renormalizability property guarantees
the full cancellation of divergences by suitable insertion of
counterterms.

On the other hand, there is one important property con-
cerning the class of vertices in Eq. (13) that must be consid-
ered. Namely, the requirement wm,s = 0, for all m > 0 and
s = 1, 2, 3 in the bare action (1) of our model, implies the
absence of any UV divergence in the following expansion of
the (m + 2)-point Green functions generated by the action
(1), with m out of the (m + 2) momenta set to zero:

(pi p
′
i )
s Wm,s

= (pi p
′
i )
s
[(

∂2

∂p j ∂p′
j

)s

�
(m+2)

(p, p′, 0, . . . , 0)

]
p=p′=0

.

(14)

The relevance of this property is clear. In fact any UV
divergence in terms like Wm,s in Eq. (14) could not be can-
celled, because this is achievable only by means of a coun-
terterm generated by the corresponding vertex in (13) that,
however, is missing in the bare action (1) where we set all
wm,s = 0.

To prove the above statement, we notice that, without ver-
tices (13) in the bare action, the only way to get an explicit
dependence on the external momenta to the power 2s, analo-
gous to the 2s derivatives in Eq. (13), is given by the expan-
sion in Eq. (14). In addition, it is evident that the exter-
nal momenta dependence of a Green function of the action
(1), which is essential to obtain non-vanishing derivatives in
Eq. (14), cannot be generated by diagrams with one vertex
only, but comes instead from diagrams containing at least
two vertices.

Then, with all wm,s = 0 in (1), D� must be read from Eqs.
(11) and (12), and, as we had already observed, it implies that
only diagrams with one vertex are UV divergent. Therefore,
Green functions that carry external momentum dependence
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and consequently contain at least two vertices, are finite. This
is already sufficient to demonstrate our statement but, since
Wm,s is the result of 2s derivatives with respect to the external
momenta of such a Green function, we have a further increase
of the degree of UV convergence of Wm,s , as compared with

�
(m+2)

(p, p′, 0, . . . , 0).
We conclude that the constraint wm,s = 0 for all m > 0

and s = 1, 2, 3 is sufficient to warrant only UV finite con-
tributions to Wm,s , which are harmless in the analysis of
the renormalized theory, in much the same way as the g4 φ4

vertex in the action of a standard renormalizable theory in
four dimensions generates only UV finite �(n) Green func-
tions with n ≥ 6, while the inclusion of the g6 φ6 ver-
tex, which produces unmanageable UV divergences, would
instead spoil the UV convergence of those Green functions.

At this point, we recall that momentum dependent vertices
in Eq. (13) are responsible of another undesired feature, as
shown in [37]. In the latter, a 4+1 dimensional model with
z = 2 is studied, but the effect produced by these momentum
dependent vertices is essentially the same in their case and in
ours. More specifically, if we compute the one loop correc-
tion to the coefficient a1, generated by the term φ2 (∂iφ∂iφ),
of the kind displayed in Eq. (13), suitably included into the
action (1), we get logarithmic corrections to a1. Then, if we
compare the logarithmic corrections obtained for two differ-
ent kind of fields with different couplings, we find that the
renormalized a1 of the two fields differ by a logarithmically
growing quantity when the IR region is approached, unless
a fine tuning of the couplings of the two fields in the UV
region is enforced. This discrepancy, as discussed in [37],
is certainly not compatible with the observed Lorentz invari-
ance in the IR region, that requires instead equal renormalized
a1 for the two fields, at least within the experimental errors.
(For a detailed review about IR effects of Lorentz invariance
violation introduced at extremely large energy scales and,
in particular, with reference to quantum gravity models, see
[47,48]).

