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Abstract We study the internal structure of a range of
four-quark states with charm quark contributions using a
two-body Bethe—Salpeter equation. Thereby, we examine
charmonium-like states with hidden charm and quark con-
tent ccqq, open-charm states with quark content ccgg and
all-charm states with cccc. In particular we study the inter-
nal competition between meson—meson components and
diquark—antidiquark components in the wave functions of
these states. Our results indicate that the x.1(3872) and
the Z.(3900) are predominantly DD* states and that the
recently discovered open-charm state 7, is dominated by an
internal D D* component. In both cases the diquark compo-
nents are negligible. For the all-charm state X (6900) with
as yet unknown quantum numbers we identify candidates
in the excitation spectra of 07 and 17 states. Furthermore,
our framework serves to provide predictions for further, yet
undiscovered open and hidden charm four-quark states.

1 Introduction

The discovery of the x.1(3872) in 2003 by the Belle Collabo-
ration [1] is considered as the birth of exotic spectroscopy for
states including heavy quarks {c, b}. Over the years, many
more states were discovered in the mass region of char-
monia and bottomonia, which cannot be explained by the
conventional quark model, see e.g. [2—4] for an overview.
Whereas the quantum numbers of several exotic states (tra-
ditionally called X and Y states) are compatible with those
from ordinary quarkonia, the so-called Z states carry an elec-
tric charge, entailing a quark content of at least four quarks.
As a consequence, the notion of four-quark states became a
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paradigm for the discussion of all exotic heavy quark states
exposed so far. Further support for this picture is obtained
from the first candidate for an open charm four-quark state,
T}, with quark content cciid recently discovered by the
LHCb-collaboration [5] and the first all-charm state with
quark content cccc, the X (6900), also discovered by LHCb
[6].

The internal structure of these exotic states is still heav-
ily debated. States, like the x.1(3872), that are close to
mesonic decay thresholds have been advocated as meson
molecules with possible small admixtures of other compo-
nents [7], but other interpretations are debated as well [8]. A
clear distinction between a mesonic molecule and a compact
four-quark state (e.g. built from diquark—antidiquark com-
ponents) requires a detailed analysis of its associated line
shape extracted from experiment. While first high quality
results have been made available by the LHCb collaboration
using fits to experimental data [9], final clarification of this
matter may have to wait for direct measurements planned in
the upcoming PANDA experiment [10,11].

On the theory side, exotic candidates with heavy quarks
have been described in a variety of approaches such as quark
models [12-15], lattice QCD [16-25], sum rules [26], effec-
tive theories [7,27,28] or functional methods using a four-
body Faddeev—Yakubovsky equation [29-31]. While many
of these studies investigate certain aspects of four-quark
states, a full understanding seems only possible by taking
multiple configurations into account simultaneously instead
of assuming a certain internal structure a priori. Anticipat-
ing a clustering into internal two-quark states (provided by
strong two-body forces), there are three different structures
which may contribute to a four-quark state with quark con-
tent ccqgq: (i) a heavy-light meson—meson/molecular state
where two heavy-light mesons interact with each other [7],
(i1) a hadro-charmonium [32] with a heavy cc core and a
light gg pair surrounding it and (iii) a diquark—antidiquark
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state with strongly interacting heavy-light diquarks [33]. In
addition, other structures are possible. If the quantum num-
bers allow, there could be a sizeable cc-component. In some
cases even meson three-body effects could play an important
role [34,35]. Or, if the interaction between the (anti-)quarks
is dominated by irreducible three- and four-body forces, a
compact four-quark state may even arise with no preferred
internal clustering.

In this paper we study the internal structure of heavy-
light and all-heavy four-quark states using a coupled system
of covariant two-body Bethe—Salpeter equations that allow
for a competition between different internal structures. This
coupled system was firstly formulated in [36] and recently
extended to an investigation of resonances in the complex P2
plane [37], where it yielded a qualitative description of the
fo and ag states in light scalar nonet. It is derived from the
generic four-body description studied in [29,31] and allows
in principle also to study the effective mixing of four-quark
states with quark—antiquark components [38]. However, due
to technical complexities involved, in this work we will stick
to the pure four-quark picture and study the coupling to two-
quark states in a future work.

The paper is organized as follows: First, we briefly intro-
duce the two-body Bethe—Salpeter equation in Sect. 2. In
Sect. 3 technical details are discussed. Then, in Sect. 4,
we present our results for charmonium-like candidates with
quark content ccqq, open-charm ones with ccgqg and all-
charm states with cccc. In the end, we give a short summary
and draw final conclusions.

