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Abstract We consider the effects of momentum relaxation
on the topological quantum phase transitions in holographic
Weyl semimetals. The translational symmetry breaking in the
field theory is realized in the framework of massive gravity.
The quantum phase transition is between a Weyl semimetal
phase and a topological trivial phase, which is controlled by
M/b, i.e. the ratio of mass parameter and time reversal sym-
metry breaking parameter. We find that the critical value of
the phase transition (M/b)c, characterized by the anomalous
Hall conductivity, decreases with the increasing of graviton
mass, i.e. the momentum relaxation strength. There exists a
critical value of graviton mass above which the topological
phase transition disappears and therefore the Weyl points are
destroyed. All these phenomena are qualitatively similar to
that of axion fields induced momentum relaxation, indicat-
ing that a universal feature emerges in the momentum relaxed
holographic Weyl semimetals, which is also consistent with
the predictions from weakly coupled field theory.
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1 Introduction

Weyl semimetals is a novel topological gapless state of quan-
tum matter where its valence band and conduction band touch
at certain points, namely the Weyl nodes, in momentum space
[1,2]. These Weyl nodes come in pairs with opposite chiral-
ity and are topologically stable under the perturbations that
preserve charge conservation or translational symmetry [3].
Close to the Weyl nodes, the low-energy excitations satisfy
the relativistic Weyl equation. Therefore, the quasiparticles
behave like Weyl fermions which are anomalous quantum
mechanically, leading to lots of exotic transport phenomena
in Weyl semimetals. Thus, it has attracted numerous theo-
retical and experimental interest [1–6]. Theoretically, most
studies on Weyl semimetals are based on the topological band
theory or the weakly coupled field theory. However, similar
to graphene system [7], the effective fine structure constant
in Weyl semimetal can be large due to the smallness of the
fermi velocity which plays the role of speed of light, imply-
ing that the Weyl semimetals can be strongly coupled with-
out quasiparticles [8]. This raises the question of theoretical
description of strong-interacting Weyl semimetals.

On the other hand, gauge/gravity duality (or AdS/CFT
correspondence) provides a novel approach to study the
strongly-interacting quantum many-body system [9–11]. The
physics is holographically encoded in a weakly-coupled
classical gravity living in one higher dimension. The holo-
graphic method has been successfully applied to explore
various phases and their transports, yielding lots of signif-
icant insights. In the case of topological matter, the strongly-
coupled holographic Weyl semimetals have been constructed
recently [12,13], where the Weyl semimetal phase is charac-
terized by a nonzero anomalous Hall conductivity and there
exists a topological quantum phase transition between the
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Weyl semimetal phase and a topological trivial phase.1 Sub-
sequently, the existence of surface states [18] and the calcu-
lation of topological invariants [19] in the holographic sys-
tem reveal the key features of Weyl semimetals. Many more
works along this line can be found in [20–34] and see [35]
for a recent review on the topic.

In real condensed matter system, the translational sym-
metry is broken explicitly due to the presence of background
lattice, which is important to relax the electron’s momentum
and give rise to a finite DC conductivities. Holographically,
there are several different realizations of translational sym-
metry breaking, such as by the presence of a periodic lattice
[36,37] or by the mean field theory approaches (e.g. helical
lattices [38], massive gravity [39], linear axion model [40],
Q-lattices [41]). Notably, the translational symmetry break-
ing has been missed in most studies of holographic Weyl
semimetals.2 This might be due to that holographic Weyl
semimetal mainly focus on zero density physics and naively
the momentum relaxation only play important role at finite
density. However, in weakly coupled field theory descrip-
tions, even at zero density the Weyl points can be annihilated
by scattering with other Weyl points of opposite chirality due
to the broken of translational symmetry [3]. Therefore, it is
natural to study the role of translational symmetry breaking
at strong coupling, i.e. in the holographic Weyl semimetals.

Recently, the phenomenon of momentum relaxation in
holographic Weyl semimetals has been explored in [32],
where the presence of axion fields break the translational
invariance [40,42]. It has been found that the Weyl semimetal
phase shrinks and eventually ceases to exist with the increas-
ing of momentum relaxation strength. However, there are
two questions to be answered. The first question is the
zero temperature ground-state of momentum relaxed holo-
graphic Weyl semimetals, which has distinct geometry struc-
ture because of the nonzero axion fields. It is important to
construct the zero temperature solutions in order to reveal the
underlying structure of the topological quantum phase tran-
sition. The second question is the universality of the effects
of momentum relaxation on the system. In weakly coupled
field theory [3], the destroy of Weyl nodes should be indepen-
dent of the mechanism of translational symmetry breaking. It
is worth studying different model of translational symmetry
breaking to test the universality of the phenomenon. In the
present work, we will address the second question.