As these logarithmic corrections, unacceptable on phe-
nomenological grounds, disappear if the momentum depen-
dent vertices in Eq. (13) are omitted from the full action,
leaving only finite power law corrections to the dispersion
relation (as will be discussed in Sect. 3), we choose to bypass
the renormalizability criterion that would instead require the
inclusion of the terms displayed in Eq. (13). In other words,
the action in (1) analyzed in Sect. 3, contains all renormaliz-
able operators, according to the Lifshitz scaling around the
fixed point solution (7), with the exception of momentum
dependent vertices; the couplings associated to the latter will
be set to zero in the bare action. The evidence that, under
these assumptions, Wm,s in Eq. (14) gets only UV finite cor-
rections, guarantees the consistency of our choice.

3 Renormalized theory

According to the issues considered in Sect. 2, we restrict our
analysis to the action

S =
∫
d3x dt

[
1

2
(∂tφ)2 − â3

2

(
∂2∂iφ∂2∂iφ

)
− â2

2

×
(
∂2φ∂2φ

)
− â1

2
(∂iφ∂iφ) − V (φ)

]
, (15)

with V given in Eq. (4) and where, in order to keep the num-
ber of couplings finite, we choose the maximum power of
the field, n, finite. Note that any other term, quadratic in
the field and containing 2 or 4 or 6 derivatives but with dif-
ferent derivative ordering with respect to Eq. (15), like e.g.(
∂i∂ j∂kφ ∂i∂ j∂kφ

)
or

(
∂i∂ jφ ∂i∂ jφ

)
, is always reducible,

after integration by parts, to one of the terms in (15).
It is now convenient to redefine the various hatted cou-

plings in terms of adimensional couplings by means of the
mass parameter M , which we take much larger than the typ-
ical energy scales that characterize the IR physics of this
model. Therefore :

âs = as
M2(s−1)

∣∣∣∣
s=1,2,3

; ĝn = gn
Mn−4

∣∣∣∣
n=2,3,4,...

(16)

Moreover, in order to set the overall scale of the action, the
coefficient of the time derivative of the field in Eq. (15) is
taken equal to one , and, in addition, a relative rescaling of
the space and time allows us to take a1 = 1 and, finally, a
redefinition of the mass scale M can be performed to set also
a3 = 1, while a2 remains an unconstrained coupling. Thus,
we take :

â3 = a3

M4 = 1

M4 ; â1 = a1 = 1 . (17)

Now we turn to the computation of the quantum correc-
tions. In Sect. 2 we verified that the divergent diagrams gen-
erated by this model must contain at most one vertex, which
means that we have only one logarithmically divergent inte-
gral, namely

Î1 =
∫

d3k dk0

(2π)4

i(
k2

0 − â3�k 6 − â2 �k 4 − â1�k 2 − ĝ2 + iε
)

= 1

2

∫
d3k

(2π)3

1√
â3�k 6 + â2 �k 4 + â1�k 2 + ĝ2

(18)

In Eq. (18) we performed the integral in k0 and we are left
with the integral over the three-momentum �k that will be
calculated for |�k| between the UV cut-off � and an IR cut-
off which we choose, for the moment, equal to M in order
to neglect, in first approximation, other smaller scales such
as ĝ2 :
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Î1(�, M) = M2 I1(�, M)

= M2

(2π)2 ln

(
�

M

)
+ O

(
M4

�2

)
(19)

If we now focus on the quantum corrections for the quar-
tic coupling ĝ4 = g4, we notice that the collection of diver-
gent, single vertex diagrams includes the sum of the diagram
with vertex ĝ6 and the one loop integral Î1, plus the diagram
with vertex ĝ8 and two loops corresponding to the square
of the integral Î1, and so on, until the last diagram with ĝn
and Î (n/2−2)

1 . After counting the combinatorial factors and
by making use of the adimensional couplings, we get the
renormalized quartic coupling g4R

g4R = g4 + g6

(
I1
2

)
+ g8

2

(
I1
2

)2

+ g10

3!
(
I1
2

)3

+ · · · + gn
(n/2 − 2)!

(
I1
2

)(n/2−2)

(20)

where we assumed n to be an even integer (for odd n, one
has just to replace n with (n − 1) in Eq. (20)).