2 The four-quark two-body Bethe—Salpeter equation

In order to make this article self-contained, we briefly repeat
here the derivation of the (coupled set of) effective two-body
Bethe—Salpeter equations from the corresponding four-body
equation of the four-quark state. Additional details may be
found in [36—40].

The 2n-quark Green’s function G®" can be expressed via
the 7" matrix, the interacting part of the S matrix,

where G(()") is the product of n non-interacting, but fully
dressed quark propagators. The T matrix may be expressed
via the n-quark scattering kernel K™ as follows,

T = g0 4 gOGWTEn, )
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Asbound states and resonances are poles of the T matrix [41],
one obtains

7w Pl _p2 W@
P2+ M?

3

in the proximity of the mass pole, where the Bethe—Salpeter
amplitude W and its conjugate define the correspond-
ing pole residue. Inserting this into (2) and comparing the
residues yields the homogeneous n-quark Bethe—Salpeter
equation,

o = gMGI g, @

In the case n = 4 the kernel K can be decomposed into
irreducible two-, three- and four-quark correlations,

K@ _FQ L gO L g@. )

We neglect the three- and four-quark interaction kernels and
set KO = K@ = 0. A priori, the justification for this
approximation is on physics ground only.! If we assume that
the internal structure of four-quark states may be expressed
in terms of meson—meson, hadro-charmonium or diquark—
antidiquark components, then two-body forces must domi-
nate over three- and four-body ones. Apart from lattice QCD,
this assumption is inherent to all approaches to four-quark
states known by us, and we shall adopt it here as well.

The contribution K@ containing all irreducible two-
body interactions inside the four-quark state contains various
incarnations of the two-body scattering kernel K ® between
two quarks i and j:

K@ =k3s; st + kG sr'sy ! — K(5KS, +perm.

—_.g®@
=K 1234

=> KP. (6)

Explicit indices 1,2, 3,4 denote the four (anti-)quarks as
ingredients of the four-quark bound state and the sum-
mation over a picks up the three possible combinations
(12)(34), (13)(24), (14)(23) of two-body interactions.

In order to be able to extract a two-body Bethe—Salpeter
equation for the four-quark ggqgq state, we slightly reformu-
late the problem [36]. First, we define a four-body T -matrix

1" A similar approximation was already applied successfully in the
baryon sector where the diquark-quark picture led to a spectrum in
one-to-one agreement with experiment, see e.g. [42,43]. Whereas in
the baryon sector it can be shown explicitly that the leading part of
the irreducible three-body interaction (in terms of a skeleton expan-
sion) is small [44], we don’t have such strict arguments concerning the
four-body kernel that is relevant in this work.
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T, that is generated by ~a(2):

T, =K? +KP6{'T, = K? + ,GS"RP. )

Furthermore, we note that the BSA, Eq. (4), can be split into
three separate parts by inserting Eq. (6)

v=>Y K26 w =Y "w, ®)
a a

“)

Acting with 7, G, onto ¥ and using (7) one then obtains

4 4
Vo =T, G (W —W,) =Y T, G W, ©)
b#a

which is still an exact four-body equation apart from neglect-
ing the kernels K® and K@.

Since the T matrices T, contain effects from two-body
interactions in the same combination of (anti-)quark legs
only, they are prone to develop singularities in the respective
channels, with the quantum numbers of mesons and (anti-
)diquarks. The two-body approximation of the four-body
equation then amounts to replacing 7, with a pole ansatz
analogously to Eq. (3). Assuming that the spin-momentum
structure of the Bethe—Salpeter amplitudes factorizes, the full
amplitude ¥ can then be decomposed into meson—meson and
diquark—antidiquark substructures ®,. We thus obtain

W, = T ® T3 G2 @, (10)

fora = (12)(34) and similar expressions for the other combi-
nations. Here, ng,z) is a combination of two meson propaga-
tors or a diquark and an antidiquark propagator, respectively,
and I';; are the corresponding two-body Bethe—Salpeter
amplitudes, i.e. I := W@ The representation Eq. (10) is
in some sense a ‘physical basis’ in that it builds a repre-
sentation of ¥, in terms of reduced internal Dirac, flavour
and colour structure from a physical picture. The algebraic
structure of the tetraquark-meson and tetraquark-diquark ver-
tices &, depend on the respective quantum numbers of the
investigated four-quark state. For scalar four-quark states and
(pseudo)scalar ingredients, e.g., those amplitudes are flavour
and colour singlets and Lorentz scalars, otherwise they are
Lorentz vectors or tensors.

