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Abstract The paper discusses gravitational collapse of an
electrically charged scalar field in the decoupling limit of the
dilatonic Gauss–Bonnet gravity. The emerging spacetimes
contained Schwarzschild black holes for sufficiently big
scalar fields self-interaction strengths. Dependencies of the
collapse characteristics on the dilatonic and Gauss–Bonnet
parameters turned out to be similar in the case of black hole
masses and radii as well as their time of formation in terms of
retarded time. In the cases of masses and radii minima were
observed, while in the remaining case a maximum existed.
The electric charge of the emerging black holes possessed
a maximum when measured versus the dilatonic coupling
constant and was strictly decreasing with the Gauss–Bonnet
coupling. The times of formation and charges of black holes
decreased, while masses and radii increased with the self-
interaction strengths of the dynamical fields. Values of the
energy density, radial pressure, pressure anisotropy and the
collapsing scalar fields were the biggest along the hypersur-
face of propagation of the scalar fields initial peaks. For big
values of the Gauss–Bonnet coupling constant, an increase
in their values was also observed in the vicinity of the cen-
tral singularity within the whole range of advanced time.
Non-zero values of the dilaton field outside the black hole
event horizon may indicate a formation of a hairy black hole.
The local temperature calculated along the apparent horizon
was increasing for late times of the evolution and exhibited
extrema in areas, where the dynamics of the gravity–matter
system was observed.
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1 Introduction

Dynamical gravitational collapse is a fully non-linearly and
non-perturbatively described process in which a mutual evo-
lution of the spacetime geometry and matter content of the
evolving spacetime is tracked. It means that these two fea-
tures affect each other in the course of the process and hence
the described outcomes are closer to reality, but at the same
time more difficult to obtain than in the case of matter evolu-
tions on predefined backgrounds, even if backreaction is con-
sidered. When an electrically charged scalar field is included
in the examined matter–geometry system, the whole system
can be regarded as simulating real astrophysical evolutions.
Thus obtained spacetime structures satisfactorily resemble
the structures anticipated in the case of a non-charged, but
rotating collapse, which takes place during real astrophysical
events [1,2].

Up to now, structures of spacetimes emerging from the
dynamical gravitational collapse were extensively studied
first in the simplest cases of sole self-interacting neutral [3]
and electrically charged [4–8] scalar fields. More sophisti-
cated theories, complicated in either or both gravitational
and matter sectors were studied in [9–20]. Apart from inves-
tigating structures of spacetimes forming in the process of
interest, additional problems related to gravitational dynam-
ics, such as pair creation during collapse and subsequent
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evaporation of black holes, issues of the cosmic censorship
conjecture and the information loss problem, the impact of
changing the number of dimensions and the role of various
topologies, time measurements as well as observables, were
discussed in [1,2,7–9,11,21–27]. The up-to-date summary
of the sketched researches can be found in [28].

The Einstein–dilaton–Gauss–Bonnet (EdGB) theory is
a beyond general relativity formulation, which is a scalar–
tensor theory including higher order terms in curvature.
It has been extensively studied in various cosmological large-
scale contexts such as dark energy explanations, inflation,
early universe bouncing models or cosmological perturba-
tions [29–31]. It has been also involved in small-scale astro-
physical analyses like investigating black holes and their
mergers or creation and stability of wormholes [32–35].
Experimental predictions of the EdGB theory are consistent
with current general relativity tests, but the theory yields dif-
ferent results for mergers of the stellar mass black holes [36],
what makes it interesting in the context of analyses of the
recently extremely viable gravitational waves observations.

So far, a spherical gravitational collapse in the EdGB the-
ory was considered within its shift symmetric version in [37].
The research was conducted in coordinates which do not pen-
etrate the horizon, hence the collapse results were described
up to the forming horizon and its interior was not analysed.
This successful attempt to describe the outcomes of a fully
non-linear process within the EdGB theory was an introduc-
tory step towards analysis of the whole spacetime, includ-
ing interiors of emerging singular objects. Our current stud-
ies present another approach to this problem, namely the
engaged coordinates cover the whole spacetime, yet their
usage also requires introducing a simplification of the full
EdGB theory.

The decoupling limit of the EdGB theory is a version of the
full theory, in which the Gauss–Bonnet term is not included in
the derivation of the Einstein equations, only in the equations
describing the matter sector of the theory. This means that
the scalar sector of the theory does not backreact on geome-
try [34]. This simplified formulation of the full EdGB theory
has been recently employed in research on black hole hair
formation and scalar modes [38–40]. Investigating the col-
lapse within the truncated version of the EdGB theory will be
performed in double null coordinates, which enable to trace
the gravitational evolution within the whole spacetime, that
is from approximately null infinity up to the central singular-
ity. This is the first step towards investigations of the course
and results of gravitational evolutions in the full version of
the EdGB theory in the whole forming spacetimes, not only
regions exterior to the nascent singular objects.

The paper is organized as follows. In Sect. 2 the considered
model was presented. Section 3 contains details of numerical
calculations and results analysis. The obtained results were
described and discussed in Sects. 4–6. Section 7 summarizes

the undertaken research. Technical details of the numerical
code preparation and its tests are presented in Appendix A.