Moreover, the structure of this series of diagram is such
that when we compute g6R or g8R , we get exactly the same
series as in Eq. (20), with the only difference that each cou-
pling index is increased of 2 units (for g6R) or 4 units (for
g8R), while the truncation occurs at n in all cases. With this
input we can invert the truncated series (20) to get g4 in terms
of renormalized couplings:

g4 = g4R − g6R

(
I1
2

)
+ g8R

2

(
I1
2

)2

− g10R

3!
(
I1
2

)3

+ · · · + gnR
(n/2 − 2)!

(−I1
2

)(n/2−2)

(21)

and in this case we find alternating signs. In addition, due to
the topology of the divergent diagrams, the same argument
can be repeated with equivalent conclusions for the couplings
with odd index, g3, g5, . . . , g(n−1).

From the general relation in (20), we evince the result that
couplings with even (odd) index n get divergent corrections
only from other couplings with even (odd) index m, such that
n < m ≤ n. Then, couplings with n > n, that do not appear
in the bare action (15), get only finite corrections from sub-
leading diagrams that contain more than one vertex. There-
fore, the theory is perturbatively renormalizable because all
divergences are under control and can be discarded by the
conventional insertion of counterterms in Eq. (15).

Depending on the value of n, and therefore on the number
of terms of the sum in Eq. (20), we get a larger or smaller
correction to g4. For instance, when n = 6, g4 gets only
a logarithmic correction whereas for large n, g4 gets larger
corrections that are proportional to higher powers of the log-
arithm, while the coupling gn−2 gets linear corrections in the
logarithm and gn does not have any divergent correction.

An interesting remark concerns the particular case in
which all even couplings are equal (g4 = g6 = g8 = · · · =
gn) and the right hand side of Eq. (20) becomes the truncated
exponential series or, analogously, if g4R = g6R = g8R =
· · · = gnR , Eq. (21) is the truncated exponential series with
alternate signs. If we consider the limit n → ∞ under the
assumption of equal couplings, we get from Eq. (20)

g4R = g4 eI1/2 , (22)

and the same result is obtained by starting from Eq. (21). In
addition, it is evident that in the limit n → ∞ the relation
between bare and renormalized coupling in Eq. (22) holds
not only for the quartic coupling but for all couplings with
even index and, as a consequence, if the bare couplings are
all equal, then also the renormalized couplings are all equal
(or viceversa). Clearly, all these results can be equivalently
recovered for the set of couplings with odd index.

Equation (22) shows that, in order to keep g4R finite when
� → ∞, g4 must vanish in the same limit. Therefore, a
peculiar result emerges for the exponential series where the
couplings are all equal. Its extension to the more general case
with different couplings gn can be related to the possibility
of constraining the given series of gn with a suitably con-
structed exponential series which, for instance, is larger than
the former, term by term (provided that gn > 0 for all n).
We can conclude that the more general series is summable,
giving finite or vanishing gn in the limit � → ∞, and the
associated model is UV safe or free.

Finally, the coefficients of the derivative terms, a1, a2, a3,

get corrections from diagrams that carry some external
momentum dependence; this necessarily requires the pres-
ence of at least two vertices and consequently only UV finite
corrections affect these three couplings. Therefore, the lead-
ing corrections come from the one loop diagram with two
g3 vertices and two internal lines, corresponding to the one
loop integral R1(p) in Eq. (8), and from the two loop dia-
gram with two g4 vertices and three internal lines (sunset
diagram) corresponding to the integral (iε in the propagators
is omitted)

R2(p) =
∫

d3k dk0

(2π)4

∫
d3q dq0

(2π)4

1

k2
0 − D(�k)2

× 1

q2
0 − D(�q)2

1

(p0 + k0 + q0)2 − D( �p + �k + �q)2

(23)

where, similarly to Eq. (9), we define

D(�k) =
√
â3 �k 6 + â2 �k 4 + â1 �k 2 + ĝ2.