With Eq. (10), we effectively solve for the vertices @,
while making use of solutions of the two-quark BSE for the
amplitudes I';;. The interaction kernel elements for the inter-
nal vertices @, are quark exchange diagrams as visualized
in the last line of Fig. 1.

Fig. 1 Diagrammatic representation of the basic quantities used in
deriving the pure two-body/four-quark BSE. In the first line we display
the representation of the bound state together with its corresponding
BSE (4). In the second line we give the explicit decomposition of the
interaction kernel K™ in terms of irreducible two-, three- and four-
body interactions. The red crosses indicate truncations, justified and
explained in the main text. The third line displays the reduction of the
four-body amplitude into a sum of two-body amplitudes featuring inter-
nal mesons (dashed lines) and (anti-)diquarks (double lines). One of the
resulting effective two-body equations is given in the lowest line. The
other two equations are obtained under permutations in the index set
{1, 2, 3}, thus spanning the whole coupled system of two-body BSEs
(for equal quark masses ®; and &, are identical)

3 Technical details
3.1 Quark propagator, mesons and diquarks

In order to solve the coupled four-quark two-body BSE, we
need knowledge about other Green’s functions such as quark
propagators, meson and diquark amplitudes and propagators.
These quantities have to be precalculated by solving the cor-
responding equations of motion, namely the quark Dyson—
Schwinger equation (DSE) and the meson and diquark BSEs.
Quark propagators The quark DSE follows from the 1PI
effective action via functional derivatives with respect to
quark fields and reads

523) = 226+ Zumo)o+Cr [ KuwprpSur(@. (11
q

with the wave-function and mass renormalization constants
Z> and Z,,, the bare quark mass mq and the Casimir Cr =
4/3 for Nc = 3. The interaction kernel K contains the
dressed gluon propagator as well as one bare and one dressed
quark—gluon vertex. The Greek super-indices refer to colour,
flavour and Dirac structure. We apply the rainbow-ladder
approximation which proved to be reliable for ground state
properties in all channels used in this work, see the review
[43] for a detailed discussion. In this approximation, the ker-

@ Springer
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nel can be written as

4 a(k?)
2
Kawpp =27 —7—

TE YVaw Ve (12)
where Tk” " is the transverse projector with respect to the
momentum k and the effective coupling (k%) occurs as the
quantity which carries the non-trivial, momentum-dependent
part of the gluon propagator and the quark—gluon vertex. The
applied model for (k%) was taken from [45] and has been
discussed in detail e.g. in [43].

Meson and diquark amplitudes For mesons and diquarks one
needs to solve the two-quark Bethe—Salpeter equation, i.e.
Eq. (4) for n = 2. For the interaction kernel K ® we adopt
the same form as in the quark DSE, Eq. (12),

K® =K, (13)

as it preserves chiral symmetry through the axial-vector
Ward-Takahashi identity [43]. The amplitudes I'(P, p)
occur as solutions of the BSEs and can be written as a linear
combination of Dirac basis elements tl.(” ) as follows (colour
and flavour structure suppressed and p occurs as a Lorentz
index for J = 1 states):

W, p)y =Y "1"(P. p)fi(P. p). (14)

For pseudoscalar mesons and scalar diquarks, there are four
linear independent tensor structures and for vector mesons
and axialvector diquarks there are eight. We solve the two-
quark meson and diquark BSEs for the full set of basis ele-
ments and will approximate the solution by only taking into
account the leading part of the amplitude, i.e.

rp, py~ (P, p) fi(P, p), (15)

which corresponds e.g. to 7 = y° part for pseudoscalar
mesons and 11“ = y# part for vector mesons [46], where
the index T stands for the transverse projection with respect
to the total meson momentum. For scalar and axialvector
diquarks, one has to multiply the charge conjugation matrix
C = y%? on the tensor structures of pseudoscalar and vector
BSEs. Only taking into account the leading structures of the
respective amplitudes has proven to be a suitable, qualitative
approximation of the full amplitude [47].