2 Theoretical model of the evolution

The studied theoretical model of the dynamical collapse
involves an electrically charged scalar field collapsing within
the decoupling limit of the dilaton–Gauss–Bonnet gravity.
The general form of the action written, due to the fact that
the whole construction involves the string theory concepts,
in the string frame is the following:

Ŝ =
∫

d4x
√

−ĝ

×
{
e−2φ

[
R̂ − 2

(
∇̂φ

)2 + e2αφ
(
L̂SF + γ L̂GB

)]}
,

(2.1)

where φ stands for the dilaton field, α is the dilatonic coupling
constant and γ determines the coupling between the Gauss–
Bonnet contribution and the dilaton. The geometrized units
system, in which 8πG = c = 1, was used in the computa-
tions. The Lagrangian of the electrically charged scalar field
ψ is given by the expression

L̂SF = −1

2
D̂βψ

(
D̂βψ

)∗ − Fβσ F
βσ , (2.2)

where Fβσ is the Maxwell field strength tensor. The covari-
ant derivative is D̂β = ∇̂β + ieAβ , where e is the electric
coupling constant, Aβ is the four-potential and i denotes the
imaginary unit. The Gauss–Bonnet Lagrangian is defined in
a standard way

L̂GB = R̂2 − 4R̂βσ R̂
βσ + R̂βσγ δ R̂

βσγ δ. (2.3)

The variation of the constructed action (2.1) with respect
to matter fields, namely the dilaton field φ, the Maxwell field
Aμ and the complex scalar field ψ results in the following
set of evolution equations:

∇2φ − α + 1

4
e2φ(α+1)Dνψ

(
Dνψ

)∗ − 1

2
αe2αφFβσ F

βσ

+ 2γαe2αφL̂GB = 0, (2.4)

∇μ

(
e2αφFμν

)
+ 1

4
e2φ(α+1)

[
ieψ∗Dνψ − ieψ

(
Dνψ

)∗ ]
= 0,

(2.5)

∇2ψ + ieAβ
(
2∇β + ieAβ

)
ψ + ie∇β A

βψ = 0, (2.6)

∇2ψ∗ − ieAβ
(
2∇β − ieAβ

)
ψ∗ − ie∇β A

βψ∗ = 0. (2.7)

The derivation of the above equations of motion involved
a conversion of the string frame into the Einstein frame,
which are related via the conformal transformation

gμν = e−2φ ĝμν, (2.8)
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where gμν and ĝμν denote metric tensors in the Einstein and
string frames, respectively [41]. The transformation between
the two frames preserves causality. Since the obtained results
will be mainly elaborated on employing notions related to
causal structures of emerging spacetimes and features of the
intrinsic dynamical objects, we do not expect the transforma-
tion to influence the ultimate conclusions and hence they can
be regarded as physically relevant. From now on, all variables
and quantities are written in the Einstein frame.

The gravitational field equations derived by varying the
action (2.1) with respect to the metric tensor, taking the trun-
cation of the theory into account, will complement the above
set of equations describing the examined dynamical system.
For the current studies, the double null spherically symmetric
line element [42] is chosen

ds2 = −a(u, v)2dudv + r2(u, v)d�2, (2.9)

where u and v are retarded and advanced time null coor-
dinates, respectively, and d�2 = d�2 + sin2 �d2 is the
line element of the unit sphere, where � and  are angular
coordinates. This choice of coordinates determines the space-
time foliation for conducting computations, which becomes
2+2 [43]. The double null formalism has been widely and
successfully employed in dynamical gravitational collapse
researches, e.g., [1,2,4,6–8]. Its advantage is that it enables
to follow the dynamical evolution from approximately past
null infinity, through the formation of possible horizons up
to the final central singularity of singular spacetimes.

In spherical symmetry the only non-vanishing compo-
nents of the electromagnetic field tensor are Fuv and Fvu . Due
to the gauge freedom Au → Au+∇uθ

′, where θ ′ = ∫
Avdv,

the only non-zero four-vector component is Au . It is a func-
tion of retarded and advanced time.

The dilaton field equation of motion (2.4) in the chosen
coordinate system is given by

r,uφ,v + r,vφ,u + rφ,uv − αe2αφ Q2a2

4r3

+ −α + 1

8
re2φ(α+1)

×
[
ψ,uψ

∗
,v + ψ,vψ

∗
,u + ieAu

(
ψψ∗

,v − ψ∗ψ,v

) ]

+ −16γαe2αφ 1

a4r

×
[
12a,ua,vr,ur,v − 4a

(
a,vr,vr,uu + a,ur,ur,vv

)

+ 2a2
(
r,uur,vv − r2

,uv

)

− 4aa,uvr,ur,v + a2 (
a,ua,v − aa,uv

) ]
= 0, (2.10)

where we set

Q = 2
Au,vr2

a2 . (2.11)

Q is a function of retarded and advanced time and determines
the electric charge within a sphere of a radius r(u, v) on
a spacelike hypersurface containing the point (u, v). Partial
derivatives with respect to the null coordinates are marked as

,u and ,v .
Concerning the assumed line element (2.9) and the def-

inition of electric charge (2.11), the v-component of the
Maxwell equations (2.5) can be written in the form describ-
ing dynamical behavior of the quantity Q, which is

Q,v + 2αφ,vQ + ier2

4
e2φ

(
ψ∗ψ,v − ψψ∗

,v

) = 0. (2.12)

The evolution of the only non-zero component of the four-
vector of the Maxwell field is governed by

Au,v − Qa2

2r2 = 0, (2.13)

which stems from (2.11). The Eq. (2.12) can be rewritten in
the form of a conservation law

∂v

(
e2αφQ

) = jv with jv = −e2αφ ier
2

4
e2φ

(
ψ∗ψ,v − ψψ∗

,v

)
,

(2.14)

which indicates that the quantity e2αφQ is conserved when
the current associated with the complex scalar field vanishes.
When the dilaton field also vanishes, Q is the quantity, which
is conserved.