Then, explicitly, the leading corrections to a1, a2, a3, are
obtained from the coefficients of the expansion of these dia-
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grams in powers of the external momentum �p ( j = 1, 2, 3)

δa j = 1

(2 j)!
∂2 j

(∂| �p|)2 j

[
i ĝ3

2

2
R1 − ĝ4

2

6
R2

] ∣∣∣∣
p=0

(24)

The approximation in Eq. (24) represents the leading cor-
rection to the parameters a j , both when k ≡ |�k| >> M (and
the propagators are dominated by the term (a3 k6/M4)), and
when k << M (and the dominant contribution to the propa-
gator is now proportional to a1 k2, while terms proportional
to a3 and a2 are suppressed). In fact, further corrections to a j

involve more vertices ĝn with n > 4, and a higher number of
loops. They are UV finite, according to the analysis of Sect. 2,
and smaller in size than the leading corrections because of
the numerical factor carried by each loop. Therefore, we do
not include them in Eq. (24) where, in addition, we keep ĝ3

and ĝ4 constant, omitting higher order corrections related to
the couplings. This implies that δa j in (24) are independent
of the specific value of n in Eq. (4).

An inspection of Eq. (24) in the UV region (i.e. when
the momentum in the integrals R1, R2 is integrated from M
to μ >> M) shows the same power law behavior for the
O(ĝ3

2) and O(ĝ4
2) corrections:

δa j ∝
(
M

μ

)6+2 j

. (25)

Then, in this region a1, a2, a3, get only negligible corrections
and, for practical purposes, they maintain the value assigned
in Eq. (17) (in particular a1 = a3 = 1).

In the IR region, i.e. when momentum is integrated from
zero to μ <<

√
ĝ2 < M , (provided ĝ2 > 0), all D, defined

after Eq.(23), included in the propagators of R1, R2 in (24),
are essentially proportional to

√
ĝ2, so that the contribution

to δa j is proportional to powers of (μ2/ĝ2), and therefore
negligible.

The picture of the intermediate momentum region (with
the integration variable ranging from μ � √

ĝ2 to M), is less
evident, since more than two scales are involved in the com-
putation of R1 and R2, and a numerical analysis of Eq.(24) is
in order. This analysis, discussed in Sect. 4, shows a negative
correction δa3 < 0 from the intermediate momentum region,
with |δa3| proportional to the square couplings ĝ2

3 and ĝ2
4, as

deducible from Eq. (24). It follows that there are particular
conditions (a too small -or negative- ĝ2 and large couplings
ĝ3, ĝ4) in which δa3 < −1 and, after including these correc-
tions in the factors D in Eq.(24), we end up with the square
root of negative numbers. This singular behavior, appearing
at IR scales close to

√
ĝ2, can be avoided by taking smaller

ĝ3 and ĝ4, and/or larger ĝ2.
In addition, simple dimensional analysis of Eq.(24) shows

that |δa2| and |δa1| are smaller than |δa3|, respectively by the
factors μ2/M2 and μ4/M4.

Fig. 1 UV flow of the couplings g3, g4, with boundaries fixed at t = 0,
for two different values of n, namely n = 22, black solid lines, and
n = 6, red (online) dashed lines. At t = 0, for all gn with n even and
4 ≤ n ≤ n, the boundary value 0.1 is used, while 0.05 is used for odd n.
The flow of m2 = g2 is also displayed for n = 22 with boundary value
10−3 for m2 and the same boundaries as before for the other couplings.
Dotted black lines correspond to the exponential approximation, as in
Eq. (26), to the various curves

4 Flow of the couplings

By exploiting the dependence of the integrals on the renor-
malization scale, we easily transform Eq. (20) and the anal-
ogous relations for all the other couplings, into a set of dif-
ferential flow equations for the scale dependent couplings
gn(μ), and study the evolution of the parameters with μ

going toward the IR region at fixed boundaries at a large
UV scale or, equivalently, explore the UV behavior by fixing
the boundaries at a lower scale. To this purpose, we express
all dimensionful quantities in terms of M and display the
flow of the running gn(μ) as a function of the logarithm of
the scale μ: t = ln(M/μ).