Mesons and diquarks with different flavour content could
be calculated by taking quark propagators with different input
quark masses m (cf. (11)) as ingredients of the meson BSE
(4). The input quark masses (u, d, c) are fixed by ensuring
that (i) the pion mass matches the (averaged) experimental
value, (ii) the kaon mass is accurate and (iii) the sum mp +

@ Springer

m p+ agrees with experiment. We then arrive at

mou/a =3.8MeV mgy =85.5MeV mg . =795 MeV
(16)

my = 0.138GeV mg = 0.499 GeV
mp = 1.805GeV mp+ = 2.070 GeV. a7

Note that there is a certain mismatch between the heavy-light
states and the charmonia. In order to obtain the experimental
value of the J /v meson,

mypy =3.10GeV, (18)

a charm quark mass of 845MeV is needed. This mismatch of
5% reflects a systematic model error. Furthermore note that
the heavy-light meson masses and amplitudes (in particular
those of the D mesons) are extrapolated due to quark poles
in the integration domain [48].

Meson and diquark propagators For an exact description of
the meson and diquark propagators, we generalize the T-
matrix pole ansatz (3) and replace the pole by a (potentially
off-shell) propagator D:

T@ ~ T (P)D(P>)T(P). (19)

The propagator could then be calculated straightforwardly
by using the solutions of the corresponding BSE via (2) [43].

3.2 Solving a BSE in the presence of decay thresholds

We solve a BSE by attaching an artificial eigenvalue function
A(P?) on the left hand side of Eq. (4):

The BSE is solved for a P2 where A(Pz) = 1 holds. For
bound states, the mass could then be extracted via M? =
— P2, In the coupled system of BSEs as displayed in Fig. 1
the accessible region for the eigenvalue curve A(P2) for real
momenta P2 is in principle restricted by the appearance of
the first cut, i.e. the physical decay threshold. As an exam-
ple, consider calculating a candidate for the x.1(3872) which
may consist of J /¥ and w internally with their total momenta
Pj/y and P,. With real relative momentum p between
these two mesons, these momenta can be parametrized by
Pjjy = p+nP and P, = —p + (1 — n)P such that
P = P;;y+ P, for arbitrary p and momentum is conserved.
The partitioning parameter n can then be adjusted such that
the meson propagators are not probed on-shell until the phys-
ical decay threshold M,, + M,y is reached. In practise,
however we face a somewhat tighter constraint for technical
reasons: In order to be able to carry out the calculation, we
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have to provide the (off-shell) Bethe—Salpeter amplitudes of
the J/v, the @ and the heavy-light D-mesons after quark
exchange. The corresponding Bethe—Salpeter equations for
the heavy-light mesons can be solved routinely for real rela-
tive momenta between the constituent quarks and antiquarks,
but are currently out of reach for complex relative momenta.
It is straight forward to show that this technical constraint
leads to n = 1/2 in the distribution of total momentum P
onto the total momenta of the P;,y and P,. This in turn
leads to the constraint P2 > —4M?2 such that the pole of the
propagator of the omega-meson is avoided. In general, the
constraintis P> > —4m?, where m is the mass of the lightest
meson in the system of equations. For this region, we calcu-
late the eigenvalue curve and extrapolate from there into the
non-accessible region in order to obtain an on-shell solution
for the four-quark state. A similar procedure has been applied
in Ref. [38] in the light quark sector.

In principle, it would be very interesting to extract not only
the mass of the bound state/resonance, but also its Bethe—
Salpeter wave function. The relative normalised weight of the
different components of this wave function would then allow
for a direct and quantitative determination of the size of dif-
ferent contributions, i.e. meson—meson, hadro-charmonium
or diquark—antidiquark. Unfortunately, such an extrapolation
is much more complicated as the above discussed extrapo-
lation of the eigenvalue, since it would have to be done for
every relative momentum and consequently would face much
larger uncertainties. We will study this possibility in future
work.

4 Results

In this work we present results for the following flavour
decompositions,

e charmonium-like candidates with hidden charm (ccqq)
e open-charm states (ccqq)
e all-charm states (cccc).