The equations for the complex scalar field (2.6)–(2.7)
become

r,uψ,v + r,vψ,u + rψ,uv + ier Auψ,v + ier,vAuψ

+ ieQa2

4r
ψ = 0, (2.15)

r,uψ
∗
,v + r,vψ

∗
,u + rψ∗

,uv − ier Auψ
∗
,v − ier,vAuψ

∗

− ieQa2

4r
ψ∗ = 0. (2.16)

The stress-energy tensor for the considered electrically
charged scalar field evolving within the decoupling limit of
the dilaton–Gauss–Bonnet theory is the following:

Tμν = 2φ,μφ,ν − gμνφ,βφ,β

+ e2αφ

(
2FμβFν

β − 1

2
gμνFβσ F

βσ

)
− 1

4
e2φ(α+1)

×
[
gμνDβψ

(
Dβψ

)∗ − Dμψ (Dνψ)∗

− (
Dμψ

)∗
Dνψ

]
. (2.17)

Its non-vanishing components written in double null coordi-
nates are
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Tuu = 2φ2
,u + 1

2
e2φ(α+1)

×
[
ψ,uψ

∗
,u + ieAu

(
ψψ∗

,u − ψ∗ψ,u
) + e2A2

uψψ∗],
(2.18)

Tvv = 2φ2
,v + 1

2
e2φ(α+1)ψ,vψ

∗
,v, (2.19)

Tuv = e2αφ Q2a2

2r4 , (2.20)

Tθθ = 4
r2

a2 φ,uφ,v + e2αφ Q2

r2 + 1

2

r2

a2 e
2φ(α+1)

×
[
ψ,uψ

∗
,v + ψ,vψ

∗
,u + ieAu

(
ψψ∗

,v − ψ∗ψ,v

) ]
.

(2.21)

Combining the adequate components of the Einstein tensor
resulting from the metric (2.9) and the obtained stress-energy
tensor components, the Einstein equations yield

2a,ur,u
a

− r,uu = rφ2
,u + r

4
e2φ(α+1)

×
[
ψ,uψ

∗
,u + ieAu

(
ψψ∗

,u − ψ∗ψ,u
) + e2A2

uψψ∗],
(2.22)

2a,vr,v
a

− r,vv = rφ2
,v + r

4
e2φ(α+1)ψ,vψ

∗
,v, (2.23)

a2

4r
+ r,urv

r
+ r,uv = e2αφ Q2a2

4r3 , (2.24)

a,ua,v

a2 − a,uv

a
− r,uv

r
= e2αφ Q2a2

4r4 + φ,uφ,v

+ 1

8
e2φ(α+1)

[
ψ,uψ

∗
,v

+ ψ∗
,uψ,v + ieAu

(
ψψ∗

v − ψ∗ψ,v

) ]
. (2.25)

They complement the matter equations presented above in
order to obtain the complete set of equations describing the
dynamics of the examined system, which are (2.10)–(2.16),
without the relation (2.11), which is a definition of the phys-
ical quantity Q.

The following set of auxiliary variables is introduced to
prepare the obtained set of dynamical equations to be solved
numerically:

c = a,u

a
, d = a,v

a
, f = r,u, g = r,v,

h = φ, x = φ,u, y = φ,v,

s = ψ, p = ψ,u, q = ψ,v, β = Au . (2.26)

It is supplemented by the quantities

λ ≡ a2

4
+ f g, μ ≡ f q + gp, η ≡ gx + f y. (2.27)

The above variables make it possible to rewrite the second-
order differential equations (2.10), (2.15)–(2.16) and (2.22)–
(2.25) as first-order ones. Additionally, real fields ψ1 and ψ2

are introduced instead of conjugate fieldsψ andψ∗ according
to relations ψ = ψ1 + iψ2, ψ∗ = ψ1 − iψ2, what results in

s = s1 + is2, p = p1 + i p2, q = q1 + iq2,

μ = μ1 + iμ2, μ1 = f q1 + gp1, μ2 = f q2 + gp2.

(2.28)

After introducing the above substitutions, the final system
of equations of motion describing the gravitational collapse
of interest can be written as

P1 : a,u = ac, (2.29)

P2 : a,v = ad, (2.30)

P3 : r,u = f, (2.31)

P4 : r,v = g, (2.32)

P5 : s1(2),u = p1(2), (2.33)

P6 : s1(2),v = q1(2), (2.34)

P7 : h,u = x, (2.35)

P8 : h,v = y, (2.36)

E1 : f,u = 2c f − r x2 − r

4
e2h(α+1)

[
p 2

1 + p 2
2 + 2eβ (s1 p2 − s2 p1) + e2β2

(
s 2

1 + s 2
2

) ]
,

(2.37)

E2 : g,v = 2dg − r y2 − r

4
e2h(α+1)

(
q 2

1 + q 2
2

)
, (2.38)

E3 : g,u = f,v = −λ

r
+ e2αh Q

2a2

4r3 , (2.39)

E4 : d,u = c,v = λ

r2 − xy − 1

4
e2h(α+1)

[
p1q1 + p2q2 + eβ (s1q2 − s2q1)

]
− e2αh Q

2a2

2r4 ,

(2.40)

S
(Re) : q1,u = p1,v = −μ1

r
+ eβq2 + es2β

g

r
+ es2

Qa2

4r2 ,

(2.41)

S
(Im)

: q2,u = p2,v = −μ2

r
− eβq1 − es1β

g

r
− es1

Qa2

4r2 ,

(2.42)

M1 : β,v = Qa2

2r2 , (2.43)

M2 : Q,v = −2αyQ + er2

2
e2h (s1q2 − s2q1) , (2.44)

D : y,u = x,v = −η

r
+ αe2αh Q

2a2

4r4[
1 + 32

a2r
γ e2αh

(
6λ − e2αh Q

2a2

4r2

)]
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+
(

α + 1

4
+ 16

a2r
λγαe2αh

)
e2h(α+1)

[
p1q1 + p2q2 + eβ (s1q2 − s2q1)

]

+ 32

a2r
γαe2αh

{
λ

(
2xy − 3

λ

r2

)

+ r2
[
x2y2 + x2

4
e2h(α+1)

(
q 2

1 + q 2
2

)

+ 1

4
e2h(α+1)

(
y2 + 1

4
e2h(α+1)

(
q 2

1 + q 2
2

))

·
[
p 2

1 + p 2
2 +2eβ (s1 p2−s2 p1)+e2β2

(
s 2

1 +s 2
2

)]]}
.

(2.45)

3 Details of numerical simulations and results analysis

The obtained complex coupled system of differential equa-
tions (2.29)–(2.45) does not possess an analytic solution and
needs to be solved numerically. The prepared code and tests
run to confirm its correctness are presented in Appendix A.