We start by investigating the UV region above M , where
the effect of the modified propagator should be evident.
We focus on some representative couplings, namely g3 and
g4 plus the square mass term m2 = g2, as in this region
a1, a2, a3, that contribute to the propagator, remain practi-
cally constant. In Fig. 1 the UV behavior of the couplings g3

and g4 is studied by fixing the boundary conditions with all
even couplings equal to 0.1 and all odd couplings equal to
0.05 at t = 0 (i.e. at μ = M), for two different values of n in
Eq. (4), namely n = 22 (black solid curves) and n = 6 (red
dashed curves). Note that, according to the definitions given
in Eq. (16), all values of the couplings are expressed in units
of M .

The linear dependence of the red dashed curves is clearly
evident. It is due to the choice n = 6 which implies the
contribution of a single one loop diagram to the flow of g3

and g4. The different slope of the two dashed curves is instead
due to the different values of the vertices associated to the
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one loop diagram respectively for g3 and g4. Conversely, the
solid black lines are obtained for a very large value of n, and
we chose the same initial value of all even couplings and
another initial value for all the odd couplings, with the aim
of pointing out the exponential nature of the truncated series
in Eq. (20). This trend is confirmed by the dotted black lines
that reproduce the plot of the resummed exponential series
shown in Eq. (22) which, in the present notation, becomes
(for j = 3, 4)

g j (t) = g j (t = 0) e
t

8π2 . (26)

As already stated, at fixed g j (t = 0), the running couplings
g j (t) vanish in the limit t → −∞.

Both dashed and solid lines are negatively divergent, the
former linearly, as already noticed above, while the latter does
actually diverge as a power of t due to the last term in the right
hand side of Eq. (20) : ∼ (−gn) (−t)(n/2−2) (according to
our choice on the values of the couplings, gn is the last non-
vanishing coupling and does not get any correction).

Nevertheless, the divergent trend of the latter becomes
evident only at extremely large negative values of t , not con-
tained in Fig. 1, as an effect of the sum over the large number
n of terms. On the contrary, Fig. 1 manifestly indicates that
the exponentially vanishing expression in Eq. (26) provides
an excellent approximation to the actual flow of our couplings
up to t = −60 (i.e. μ/M ∼ 1026) at least for the choice of
the initial values of the couplings considered above.

If we select n = 24 or n = 8 in Fig. 1, instead of n = 22
or n = 6, then the dotted and dashed curves are modified
because, according to Eq. (21), the couplings now tend to
+∞ as a power of |t |, when t → −∞, and a change of slope
at some t < 0 with the generation of a minimum is observed.
However, as discussed above, this change occurs at large |t |,
the flow of g4 and g3 being dominated respectively by g6 and
g5 at small |t |. In particular, for n = 24 and the initial values
used in Fig. 1, the trend of Eq. (26) is preserved for many
orders of magnitude, up to t = −60, before the effects of g24

become apparent.
In Fig. 1 the square mass m2 = g2 is also plotted (solid

line) for the case with n = 22 and the boundary values
of other couplings as declared above. The corresponding
exponential curve is also reported (dotted line). Actually, the
square mass in the UV region where the relevant scales are
much larger than the mass itself, has the same of trend of the
other couplings. Therefore, it is not surprising that its flow
is totally similar to those already examined. The only differ-
ence is m2(t = 0) = 10−3, much smaller than the value of
the other two couplings. In fact, we expect the renormalized
mass of such a theory to be well below the Lorentz violating
reference scale M , i.e. we expect m2 << 1 at t = 0.