We will use the massive gravity (see, eg. [39,43–46]) to
test the effects of translational symmetry breaking on holo-
graphic Weyl semimetal. The bulk diffeomorphism invari-
ance is broken due to the non-zero graviton mass terms,

1 See [14–17] for the semi-holographic and the top-down approach for
strongly-coupled Weyl semimetals.
2 See [24] for a study of quenched disorder on holographic Weyl
semimetals in the probe limit.

which corresponds to the translational symmetry breaking
in the dual field theory. As the absolute zero temperature
is not accessible in experiment, we will focus on the finite
temperature physics. Even though, the information of quan-
tum phase transition can be obtained due to the existence of
quantum critical region. We will mainly focus on the effects
of momentum relaxation on the properties of the topological
phase transition in holographic Weyl semimetals.

The outline of this paper is as follows. We begin, in Sect. 2,
by introducing the holographic model of Weyl semimetal
with non-zero graviton mass terms. In Sect. 3, we study the
effects of graviton mass on d.c. transports of vector gauge
field fluctuations. Section 4 is aimed to the conclusion and
discussion. In the Appendix, we present the details of back-
ground equations of motion, asymptotic expansions and ther-
modynamics.

2 Holographic setup

In this section, we introduce the holographic model of Weyl
semimetals [12,13] in the presence of non-zero graviton mass
terms [39,46]. The action for the model is given by

S =
∫

d5x
√−g

[
1

2κ2

(
R + 12

L2

)
− 1

4
FabF

ab

−1

4
FabFab + α

3
εabcde Aa

(
FbcFde + 3FbcFde

)

−(Da�)∗(Da�) − V (�) + m2
g

2κ2

4∑
i=1

ciUi (g, f )

]

+SGH + Sc.t. , (2.1)

where κ2, L and α are the gravitational constant, AdS radius
and Chern–Simons coupling respectively. The axial gauge
field Aμ is dual to the axial current in the field theory and its
field strength is Fab = ∂a Ab − ∂b Aa . The vector gauge field
Vμ is dual to the vector current in the field theory and its field
strength isFab = ∂aVb−∂bVa . The Chern–Simons terms are
included to characterize the anomalous of the axial symmetry
in the field theory. The complex scalar field � is axial charged
with the covariant derivative Da = ∂a−iq Aa . We choose the
potential of the scalar field as V (�) = m2�2 + λ

2 �4 with
the scalar field mass m2 = −3. The graviton mass terms
are linear combination of Ui , where the coefficient ci are
dimensionless constants and mg is the graviton mass. Note
that Ui are symmetric polynomials of the eigenvalues of the
5 × 5 matrix Ka

b ≡ √
gac fcb

U1 = [K] ,

U2 = [K]2 − [K2] ,

U3 = [K]3 − 3[K][K2] + 2[K3] ,

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4],
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where the rectangular brackets denote traces: [K] = Ka
a .

In massive gravity, the dynamical metric gab couples to
the symmetric reference metric fcd , which breaks diffeo-
morphism invariance and gives the graviton a mass. In our
coordinates (t, x, y, z, r), we choose the reference metric
fcd = diag(0, F, F, Fz, 0) with constant F and Fz . Thus the
spatial reparameterization symmetry is broken, which results
in the momentum relaxation in the field theory. SGH is the
standard Gibbons–Hawking term and Sc.t. is the counterterm
to make the physical observable finite. For simplicity, we will
concentrate on the case of q = 1 and λ = 1/10 in this paper.

We set 2κ2 = 1. The bulk equations of motion are

Rab − 1

2
gab

(
R + 12

) − m2
gχab − 1

2
Tab = 0 ,

∇bFba + 2αεabcdeFbcFde = 0 ,

∇bF
ba + αεabcde(FbcFde + FbcFde)

+iq[�(Da�)∗ − �∗(Da�)] = 0 ,

DaD
a� − m2� − λ(�∗)2� = 0 .

where

χab = c1

2

(U1gab − Kab
)

+c2

2

(U2gab − 2U1Kab + 2K2
ab

)

+c3

2

(U3gab − 3U2Kab + 6U1K2
ab − 6K3

ab

)

+c4

2

(U4gab − 4U3Kab

+12U2K2
ab − 24U1K3

ab + 24K4
ab

)
,

Tab =
[
FacF c

b − 1

4
gabF2

]