According to the two-body approximation, Eq. (10), we take
into account different internal clusters. If the state in ques-
tion has an experimental candidate, the choice of our mesonic
internal clusters are motivated by leading decay channels; if
there is no such candidate, we choose the channels with low-
est mass and with vanishing orbital momentum (as the two-
body ansatz assumes L = 0). For the diquark—antidiquark
clusters we also chose the combination with the lowest pos-
sible masses allowed by quantum numbers. Overall, we
probe states with scalar and axialvector quantum numbers,
JP = 0% and 17T, with internal clusters that carry pseudo-
scalar and vector quantum numbers for mesons and scalar (S)
and axialvector (A) quantum numbers for diquarks. These are

precisely the channels where the underlying rainbow—ladder
approximation of the quark—gluon-interaction is known to
work well [49]. Other quantum numbers of the four-quark
state require internal meson and diquark channels that are
not well represented by this truncation and therefore no high
quality results can be expected. We therefore postpone the
study of such states to future work.

We also like to point out that the current framework is
only able to investigate the effects of internal two-body clus-
ters that do not change the overall quark-content of the state
in questions. This excludes the formation of internal struc-
tures such as three-body D Dir-components, which in some
cases may have a considerable impact. This has been studied,
e.g. for the x.1(3872) [50] and the T.ct [34,35]. Including
these effects would require a substantial generalisation of our
framework which seems out of reach for now.

4.1 Charmonium-like four-quark candidates with quark
content ccqq

We investigated charmonium-like tetraquarks for different
quantum numbers in order to probe the experimentally con-
firmed axialvector states, x.1(3872) and Z.(3900), and fur-
ther scalar states which are not yet confirmed. We show the
ground state masses in Table 1. Variations in mass with the
internal light quark masses are shown in Fig. 2. Here we also
compare the full calculations, including all channels in ques-
tion, with calculations including only part of the channels in
order to identify the most dominant ones.

For both quantum numbers, 0(17") (left panel) and
1(177) (right panel), we observe that leaving out D D* clus-
ters changes the results dramatically, whereas they are hardly
affected by the removal of the diquark clusters. We therefore
conclude that the heavy-light meson—-meson component is
dominating and the diquark components are negligible. The
hadro-charmonium component has only a small impact on the
0(111)-state, whereas its contribution on the 1(177)-state is
much more relevant. This can be traced back to the pres-
ence of a pion in the hadro-charmonium component of the
isovector 1(177)-state, which makes this component lighter
and therefore more relevant than the corresponding hadro-
charmonium component with @ in the isoscalar 0(171)-state.
Overall, the masses of both experimental candidates, the
Xc1(3872) and the Z-(3900), are reproduced successfully by
our calculations within error bars. Whether these states are
below or above threshold could not be resolved within the
errors of our calculations. Note that we are therefore not in a
position to prove (or disprove) a potential molecular nature
of these states: while the dominance of heavy-light meson
components in their wave functions are certainly compatible
with (and even may suggest) a molecular nature, we cannot
pin down the required small binding energy with sufficient
accuracy.

@ Springer
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Table 1 Ground state masses for hidden-charm four-quark states with component in the equation. A and S stand for axialvector and scalar
a pair of light quarks. The errors stem from extrapolations of the eigen- (anti-)diquarks
value curve on the real axis. Bold-written clusters denote the dominant
1(JFC) Exp. candidate Clusters Mass [GeV]
00t - DD +wJ/y +SS 3.49(25)
1(0+1) - DD+ 7. +SS 3.20(31)
0(17+) Xc1(3872) DD* 4+ w J/y + AS 3.85(18)
1(177) Z.(3900) DD* + 7 J/Y + AS 3.79(31)
Fig. 2 The mass curves for 7 T T 7 -
charmonium-like hidden-charm hidden, 0(1+) % hidden, 1(177)
. . b P
four-quark candidates with 6 e 6 1
quantum numbers 0(17F) )} é / N /;/ 1
(upper left panel) 1(1%7) (upper = I % & = /%/
right panel), 0(0*F) (lower left o5 Tl s o 5 -
+— i ~ DD* +wJ/y —+— ~ DD* 4+ nJ/y ——
panel) apd 1(077) (lower righ_t = V Do //xs = /% I DO A8
panel)with quark content ccqg 4  wI/Pp+AS S  wJJY+AS e
and dynamic light quark mass DD* +wJ/}+AS —8— T DD* +nJ/ip +AS —a—
m D* m NH*
m’{' A and § stand for lineg;r[ét rrrrrrr 3 lineg;r[ét rrrrrrr §
axialvector and scalar 3 - - - — - - - . -
(anti-)diquarks. The short, blue 0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
bars on the left hand side denote mq [GeV] mg [GeV]
the DD™ threshold at the 7 T T 6 T T
physical point, m, = 3.8 MeV hidden, 0(07) hidden, 1(0++) -
6 5 — .8
=z /g//é = 3 }/m
o b e S P .-
- /ég/ - 4 1 - B
= T /é/ DD-&-ﬁwJ/d; — = / + DD + nerr —t—s
4 A DD +SS —— _ DD+ AA —x—
}/¥ DD+ wJ/¢p+SS —8— DD +nem + AA —8—
. Mpyp — 3 . Mpyp )
3 ) l}ncar ﬁt rrrrrrr . ) I}ncar I:it e
0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
mg [GeV] mg [GeV]
Fig. 3 The mass curves for 7 T T 7 T T
open-charm four-quark open, 0(1F) open, 1(1%)
candidates and quantum 6 6
numbers 0(1") (upper left B s
panel), 1(17) (upper right B3 jb/} 3 A
panel) and 1(0%) (lower panel) O 5 3 5
with quark content ccgg and = //( = //f/ '
variations in the light quark 4 p/i DD* —— | 4 /i ) DD* —+— |
mass mg. The short, blue bars kT DD* + AS +—— % - DD* + AA —s—
on the left hand side denote the ! e Y ’ motpr T
. ear fit linear fit
DD®™ threshold at the physical 3 — . 3 - - :
point, my = 3.8 MeV 0 01 02 03 04 05 06 07 08 0 01 02 03 04 05 06 07 08
mgy [GeV] mg [GeV]
7 T T
open, 1(07)
B
6 %
ks
25 | % s T a
-
= % /{ b DD —t—s
4 st + AA —— |
— x D*D* + AA —x—
x mpyp ———
3 . l}near{it e