The equations describing the dynamics of the considered
systems were solved in the bounded region of the (vu)-
plane. It is shown in Fig. 1 on the background of a dynami-
cal Schwarzschild spacetime, whose Carter-Penrose diagram
does not differ from the static case. The borders of the com-
putational domain were marked for numerical purposes as 0
and 7.5 in the v-direction, 0 and 15 in the u-direction in all
conducted simulations. The only arbitrary data of the numer-
ical computations were initial profiles of the evolving fields,
posed on the null hypersurface denoted as u = 0. This ini-
tial hypersurface was assumed to be a Minkowski spacetime
with zero mass and charge. In order to describe the behavior
of the real and complex scalar fields properly, their initial
profiles were of the following Gaussian and trigonometric
types, respectively, [3,4,6,44]:

h = p̃h · v2 · e−
(

v−c1
c2

)2

, (3.1)

s = p̃s · sin2
(

π
v

v f

)
·
[

cos

(
π

2v

v f

)
+ i cos

(
π

2v

v f
+ δ

) ]
.

(3.2)

The profiles were one-parameter families with amplitudes
p̃h and p̃s being the free family parameters. The amplitudes
determine the strength of the gravitational self-interaction of
the particular field [45]. The remaining arbitrary constants
were invariable during computations, precisely c1 = 1.3,
c2 = 0.21 and the parameter that controls the amount of
initial charge δ = π

2 . The final value of advanced time was
v f = 2.5. The initial conditions are representative for the
conducted evolutions, as their outcomes do not depend of
the profiles types provided that they are regular, what means
that they result in a regular spacetime slice at the initial u =

Fig. 1 The computational domain (marked gray) on the background
of a dynamical Schwarzschild spacetime shown on the Carter-Penrose
diagram. The central singularity along r = 0 and the event horizon are
denoted as S and EH, respectively. I ± and i± are null and timelike
infinities, respectively, i0 is a spacelike infinity

const hypersurface. This condition is fulfilled by the above
profiles (3.1) and (3.2).

When the value of the electric coupling constant is not
equal to zero, it does not affect the results of the collapse [13].
It was confirmed for the investigated cases. Thus e was set as
equal to 1 in all evolutions. The case of a vanishing electric
coupling constant is beyond the scope of the current research,
as it comes down to an analysis of two neutral fields instead
of one electrically charged in the spacetime.

The values of the remaining model parameters, i.e., α and
γ were assigned as follows. The dilatonic coupling constant
was equal to −√

3, −1 and 0, while γ was taken from within
the range 〈−1, 1〉. The values ofα corresponded to the dimen-
sionally reduced Kaluza–Klein theory, dilaton gravity and
the Einstein–Maxwell theory. The range of γ was consis-
tent with observational constraints (for a thorough analysis
see [34] and references therein).

The spacetime structures resulting from the dynamical
evolutions of interest will be presented on Penrose diagrams,
which contain contours of r = const lines plotted in the
(vu)-plane. The outermost line refers to r = 0, which in all
presented cases will be a part of a central singularity. The lines
indicating the vanishing expansion

θv ≡ 2

r
r,v (3.3)

will be also presented on the diagrams and they will indicate
the location of an apparent horizon in the spacetime. On the
spacetime diagrams they will be marked as red solid lines. On
the remaining plots they will be marked in black. An apparent
horizon coincides with an event horizon in a spacetime region
where it settles along a null hypersurface. The locations of
thus located event horizons were shown on the spacetime
diagrams as blue solid lines.

One of physical quantities which was employed in the
interpretation of the obtained results is the quasi-local Hawk-
ing mass [46]. Its value calculated for the spherically sym-
metric spacetime with a gauge field Aμ is the following:

m (u, v) = r

2

(
1 + 4 f g

a2 + Q2

r2

)
. (3.4)
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It describes the amount of mass contained within a sphere of
a radius r(u, v) on a spacelike hypersurface containing the
particular point (u, v). The mass of a singular object can be
expressed by a value of the above expression calculated at
the event horizon in the region of the emerging spacetime
which is not dynamical, that is for large values of advanced
time.

The outcomes of the gravitational collapse within the dis-
cussed model were also inspected with the use of a set of local
spacetime quantities that may be interpreted as observables
related with an observer moving with the evolving matter.
The analysed quantities were energy density ρ̂, radial pres-
sure p̂r and pressure anisotropy p̂a ≡ p̂t − p̂r , where p̂t
denotes tangential pressure. Their precise covariant deriva-
tion for any general case can be found in [27]. Moreover,
local temperature Tl = κl

2π
with the surface gravity defined

as κl = a,ua−2 [47,48] was also calculated. For the studied
gravity–matter model considered in double null coordinates
the first three of the above observables are given by relations

ρ̂ = e2αh Q
2

r4 + 1

2a2

×
[
4

(
x2 + y2

)
+ e2h(α+1)

(
p2

1 + p2
2 + q2

1 + q2
2

)

+ 2βe[2h(α+1)+1] (s1 p2 − s2 p1)

+β2e2[h(α+1)+1]
(
s2

1 + s2
2

)]
, (3.5)

p̂r = −e2αh Q
2

r4 + 1

2a2

×
[
4

(
x2 + y2

)
+ e2h(α+1)

(
p2

1 + p2
2 + q2

1 + q2
2

)

+ 2βe[2h(α+1)+1] (s1 p2 − s2 p1)

+β2e2[h(α+1)+1]
(
s2

1 + s2
2

)]
, (3.6)

p̂a = 2e2αh Q
2

r4 − 1

2a2

{
4 (x − y)2 + e2h(α+1)

×
[
(p1 − q1)

2 + (p2 − q2)
2
]

+ 2βe[2h(α+1)+1] (s1 p2 − s1q2 − s2 p1 + s2q1)

+β2e2[h(α+1)+1]
(
s2

1 + s2
2

)}
. (3.7)

4 Dynamical spacetime structures

The spacetimes which emerge during the investigated col-
lapse are either non-singular, for small values of the field
self-interaction strengths, or singular, containing in all cases
a dynamical black hole of a Schwarzschild type, for suffi-
ciently big self-interactions represented by values of field
amplitudes. The singular spacetimes resulting from dynami-
cal evolutions within the model of interest for a few values of
the field amplitudes were presented for several combinations
of the model parameters, that is α = −√

3 and γ = −0.01,
α = −1 and γ = −1, α = −1 and γ = 1 and α = 0 and
γ = −0.1, in Figs. 2, 3, 4 and 5, respectively.