+
[
FacF

c
b − 1

4
gabF

2
]

+[
Da�(Db�)∗ + (Da�)∗Db�

]

−gab

[
(Dc�)∗(Dc�) + V (�)

]
,

We make the following ansatz for the background fields

ds2 = −udt2 + f (dx2 + dy2)

+hdz2 + dr2

u
,

A = Azdz, � = φ(r), (2.2)

where u, f, h, Az, φ depend on the radial coordinate r . With
the above ansatz, we find3

3 In holographic Weyl semimetals, for a non-trivial profile of Az , the
systems are anisotropic with f �= h. Therefore, the U1 and U2 typically
contain two terms, which is different from the isotropic cases [46].
Thus, even for c1 = c3 = 0 and c2 �= 0, the model we studied here is
distinct from [32], which can also be seen more directly by comparing
the background equations of motion of these two models.

Kab = diag
(

0 , F
√

f , F
√

f , Fz
√
h , 0

)
, (2.3)

U1 = 2F√
f

+ Fz√
h

, U2 = 2F2

f
+ 4FFz√

f h
,

U3 = 6F2Fz

f
√
h

, U4 = 0 . (2.4)

We can obtain the corresponding equations of motion fol-
lowing the above ansatz and see Appendix A for details.
As r → ∞, the background geometry is asymptotically to
AdS5 with u, f, h ∼ r2 + · · · . For the scalar field and the
axial gauge field, we have

φ = M

r
+ · · · , Az = b + · · · , (2.5)

where M and b correspond to the mass parameter and the
time-reversal symmetry breaking parameter of the field the-
ory respectively.

2.1 Brief review of holographic Weyl semimetal

Before discussing the effects of momentum relaxation
induced by the massive gravity, it is useful to summarise
the important ingredients in translation invariant holographic
Weyl semimetals [12,13]. In this subsection, we will review
the zero and the finite temperature physics of the holographic
Weyl semimetals and focus on their properties of phase tran-
sition.

At zero temperature, we have u = f which corresponds
to Lorentz invariance in the field theory along the (t, x, y)
direction. We have only one tunable dimensionless parame-
ter M/b. By tuning M/b, we can find three phases with dif-
ferent infrared solutions [12]: (I) the Weyl sememetal phase
exists when M/b < (M/b)c, (II) the Lifshitz critical point
exists when M/b = (M/b)c = 0.744, (III) the topologi-
cal trivial phase exists when M/b > (M/b)c. These three
phases are distinguished by anomalous Hall conductivity,
which is nonzero in the Weyl semimetal phase while van-
ishes in the topological trivial phase and the critical point.
With the increasing of M/b, the system experiences a topo-
logical quantum phase transition from the Weyl semimetal
phase to a topological trivial phase and see Fig. 1 for the
phase diagram. Note that, the anomalous Hall conductivity
is proportional to the near horizon value of the axial gauge
field, i.e. σAHE ∝ Az(0), which is the order parameter of the
quantum phase transition.

At finite temperature, the infrared (IR) fixed points are
covered by black hole horizon, where the background fields
admit a regular expansion near the horizon. The topological
quantum phase transition now becomes a smooth crossover
due to thermal correlations. In particular, the anomalous Hall
conductivity has a very small value in the topological triv-
ial phase and the quantum critical point produces a quantum
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Fig. 1 The anomalous Hall conductivity as a function of the M/b in
the minimal holographic Weyl semimetals [12]. The black line corre-
sponds to the zero temperature while the colored lines correspond to the
finite temperature with T/b = 0.05 (blue), 0.03 (purple), 0.02 (green)
respectively. At finite temperature, the sharp quantum phase transition
becomes a crossover

critical range at finite temperature. Even though, we can still
obtain the critical point of phase transition from the behav-
ior of anomalous Hall conductivity. We define the point M/b
with maximal | ∂σAHE

∂(M/b) | as the critical value of the phase transi-
tion, which will approach to the critical point of topological
quantum phase transition as the temperature is decreased.
For example, the critical value at T/b = 0.02 is 0.722 with
a relative error within 3% compared with the zero tempera-
ture result. Therefore, we will use this method to identify the
critical point of the phase transition in the following study.

2.2 Holographic Weyl semimetal with massive gravity

In this subsection, we will obtain the equilibrium solutions
with non-zero graviton mass terms by solving the back-
ground equations of motion. It is reasonable to postulate that
there still exists a quantum phase transition from the Weyl
semimetal phase to a topological trivial phase. We will focus
on the finite temperature physics of the momentum relaxed
holographic Weyl semimetals.