0 01 02 03 04 05 06 0.7
my [GeV]
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On the other hand, we find four-quark states with scalar
angular momentum well below the threshold. Thus they
could very well be bound states. They are also dominated
by the heavy-light meson—-meson components consisting of
D and D mesons, since without the D D-clusters we do not
obtain any solutions of the BSEs. Again we observe that the
diquarks are negligible in both cases and the lighter hadro-
charmonium component in the isovector state is more impor-
tant than the heavy hadro-charmonium component in the
isoscalar one.

The ground state masses in Table 1 have been extracted
by fitting a linear curve (dashed) to the mass curves. Within
error bars, this linear fit seems to work very well and pro-
vides a rough estimate of the (real part of the) masses in our
approach. In general, the mass ordering between the scalars
and the axialvectors is natural, as axialvector states are more
massive than their scalar counterparts, and agrees with the
one expected in a molecule picture [7,51]. Note that in con-
trast to lattice QCD, calculations at the physical point in
our approach do not require more resources than for heavier
quark masses. For the isovector candidates however, there are
additional technical complications due to the occurrence of
pion poles at small time-like momenta. Since in the present
set-up we cannot go beyond these poles, the necessary extrap-
olations to the pole location of the four-quark state have to
bridge an enormous mass range resulting in very large error
bars and cease to be useful. In the plots we only show results
at the physical point with an excluded hadro-charmonium
component, because in that case the problematic pion pole is
absent.

Running up the mass curves for isoscalar states from
my 4 — My, it is possible to extract also candidates includ-
ing strange instead of light quarks. The corresponding masses
are given by

MCES§,0++ = 369(18) GeV
M ;55 1++ = 4.10(16) GeV, 21

which makes it possible to identify the axialvector candi-
date with the x.1(4140) which decays at least into J /¢ ¢,
although the dominant internal structure in our calculations
is DyD?.

Our results agree very well with recent four-body calcu-
lations on a quantitative level [29,31]. In particular our main
findings, heavy-light meson dominance and diquark suppres-
sion are similar. Thus, both approaches are consistent with
each other.

4.2 Open-charm states with quark content ccqq
Similar to Sect. 4.1 we also investigated open-charm states

with quark content ccqg. The corresponding mass curves
are shown in Fig. 3 and the extrapolated masses in Table 2.

Table 2 Ground state masses for open-charm four-quark states. The
errors stem from extrapolations of the eigenvalue curve on the real axis.
Bold-written clusters denote the dominant component in the equation.
A and S stand for axialvector and scalar (anti-)diquarks

1(J%) Exp. candidate Clusters Mass [GeV]
1(0%) - DD + D*D* + AA 3.21(2)
0(1t) Tt DD* + D*D* + AS 3.49(48)
1(1+) - DD* + D*D* 4+ AA 3.47(24)

Note that the open charm states here underlie Pauli symme-
try, which restricts the choice of diquark—antidiquark compo-
nents as they stem from the colour-antitriplet. In particular,
this is the reason why there is no isoscalar-scalar state in our
approximation and why the lowest-lying allowed diquark—
antidiquark cluster consists only of axialvector diquarks, AA,
in the scalar case.