Each resulting dynamical Schwarzschild spacetime con-
tains a central spacelike singularity located along the r = 0
line. It is indicated by the outermost r = const line on the
Penrose diagram. The singularity is surrounded by a sin-
gle apparent horizon located along the r,v = 0 line, whose
behavior divides the whole spacetime into two regions, i.e.,
a dynamical one, within which the actual collapse proceeds,
and a non-dynamical one, remaining after the dynamical evo-
lution. The former corresponds to the range of small values
of advanced time, in which the apparent horizon is space-
like and changes its location in the u-coordinate. The latter
region refers to the v-range of big values, where v → ∞
and the apparent horizon settles along a null hypersurface

Fig. 2 Penrose diagrams of spacetimes emerging from evolutions with α = −√
3 and γ = −0.01. The field amplitudes p̃s = p̃h were equal to

a 0.02, b 0.04 and c 0.05
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Fig. 3 Penrose diagrams of spacetimes emerging from evolutions with α = −1 and γ = −1. The field amplitudes p̃s = p̃h were equal to a 0.02,
b 0.04 and c 0.05

Fig. 4 Penrose diagrams of spacetimes emerging from evolutions with α = −1 and γ = 1. The field amplitudes p̃s = p̃h were equal to a 0.02,
b 0.04 and c 0.05

Fig. 5 Penrose diagrams of spacetimes emerging from evolutions with α = 0 and γ = −0.1. The field amplitudes p̃s = p̃h were equal to a 0.02,
b 0.04 and c 0.05
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of constant retarded time, thus indicating the location of the
event horizon in spacetime.

The analysis of the behavior of the apparent horizons in
the presented cases allows to draw a conclusion that the value
of |γ | influences the size of a dynamical region within the
evolving spacetime. For small absolute values of the cou-
pling the location of the horizon changes significantly within
a small range of the v-coordinate and it immediately settles
along a constant-u null hypersurface, where it coincides with
the event horizon. When the absolute value of γ gets bigger,
the region in which the dynamics is observed extends much
farther in the v-direction and the horizon settles along a null
hypersurface of constant retarded time much later in terms of
advanced time. The transition between the spacelike and null
portions of the horizon is less sharp in this case. The evident
dependence of the time of formation of a black hole and its
size on the value of the evolving fields amplitudes will be
discussed in detail in Sect. 5.

5 Collapse characteristics

The examined collapse characteristics were the u-locations
of the event horizons, radii, masses and electric charges of
black holes formed during the gravitational evolutions within
the model of interest. They were examined as functions of
the model couplings αε〈−√

3,
√

3〉 and γ ε〈−1, 1〉, as well
as field amplitudes p̃s = p̃hε〈0.01, 0.09〉 for a selected evo-
lution characterized by the following parameters: α = −1,
γ = 1, p̃s = p̃h = 0.04. When the dependence on the spe-
cific parameter of the model is presented, the remaining ones
are as listed above. In the case of the dependency on the field
self-interaction strengths, several combinations of the model
parameters were considered.

The dependencies of the abovementioned characteristics
on the model parameters are presented in Figs. 6 and 7.
The dependencies of the u-locations of the event horizons,
radii and masses on both α and γ are in both cases qual-
itatively the same, that is there exist a maximum for ueh

at α = 0.25 and γ = −0.2 and minima at α = 0.1 and

Fig. 6 The u-locations of the event horizons, ueh , radii, reh , and masses, m eh
H , of black holes formed during the gravitational collapse as functions

of a α and b γ . The non-varying parameters were α = −1 for (b), γ = 1 for (a) and p̃s = p̃h = 0.04

Fig. 7 The black hole charge related to the U (1) gauge field, Qeh , as function of a α and b γ , for non-varying parameters as in Fig. 6
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Fig. 8 The a u-locations of the event horizons, ueh , b radii, reh , c masses, m eh
H , and d charges related to the U (1) gauge field, Qeh , of black holes

formed during the gravitational collapse as functions of the field amplitudes, p̃s and p̃h , for several combinations of values of the parameters α and
γ

γ = −0.1 for the remaining characteristics. The black hole
electric charge increases for small values of the dilatonic cou-
pling constant up to an extremum α = 0.05 and decreases
for its larger values. Qeh decreases monotonically with an
increasing γ .

Figure 8 presents the discussed characteristics as func-
tions of the collapsing fields amplitudes for several combi-
nations of the couplings present within the studied model.
In all cases, for increasing field self-interaction strengths
the changes of the characteristics are monotonic. The u-
locations of the event horizons and black hole electric charges
decrease, while radii and masses of the forming singular
objects increase with increasing p̃s = p̃h . The changes of
ueh , reh andm eh

H become smaller with increasing field ampli-
tudes. An opposite tendency is observed for Qeh .

6 Observables and fields

The (vu)-distributions of observables presented in Sect. 3 and
the evolving scalar fields, along with the relation between
local temperature along the apparent horizon and the v-
coordinate will be shown and discussed for selected space-
times, the structures of which were shown in Sect. 4. Addi-
tionally, the distribution of tangential to radial pressures ratio

will be shown in order to investigate the pressure anisotropy
in more detail.