Let us now consider the momentum region around the
scale M , corresponding to the transition from UV to IR

Fig. 2 Flow of the parameter a3 (upper panel) and of the square mass
m2 = g2 in the region around t ∼ 0 and in the IR region with t > 0.
Boundary values are taken at t = −3, with m2 = 0.007 and g3 =
g4 = 0.1 in one case (solid lines) and m2 � −0.004, g3 = 10−15,
g4 = 0.1 in the other case (dashed lines). As clarified in the text,
diagrams containing vertices gn , with n > 4, are neglected in this case
and all plots do not depend on n in (4)

regime in which, due to the suppression of terms proportional
to powers of k/M in the propagator, the onset of the well
known standard scaling occurs. While no sensible change
in the three coefficients a1, a2, a3, is detectable in the UV
region according to the explanation in Sect. 3, at momenta
below M we expect a change in a3 due to the finite correc-
tions induced by the one and two loop diagrams, as shown in
Eq.(24). However, for the sake of simplicity, in the following
computation of the evolution of a3, only the one loop diagram
proportional to g2

3 is included, while we neglect the two loop
diagram proportional to g2

4, subdominant with respect to the
one loop diagram, because of the higher loop order.

The location of the change in a3 is strictly related to the
particular value of the square massm2. Therefore we report in
the same figure both running parameters, a3 and m2, namely
the former in the upper panel and the latter in the lower panel
of Fig. 2, for two particular choices of the mass (solid and
dashed lines in both panels). The boundary conditions are
fixed at t = −3, and in the first case, that corresponds to the
solid lines in Fig. 2, we take g3 = g4 = 0.1 and square mass
m2 = 0.007. The leading contribution to the flow ofm2, both
above and below the scale M , comes from the one loop dia-
gram proportional to g4, whose effect is to increase the mass
for growing t , although with different rates for t < 0 or t > 0
(in fact also the O(g2

3) one loop diagram is included but its
contribution to the mass correction is practically negligible).
Then, for large enough t , when the running scale becomes
lower than the mass m, the flow of all couplings stops and
this is clearly visible in all plots of Fig. 2.

According to all phenomenological indications, we expect
the scale M to be various orders of magnitude larger than the
IR mass of our model and this, despite the much softer behav-
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ior of the parameters in the UV region, inevitably requires
an accurate adjustment of the UV boundary value of m2.
So, unlike the first example in Fig. 2, where at large t we
have m2 � 10−2, in the second example corresponding to
dashed curves, we tune the boundary value of m2(t = −3)

at a negative value, and g3 = 10−15, to get in the IR region
m2 � 10−12. (Actually, the latter IR value of m2 is chosen
as a compromise between dealing with a very small but still
numerically manageable number, and having a not too large
physical mass, whose scale is set by M , which can be as large
as, or larger than the Plank mass).

Figs.1, 2 show that our model produces a negatively grow-
ing m2 when t = ln (M/�) → −∞. Something similar
occurs in the Lorentz invariant renormalizable d = 4 scalar
theory but, while the latter provides a quadratically diver-
gent m2 ∝ −�2, in our model the quadratic trend occurs
only below M (hardly visible in Fig. 2 because of the units
chosen) while above M , it turns into the logarithmic trend
shown in Fig 1.

In the upper panel of Fig. 2, the flow of a3 is shown and
a comparison of the solid and dashed lines indicates that the
integration of the intermediate momentum region in Eq. (24)
produces a rapid decrease of a3, in correspondence of the the
scale t = ln (M/m), where m = m(t) is the corresponding
value of the running mass, readable from the lower panel,
i.e. m � √

0.01 for the solid line, and m � √
10−12 for

the dashed line. Above and below these crossover scales,
both solid and dashed curves are essentially flat, indicating
that δa3 � 0 in those regions, as suggested by the general
analysis of Eq. (24) in Sect. 3.

However, as explained in Sect. 3, the drop of a3 in Fig. 2 is
proportional to the square coupling (g2

3 in the present exam-
ple) and if the running mass is too small, this can generate a
negative argument of the square root in the factors D appear-
ing in R1 and R2 in Eq. (24). To avoid this singular behavior,
we choose a sufficiently large mass in the case of the solid
line, while in the case of the dashed line where, as discussed
above, we tuned the mass to the value m � 10−6, we must
select the small value g3 � 10−15.