We observe that both axialvector four-quark states are
(slightly) higher in mass than the scalar state, which is con-
sistent with our findings in the hidden-charm sector. Differ-
ent from the hidden-charm case, the masses of the isoscalar
and isovector states are in a similar mass region, which
may be traced back to the absence of an influential hadro-
charmonium component. Unfortunately, and similar to cor-
responding lattice calculations [17,22,24], we cannot say for
certain that our axialvector states are bound. This seems to be
different for the scalar state, where the extrapolation errors
are small enough to suggest a bound state at the physical
point.

Currently, there is only one experimental candidate for an
open-charm state, the recently discovered isoscalar axialvec-
tor 7, with a mass of ~ 3875MeV and a leading decay chan-
nel compatible with an inner composition of DD* [5,34].
Within error bars, the experimental mass and our mass agrees,
even as our mean value is about ten percent too small. We
come back to this discussion in Sect. 5. The almost mass
degenerate axialvector isovector state has been searched for,
but not found by the LHCb collaboration in the respective
channels [34]. This is an interesting observation that deserves
further consideration.

The axialvector masses for the open-charm states in our
framework are smaller than the hidden-charm equivalents.
An explanation for this is the corresponding interaction on
the level of the two-body BSE. Due to the absence of a hadro-
charmonium component the dominating interaction diagram
is the quark exchange between two identical D meson clus-
ters, cf. Fig. 1. As it turns out, the D meson Bethe—Salpeter
amplitudes are larger than the ones of J /v and w or J /4 and
7. This implies a higher eigenvalue curve (20) and therefore,
a lighter ground state. This is in agreement with early studies
of open flavour heavy-light systems [52].
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Table 3 Numerical values for the ground states and the excitation spec-
tra (excitation levels denoted by stars, ) of different all-charm four-
quark candidates using different clusters. Bold-written clusters are the
dominant ones. A stands for an axialvector (anti-)diquark

Jr Clusters M [GeV] M* [GeV] M** [GeV]
ot Nele + AA 5.34(2) 6.30(13) 6.70(30)
J/v J/v+ AA 6.30(3) 6.71(14) 6.87(12)
1t ne J/¥ + AA 6.07(2) 7.03(26) -
J/v J/v+ AA 6.28(4) 6.92(12) -

4.3 All-charm states with quark content cccc

The quantum numbers of the only experimentally confirmed
candidate for an all-charm state, the X (6900), have not yet
been identified. It is therefore reasonable to probe differ-
ent quantum numbers with different internal configurations
in order to search for potential candidates. Similar to the
open-charm case, Pauli symmetry restricts the quantum num-
bers of the (anti-)diquarks, i.e. explains why only axialvec-
tor diquarks could occur as possible clusters. Technically,
all-charm states offer a unique possibility within the restric-
tions of our current framework: in the accessible region of
total momenta not only the eigenvalue curves for the ground
states but also those for the radially excites states are not too
far away from the physical point, A = 1, it is possible to use
our well-probed extrapolation procedure to study the excita-
tion spectra of these candidates as well. The different states
we consider are shown in Table 3 along with the calculated
masses. Figure 4 shows the calculated spectrum graphically.

We find that all ground states are too low in mass to pro-
vide a proper description of the X (6900). Instead, we find
possible states within the excitation spectra for both quan-
tum numbers, 0T and 1*. Whereas potential candidates are
found as second radial excitations of the scalar states, the axi-
alvector ones occur as first excitations. Only the ground state
of the di-n, state is surely bound whereas all other states are
either clearly above or in the proximity of the corresponding,
lowest-lying decay threshold. Without exceptions, the states
are dominated by the meson—meson component; only the sec-
ond excitations (**) in the scalar spectrum have significant
(although still small) diquark—antidiquark components. Note
that, again, meson—meson dominance alone is not sufficient
to conclude anything about the potential molecular nature
of these states (cf. the discussion of the x.;(3872) and the
Z.(3900) above).