Figures 9 and 10 present the considered spacetime dis-
tributions for the spacetime whose structure was shown in
Fig. 2b, with the model parameters α = −√

3 and γ =
−0.01. The highest absolute values of the discussed observ-
ables as well as both the neutral and the moduli of the com-
plex scalar field functions are located along a constant-v null
direction, which is a direction of peaks of initially imposed
field functions propagation. A considerable increase in their
values appears as the central singularity is approached. This
increase is observed only within the range of advanced time,
in which the highest field values were imposed initially.
The energy density, radial pressure and the moduli of the
complex scalar field are positive within the whole integra-
tion domain. On the contrary, the pressure anisotropy and
the neutral scalar field function are negative there. The ratio
between tangential and radial pressures indicates that the
pressure anisotropy is dominated by the p̂r component within
most spacetime regions. Both components of p̂a are of the
same order in the vicinity of the singularity and along the
null v = const direction of propagation of the highest initial
values of the imposed field functions for large retarded time.
The black hole local temperature calculated along the appar-
ent horizon is positive and it increases with advanced time.

123



294 Page 10 of 18 Eur. Phys. J. C (2022) 82 :294

Fig. 9 The (vu)-distribution of a energy density, ρ̂, b radial pressure,
p̂r , c pressure anisotropy, p̂a , d tangential to radial pressures ratio, p̂t

p̂r
,

and e local temperature along the black hole apparent horizon, Tl , as

a function of advanced time for a dynamical evolution characterized by
parameters α = −√

3, γ = −0.01 and p̃s = p̃h = 0.04 (the same as
in Fig. 2b)

Fig. 10 The (vu)-distribution of a the neutral scalar field, h, and b the moduli of the complex scalar field, |s|, for the same parameters and field
amplitudes as in Fig. 9
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Fig. 11 The (vu)-distribution of a energy density, ρ̂, b radial pressure,
p̂r , c pressure anisotropy, p̂a , d tangential to radial pressures ratio, p̂t

p̂r
,

and e local temperature along the black hole apparent horizon, Tl , as

a function of advanced time for a dynamical evolution characterized by
parameters α = −1, γ = −1 and p̃s = p̃h = 0.04 (the same as in
Fig. 3b)

The changes are not monotonic. It increases for small values
of the v-coordinate, reaches a maximum within the v-range,
where there exists a small inclination of the apparent horizon
and then, after a slight decrease, it increases monotonically
in a nearly linear manner.

The distributions of observables and field functions result-
ing from the evolution leading to the spacetime with the struc-
ture shown in Fig. 3b, obtained with α = −1 and γ = −1, are
presented in Figs. 11 and 12, respectively. As in the case dis-
cussed above, the energy density and the moduli of the com-
plex scalar field are positive, while the pressure anisotropy
and the neutral scalar field function are negative within the
whole domain of integration. What distinguishes this case
from the other discussed is the fact that non-zero energy
density and radial pressure persist also for large values of
advanced time. Moreover, pressure anisotropy is also non-
zero for large v. This implies that there is a persisting non-
trivial matter distribution around the central singularity. This
observation finds its confirmation in Fig. 12a. The dilaton
field does not collapse completely but instead attains a non-
zero value even outside the black hole event horizon. This

may indicate that in this case a formation of a hairy black hole
is observed. Additionally, the domination of the p̂r compo-
nent of the pressure anisotropy over p̂t is less spread in the
spacetime than in the previous case. It is observed within
the highly dynamical spacetime region, that is for small val-
ues of advanced time and for small values of retarded time
for large v. In the remaining locations the values of the two
components of p̂a are comparable. The local temperature in
the examined case is positive and increases monotonically
with advanced time along the apparent horizon with a slight
inclination in the region, where an inclination of the apparent
horizon is also visible. Unlike the case depicted in Fig. 13e,
the late-lime increase is not linear.

The distributions of the discussed quantities, that is
observables and field functions, for the evolution with the
emerging spacetime structure presented in Fig. 4b, resulting
from the evolution with α = −1 and γ = 1, are shown in
Figs. 13 and 14. The signs of the particular quantities are the
same as in the cases presented above. An increase of abso-
lute values of the observables is visible in the region cor-
responding to advanced time where the field values was the
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Fig. 12 The (vu)-distribution of a the neutral scalar field, h, and b the moduli of the complex scalar field, |s|, for the same parameters and field
amplitudes as in Fig. 11

highest initially. The energy density, radial pressure and pres-
sure anisotropy also display an increase in values nearby the
central singularity, and the distribution of values of the tan-
gential to radial pressures ratio displays a specific triangular
shape within the spacetime, as in the latter of the above cases.
The local temperature along the black hole apparent horizon
behaves like in the first case above, namely it increases for
small values of v, then, after reaching a maximum it slightly
decreases and the decrease turns into the late-time nearly
linear increase as v → ∞.

The spacetime distribution of the analysed observables
and fields for the evolution with α = 0 and γ = −0.1,
with the structure of spacetime shown in Fig. 5b, presented
in Figs. 15 and 16, is analogous to the one presented above
for the case of α = −√

3 and γ = −0.01. The energy den-
sity, radial pressure and the moduli of the complex scalar
field are positive, while the pressure anisotropy and the neu-
tral scalar field function are negative within the dynamical
spacetime region covered by numerical calculations. A sole
increase in absolute values in all the distributions is visible
along the null v = const direction of propagation of the
highest initial values of the imposed field functions. The dis-
tribution of values of the tangential to radial pressures ratio
reveals that there exists a spacelike cut-off, which sets a bor-
der between two regions in which for small advanced times
p̂r dominates, while for large advanced times the two com-
ponents of p̂a are of the same order. In the low-v region,
there also exist locations, in which p̂t and p̂r are compara-
ble, for large retarded times, similarly to the first of the cases
discussed above. The changes in values of the local temper-
ature calculated along the black hole apparent horizon tend
to a late-time increase close to linear, after reaching a shal-
low extrema, precisely a maximum and a minimum for small

values of advanced time in the range where an inclination of
the apparent horizon appears.