As anticipated in the analysis of Eq.(24) in Sect. 3, the cor-
rections δa2 and δa1 of the other two derivative couplings are
suppressed with respect to δa3. In fact, for the two examples
discussed in Fig. 2, the numerical determination of the flow
yields deviations from the boundary values a1 = 1, a2 = aB

2
(as discussed before Eq. (17), a2 is left unconstrained) that
are small (especially δa1) and of no practical relevance in
this investigation and, therefore, negligible. Moreover, all
numerical findings show small dependence on the specific
value of aB

2 � O(1), so that, for the sake of simplicity, we
take aB

2 = 1.
Finally, in Fig. 3 the crossover of the couplings g4 (upper

panel) and g6 (lower panel) from one regime to the other
is shown with the boundaries taken as in the two cases

Fig. 3 Flow of g4 (upper panel) and g6 (lower panel) with the same
boundary values (and the same coding) adopted in the two cases dis-
played in Fig. 2, with further boundary values: g6 = g8 = 0.001 at
t = −3

already discussed in Fig. 2. So, solid lines correspond to
large positive square mass at t = −3, while dashed lines
to m2(t = −3) < 0 and g3 � 10−15. In both cases we
fixed g4 = 0.1 and g6 = g8 = 0.001 at t = −3. In addi-
tion, we do not include diagrams containing vertices gn with
n > 8 which, as discussed below, in this momentum region
are finite and of higher order in the pertubative expansion,
and therefore numerically negligible. This in turn implies
that, similarly to δa j in (24), the flow of g4 and g6 in this
region is independent of the specific value of n in Eq. (4).

Both g4 and g6 show similar trends: increasing for t < 0
(due to the different scale in the two panels, the slope of g4

is less evident although equal to that of g6) and decreasing
for t > 0 and finally flat at larger t , when the momentum
scale becomes smaller than the mass m. The change of slope
around t = 0 is a clear indication of the different influence
of various diagrams in the two regions.

In fact, when t < 0, as repeatedly discussed, the relevant
contribution comes from the single vertex, one loop diagram,
which is O(g6) in the flow of the coupling g4 and O(g8) in
the flow of g6 (note that we choose g6 = g8 in Fig. 3).

When t > 0, the term â1k2 = a1k2 is dominant with
respect to â2k4 = a2k4/M2 and to â3k6 = a3k6/M4 in the
propagators of the theory, and it is easy to realize by sim-
ple dimensional analysis that the one loop diagrams relevant
when t < 0 and mentioned above, are now suppressed by the
factor g6 e−2t in the flow of g4, and by the factor g8 e−2t in
the flow of g6. The same dimensional analysis also shows that
the p-loop diagrams resummed (because of the same order)
in Eq.(20) in the flow of g4 when t < 0, are suppressed by
the factor g4+2p e−2pt in the same flow when t > 0. There-
fore, they are less and less important when n grows, and a
resummation like the one in Eq.(20) is meaningless when
t > 0.
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On the contrary, when t > 0, according to standard per-
turbation theory, the dominant one loop diagrams have two
vertices, as signaled by the the change of slope of the curves.
Namely, they are the O(g2

4) diagram for the flow of g4 and
the O(g4 g6) diagram for g6, which are those utilized in the
computation of the flows in Fig. 3.

5 Comments and conclusions

The first conclusion that emerges from the above analysis is
that the specific higher derivative scalar theory considered
in this paper does not produce Lorentz violating effects in
the low energy sector, large enough to be in contradiction
with experimental observations. In fact, the action in Eq. (15)
generates quantum corrections that are strongly suppressed
at high momentum because of the modified propagator, and
its anisotropy parameter z is chosen to be z = 3, the highest
possible value at which the Lifshitz scaling protects the UV
asymptotic behavior of the theory.