In the 17 case, both configurations, the first excitations of
ne J/¥ and J/y J /i, overlap with the experimental state
within error bars. Thus, it is possible that the experimental
state is a mixture of these configurations. In our calculations,
we have not yet studied this possibility due to the associated
complexity. This is left for future studies.

@ Springer
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Fig. 4 The all-charm spectrum showed graphically with different
quantum numbers 0F and 1+, showing the ground states and excited
ones. Striped rectangles denote states which are dominated strongly
by the meson—meson components, such that diquark—antidiquark com-
ponents are completely negligible. In contrast, open rectangles denote
states with still dominant meson—meson components, but significant
diquark—antidiquark admixtures. The vertical extent of the rectangles
denote the numerical error from the extrapolation of the corresponding
eigenvalue curve and the continuous, horizontal blue line denotes the
experimental value for the X(6900) [6]

Many previous model calculations of the X (6900) assume
a diquark—antidiquark structure [14,53-56] and find a first
radial excitation in the mass region of the experimental state.
While we agree with theses studies on the general notion
that the experimental state is a radial excitation, our findings
seem to invalidate diquark-models for these states on general
grounds. Our findings partly agree, however, with very recent
calculations in a non-relativistic quark model that uses a spin-
independent Cornell potential based on lattice calculations to
investigate meson—meson resonances [15]. The agreement is
especially present in the 17 channel, where the J /v J /¥
ground and excited state are in a very similar mass region.
This further supports the interpretation of the experimental
state as an axialvector di-J /v resonance.

5 Concluding remarks

In this work we studied the inner structure of a number
of four-quark candidates with charm quarks. These involve
charmonium-like hidden-charm states with quark content
ccqq, open-charm states with quark content ccqq and all-
charm states with quark content cccc. In a parameter free
calculation we probed different quantum numbers and found
reasonable descriptions of experimentally confirmed states,
dominated by internal meson—meson configurations. In the
sector of charmonium-like states, the x.1(3872) and the
Z.(3900) are well-described as DD* states. Furthermore
we find a Dg D} dominated state which may be identified
with the x.1(4140). In the open-charm region we found an
isoscalar axialvector D D* state which may be identified with
the recently discovered 7. In the all-charm sector, we find
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possible candidates for the X (6900) in the excitation spectra
of scalar and axialvector four-quark states. We were also able
to make predictions for the inner structure of many additional
states which have not yet been experimentally confirmed.
In general, internal diquark—antidiquark configurations are
always found to be subleading and in many cases even neg-
ligible. This invalidates models based on diquark degrees of
freedom on general grounds. Whenever possible due to quan-
tum numbers we also see hadro-charmonium components,
but again only as sub-dominant components of the full wave
function. A possible mixing with ordinary charmonia which
would be interesting for charmonium-like states with /7 = 0
was not yet included for technical reasons.

Generally speaking, our results in this work are qualita-
tive, mainly because the two-body equation is truncated (a)
by neglecting three- and four-body forces, cf. Eq. (5), and
(b) by only taking into account the leading component of the
meson and diquark BSAs, cf. Eq. (15). The systematic quan-
titative error following from those truncations is hard to esti-
mate. From our experience with other quantities, e.g. decay
constants, where all components can be taken into account
we infer that the potential error may be on the twenty percent
level. Further uncertainties come from extrapolations of the
eigenvalue curves as introduced in (20). This error has been
quantified. All these sources of error result in inaccurately
resolved masses, but we do not expect that physically rele-
vant qualitative aspects such as mass orderings from which
we deduce dominant clusters are affected. In particular we
are reasonably certain, that all sources of error due not affect
the general statement that diquarks are mostly irrelevant.

This work could also be considered as groundwork for
further calculations. For a more complete understanding of
the states in question it would be reasonable (a) to couple
the four-quark components to a quark—antiquark state if the
quantum numbers allow [38] and (b) to further investigate the
eigenvalue curve for complex P2 in order to describe states as
four-quark resonances including their widths, as done for the
light quark sector in Ref. [37]. This is subject of future work
and connected to solving further technical challenges such as
gaining knowledge of D meson amplitudes in the complex
plane and the possibility to circumvent quark, meson and
diquark poles dynamically while integrating.

In any case, to our mind the results of this work demon-
strate that functional continuum methods based on the Bethe—
Salpeter equations of QCD are an adequate and systematic
tool to decode the inner structure of exotic states with heavy
quarks involved.
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