7 Conclusions

The course and outcomes of gravitational evolutions involv-
ing electric charge in a decoupling limit of the dilatonic
Gauss–Bonnet gravity was investigated. The system con-
sisted of two scalar fields, namely a neutral scalar dilaton
field and a complex scalar field coupled with a U (1) gauge
field, i.e., electrically charged. The dilaton was coupled both
with the matter and Gauss–Bonnet sectors of the theory.

The course of the dynamical collapse was traced numeri-
cally. The formation of dynamical spacetimes and emerging
black holes was observed and analysed via description of
spacetime structures, inspection of the collapse character-
istics and values of gravitational observables and evolving
fields within the forming spacetimes.

The collapse resulted in either non-singular spacetimes
formed for small self-interaction strengths of the fields, that
is small initial values of their amplitudes, or singular space-
times containing black holes. The particular spacetime con-
tained a central spacelike singularity along r = 0 surrounded
by a single apparent horizon, which was spacelike in the
dynamical region, i.e., for small values of advanced time, and
became null as v → ∞. Disregarding the values of the model
parameters α and γ , the black holes were of a Schwarzschild
type, despite the fact that the evolving scalar field was elec-
trically charged. Such a situation was observed in the case of
a dynamical gravitational collapse of an electrically charged
scalar field in dilaton gravity, but only for non-zero values of
the dilatonic coupling constant [13]. Taking this into account,
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Fig. 13 The (vu)-distribution of a energy density, ρ̂, b radial pressure,
p̂r , c pressure anisotropy, p̂a , d tangential to radial pressures ratio, p̂t

p̂r
,

and e local temperature along the black hole apparent horizon, Tl , as

a function of advanced time for a dynamical evolution characterized
by parameters α = −1, γ = 1 and p̃s = p̃h = 0.04 (the same as in
figure 4(b))

Fig. 14 The (vu)-distribution of a the neutral scalar field, h, and b the moduli of the complex scalar field, |s|, for the same parameters and field
amplitudes as in Fig. 13
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Fig. 15 The (vu)-distribution of a energy density, ρ̂, b radial pressure,
p̂r , c pressure anisotropy, p̂a , d tangential to radial pressures ratio, p̂t

p̂r
,

and e local temperature along the black hole apparent horizon, Tl , as

a function of advanced time for a dynamical evolution characterized by
parameters α = 0, γ = −0.1 and p̃s = p̃h = 0.04 (the same as in
Fig. 5b)

Fig. 16 The (vu)-distribution of a the neutral scalar field, h, and b the moduli of the complex scalar field, |s|, for the same parameters and field
amplitudes as in Fig. 15
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a conclusion that the Gauss–Bonnet term in the gravitational
sector suppresses the tendency to form a Reissner–Nordström
spacetime with an inner Cauchy horizon, whose appearance
is characteristic for evolutions involving electric charge, can
be drawn. The absolute value of the parameter γ influenced
the v-range of the dynamical spacetime region, precisely the
range of advanced time in which gravitational dynamics was
observed was narrower for smaller values of |γ |.

The dependencies of the u-locations of the event horizons,
radii and masses of black holes emerging from the investi-
gated process on α and γ are qualitatively the same. As values
of the model parameters increase, the black holes form later
in terms of retarded time and both their radii and masses
become smaller, up to an extremum, in which the tenden-
cies reverse. Similar dependencies were observed in the case
of non-minimal scalar–gravity couplings during dynamics
investigations within the theory involving Higgs and dark
matter sectors [27]. The only difference between the depen-
dencies on the model parameters is that the changes are
more significant for small values of α and large values of
γ . The dependence of the values of black hole U (1) charge
on α and γ do not overlap the ones describe above. In the
case of the dilatonic coupling constant, Qeh increases signif-
icantly for its small values and decreases also significantly
after reaching a maximum. In the case of the Gauss–Bonnet
coupling, the black hole electric charge decreases monoton-
ically within the whole parameter range.

The changes of the u-locations of the event horizons, radii,
masses and electric charges of the nascent black holes with
increasing self-interaction strengths of the evolving scalar
fields are monotonic and qualitatively the same for vari-
ous combinations of values of the model parameters α and
γ . The features ueh and Qeh increase, while reh and m eh

H
decrease with the parameters. The changes are more signif-
icant for the electric charge in comparison to the remaining
characteristics.

In all the investigated cases an increase of the energy den-
sity, radial pressure, pressure anisotropy and values of the
collapsing scalar fields was observed along a null direction
of propagation of the maxima of initially imposed field pro-
files in spacetime. For large absolute values of the γ param-
eter another increase in values of the quantities measured by
an observer moving with the collapsing matter was visible
in a close vicinity of the emerging singularity also for large
values of advanced time. This implies a persisting non-trivial
matter distribution around the central singularity. Addition-
ally, an observation that the dilaton field possesses non-zero
values outside the black hole event horizon may indicate
a formation of a hairy black hole in this case. The local tem-
perature calculated along the apparent horizon of the emerg-
ing black holes shows a late-time monotonic increase for all
the investigated cases. Within dynamical spacetime regions,
where inclinations of the horizons appear, the changes of the

values of local temperature are not monotonic and extrema
are observed.

The ultimate aim of the undertaken research is to inves-
tigate gravitational evolution of scalar fields in the full ver-
sion of the EdGB theory in double null coordinates. These
coordinates cover the whole spacetime, that is both the exte-
rior and interior of objects that may arise in dynamically
formed spacetimes. The presented analysis within the trun-
cated version of the underlying theory is a first step towards
calculations in the full EdGB. Its equations require a more
sophisticated treatment, as they are coupled in a complicated
way. The issue has been only partially resolved by introduc-
ing a shift symmetry in the case of coordinates, which do not
penetrate emerging horizons, i.e., when only the exterior of
the forming objects is possible to be thus dealt with [37].
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Appendix A: Numerical computations

Algorithm setup

The evolution of the studied physical system is described by
Eqs. (2.29)–(2.45). It was resolved numerically. The set of
equations of motion involves quantities d, q1, q2, y, s1, s2,
h, a, p1, p2, x , r , f , g, Q, β. Each function depends on
two null coordinates, namely advanced and retarded times.
The dynamics of d, q1, q2 and y was followed along u in
line with the equations E4, S

(Re) , S(Im)
and D, respectively.