However, this is not sufficient to avoid dangerous cor-
rections to a1 that are responsible for the too large Lorentz
violating effects, already observed in [37] for theories with
z = 2. To avoid these effects, it is necessary to remove from
the bare action all momentum dependent vertices, thus reduc-
ing precisely to the action in Eq. (15) where the vertices,
which are all included in the potential V , do not contain any
derivative of the field. In other words, we have to restrict our
analysis in the parameter space around the fixed point solu-
tion (7), to the manifold in which all couplings associated
to momentum dependent vertices are turned off. Clearly in
the present form, this selection rule is not a consequence of
some physical symmetry, but nevertheless, as explained in
Sect. 2, it is self-consistent, in the sense that no UV divergent
terms are generated, of the same kind of those not included in
the bare action, and, moreover, it is sufficient to avoid those
experimentally unacceptable effects.

In fact, the bare action (15) can be normalized by taking
a1 = a2 = a3 = 1, and then, the corrections found for a3 are
of the kind shown in the upper panel of Fig. 2, with the drop
from a3 = 1 to a3 � 0 occurring at a scale close to the mass
m, while for a1 and a2 no significant correction is observed.
Therefore, in the dispersion relation derived from Eq. (15)
(which has the same form introduced in [49])

E2 = �k 2

[
a1 + a2

(
k

M

)2

+ a3

(
k

M

)4
]

+ m2 , (27)

the suppression of the Lorentz violating terms in the rele-
vant momentum region, M >> k > m, is essentially due to
the factors (k/M)2, and (k/M)4, as no logarithmic correc-
tion affects a1 and, in practice, in that region we still have
a1 = a2 = a3 = 1. If we accept the loose assumption that

the same dispersion relation can be extended to more realistic
theories and in particular to photons (but with m = 0), then,
the experimental observations allow us to push the scale M
around or above the lower limit M > 1017 GeV [50]; how-
ever, conservatively, we have to retain this constraint just as
a broad indication rather than a rigorous lower limit on M .

Concerning the renormalization of the theory with fixed
n in Eq. (4), the divergent diagrams produced are all of the
same kind, with logarithmic (and no quadratic) divergences.
Therefore, the renormalization procedure is easy to handle
and all divergences can be cured by means of the introduction
of counterterms.

On the other hand, we can regard the action (15) as an
effective theory with range of validity below some large UV
momentum scale � >> M , and such that it reproduces the
well known properties of a standard scalar theory in the IR
momentum region below M . Then, the analysis of the RG
flow indicates that, due to the presence of the Lifshitz point,
this theory shows very small changes of the couplings in an
extremely large range of the running scale μ (see Fig. 1).
Not only all couplings are not divergent at some Landau
pole below the scale �, but also they are, in practice, almost
constant quantities.

However, since g2, which is the square mass of the the-
ory, shows, as the other couplings, only a small logarithmic
change in the UV region well above M , but gets strong (
O(μ2) ) corrections below M (these are the large corrections
which give rise to the naturalness problem), we must con-
clude that the smoothening of the flow above M does not
influence the large changes in g2 occurring at lower scales,
so that the complication of fine tuning the UV value of the
scalar mass is still present.

Finally, the case of very large n with almost equal values
of the couplings needs to be emphasised. In fact, in Sect. 3 we
noticed that the limiting theory where all couplings are equal,
turns out to be asymptotically free with couplings that vanish
when μ → ∞. (Incidentally, similarly to these findings, in
[32–35] it is shown that the projectable Horava gravity model
is renormalizable and asymptotically free both in 2+1 and
3+1 dimensions). It must be noticed that this limiting case
shows a potential which is essentially equal to the one of
the Liouville theory (and consequently the properties of the
higher derivative four dimensional version of the Liouville
theory certainly deserve further investigation), but at the same
time, it can be used to bound more general theories.

In fact, if we treat Eq. (15) as an effective theory limited by
an UV cutoff �, then the boundary condition at �, consisting
of very similar (or at least of the same order of magnitude)
small values for a huge number (or even an infinite) of adi-
mensional couplings, could be accepted as a natural assump-
tion. Then, a comparison with the Liouville potential should
help in establishing constraints on the large momentum (but
smaller than �) trend of the couplings of the effective theory
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under investigation and, consequently, in testing whether the
latter behaves effectively as an asymptotically free (or safe)
theory.
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