The remaining quantities, s1, s2, h, a, p1, p2, x , r , f , g, Q
and β, evolved along v according to the respective equations
P6, P7, P2, S

(Re) , S(Im)
, D, P4, E3, E2, M2 and M1.

The system of evolution equations was solved in a bounded
region of the (vu)-plane presented in Fig. 1 in Sect. 3. An
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arbitrary null hypersurface of constant retarded time was
taken as an initial data surface. The boundary conditions were
posed on a hypersurface of constant advanced time. The two
surfaces were marked as u = 0 and v = 0, respectively, for
computational purposes.

Initial conditions are arbitrary profiles of the fields func-
tions, s1, s2 and h, which were posed according to (3.2)
and (3.1). The initial values along v of q1, q2 and y were
calculated analytically using the relations P6 and P7. In the
employed setup the distribution of matter is shell–shaped,
hence the boundary is unaffected by it and the field functions
s1, s2 and h vanish there. The boundary values of q1, q2 and
y were obtained through integration of equations S

(Re) , S(Im)

and D, respectively.
A gauge freedom to choose initial and boundary profiles of

the r function remains within the investigated setup. r (0, 0)

was chosen to be equal to 7.5 for computational purposes.
Initial and boundary values of g and f , respectively, deter-
mine the distances between the null lines and were chosen to
be constant, that is g (0, v) = 1

2 and f (v, 0) = − 1
2 . These

values are justified by the fact that mass (3.4) should vanish
at the central point (0, 0). The r values on the initial null
segment were obtained using the relation P4 and along the
boundary with the equation P3. Initial and boundary profiles
of f and g, respectively, were obtained via an integration of
E3.

Initial values of the quantity d were calculated with the use
of the equation E2, and its boundary values were obtained
using E4. The spherical shell shape of the matter distri-
bution justifies imposing the following boundary values:
a (u, 0) = 1, Q (u, 0) = β (u, 0) = 0 and p1 (u, 0) =
p2 (u, 0) = x (u, 0) = 0. Initial profiles of these functions
were obtained using the equations P2, M2, M1, S

(Re) , S(Im)

and D, respectively.

Employed schemes

The numerical code was written in Fortran from scratch. Inte-
gration along the u-coordinate involved the 2nd order accu-
rate Runge–Kutta method. Integration of the partial differ-
ential equations along advanced time was performed with
the 2nd order accurate Adams–Bashforth–Moulton method,
except the first point, where the trapezoidal rule was used.

The double null coordinates selected for the analysis
ensure regular behaviour of all the evolving quantities within
the computational domain. Numerical difficulties arise as
the event horizon is approached, as the function f diverges
there. For this reason, a relatively dense numerical grid is
indispensable to determine the horizon location and to exam-
ine the behaviour of fields beyond it, especially for large v-

coordinate values. The efficiency of calculations was ensured
by the use of an adaptive grid and performing integration with
a smaller step in problematic regions. For the gravitational
collapse investigations, a sufficient refinement algorithm is
the one making the grid denser solely in the direction of
retarded time [13]. The determination of the area of the com-
putational grid, where it should be denser was made through
a local error indicator. The quantity should be bounded with
the evolving quantities and change its value significantly in
adequate regions. The quantity �r

r along the u-coordinate
meets the requirements and indicates the numerically prob-
lematic surrounding of the event horizon in spacetime [6].

Tests of the code

Analytical solutions do not exist for the investigated process
and hence the accuracy of the code has to be checked via
numerical possibilities in this regard. The convergence tests
were performed for two evolutions characterized by the fol-
lowing parameters. Evolution 1 was initiated with α = −√

3,
γ = −0.01, while Evolution 2 with α = −1, γ = −1, and
in both cases p̃s = p̃h = 0.04. The corresponding spacetime
structures are presented in Figs. 2b and 3b, respectively.

To monitor the numerical outcomes convergence, the com-
putations for Evolutions 1 and 2 were carried out on four
grids with integration steps equal to multiples of δ = 10−4.
An integration step of a particular grid was twice the size of
a denser one. The convergence was examined on a hyper-
surface of constant retarded time selected arbitrarily with
u = 1. The chosen hypersurface was located close to the
forming event horizon in the region where the adaptive mesh
on neither of the grids was active, what enabled a proper
comparison of the results.

The evolving field functions along the chosen hypersur-
face of u = const from within the range of advanced time
in which the functions are initially non-vanishing for all the
examined integration steps are shown in Fig. 17. The maxi-
mal observed discrepancy between the functions calculated
on the grids with the smallest and biggest steps was equal to
2.55 · 10−4%. Figure 18 confirms the 2nd order convergence
of the numerical code. The maximal divergence between
the field profiles obtained on two grids with a quotient of
integration steps equal to 2 and their respective quadruples
was 4 · 10−1%. The errors decreased as the grid density
increased. The overall analysis revealed that the expected
convergence was achieved and both the algorithm and the
numerical code were appropriate for solving the obtained sys-
tem of Eqs. (2.29)–(2.45) describing the dynamics of interest.

123



Eur. Phys. J. C (2022) 82 :294 Page 17 of 18 294

Fig. 17 The convergence of field functions. The scalar field, h, and the moduli of complex scalar field, |s|, were plotted versus v for evolutions
conducted with integration steps, which were multiples of δ = 10−4, along hypersurfaces of constant u equal to 1 for a Evolution 1 and b Evolution
2

Fig. 18 The convergence of the code. The differences between the
scalar field functions, �h, and the moduli of complex scalar field,
�|s|, calculated on grids with different integration steps (multiples of

δ = 10−4) and their multiples were obtained along the same hypersur-
faces of constant u as in Fig. 17 for a Evolution 1 and b Evolution 2
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