Before studying the finite temperature physics, let us point
out one important fact. From the t t and rr component of
Einstein equation, we know4

[√
h(u′ f − u f ′)

]′ = −m2
g

[
6F2Fzc3 + 2FFzc2

√
f

+2F2c2
√
h + Fc1

√
f h

]
. (2.6)

In the translation invariant case, i.e. mg = 0, the right hand
side is zero. The above equation saturates the null energy
condition (NEC), which requires

[√
h(u′ f − u f ′)

]′ ≥ 0.
From this equation, we can also define a radially conserved

4 This is the first equation of the full background equations of motion
in the Appendix A.

Noether charge Q = √
h(u′ f − u f ′), which gives Q = T s

at the black hole horizon. Consequently, the zero temperature
solution (i.e. for u = f ) is equivalent to Q = 0. However,
in the presence of non-zero graviton mass terms, we can not
convert (2.6) into a total derivative and the u = f condition
for ground-state is not applicable. The situation here is similar
to the case in Ref. [32], indicating that the zero temperature
ground-state has different geometries with u �= f . Therefore,
the study of ground state demands more works and we will
leave it for further study.

Additionally, we can restrict the value of ci , (i = 1, 2, 3)

from (2.6). The observation is that the right hand side of
(2.6) should be positive in order to maintain the NEC in the
mg → 0 limit. In the case where only one of ci is nonzero,
this restriction requires ci < 0.5

Now, we begin our study of the finite temperature physics,
where the system is specified by five dimensionless param-
eters M/b, T/b and mg|ci |/b, (i = 1, 2, 3). Without loss of
generality, we will focus on the U2 sector of massive gravity
by tuning the parameter c2 and fixing mg = 1.6 We further
fix the temperature T/b = 0.03 and the reference metric
F = Fz = 1. Therefore, the system now has two dimension-
less parameters M/b and mg|c2|/b. The infrared (IR) and
ultraviolet (UV) expansions for the background fields can be
found in the Appendix A. For given initial seeds, the back-
ground solutions can be obtained by integrating the equations
of motion from IR towards UV.

Specifically, in the Weyl semimetal phase, we find that
the background fields flow differently from UV to IR for dif-
ferent graviton mass. This is illustrated in Fig. 2, where we
show the profile of φ and Az for different graviton mass at
M/b = 0.01. In the translation invariant case (i.e. mg = 0,
the black dashed lines), the axial gauge field keeps a constant
value, while the scalar field first increases, then decreases
to zero from the boundary towards the horizon, showing a
non-monotonic behavior. In the non-zero graviton mass case,
however, the axial gauge field turns out to decrease monotoni-
cally from the boundary to the horizon. The scalar field shows
a transition from a non-monotonic function to a monotonic
increasing function from the boundary towards the horizon.
Especially, as the graviton mass is increased, the near hori-
zon value of Az decreases while the near horizon value of
φ increases. Therefore, the presence of non-zero graviton
mass terms can lead to a dramatic change of the flow of mat-
ter fields. This signals that an emergent phenomenon occurs
in the Weyl semimetal phase under momentum relaxation,

5 It is possible to have positive ci in the parameter space by considering
more nonzero ci .
6 As we have discussed below (2.3), due to the anisotropic of holo-
graphic Weyl semimetal, the system we studied in this paper is distinct
from [32], even for c2 �= 0, c1 = c3 = 0. For this reason, it is proper to
consider c2 �= 0.
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Fig. 2 Log-log plot of the bulk
profile of Az (left) and φ (right)
for different graviton mass
mg |c2|/b at M/b = 0.01. As
mg |c2|/b is increased from 0 to
7, the gauge field Az changes
from top to bottom while the
scalar field φ changes from
bottom to top

which will be confirmed from the critical point of the phase
transition studied in the next section.

3 Effects of massive gravity on phase transition

In this section, we will explore the effects of graviton mass
on the transport properties of the holographic Weyl semimet-
als. We will compute the anomalous Hall conductivity and
obtain the phase diagram of the system. We will discuss the
spontaneous symmetry breaking solution at M/b = 0 for
large graviton mass. We will also study the longitudinal and
transverse conductivity.

Using the Kubo formula, the conductivities of the dual
field theory reads

σi j = lim
ω→0

1

iω
〈Ji J j 〉R(ω,k = 0) , (3.1)

where the current-current retarded Green’s functions can be
computed by studying the bulk gauge field fluctuations with
ingoing boundary condition at the horizon.

The vector gauge field perturbations take the form

δVx = vx (r)e
−iωt , δVy = vy(r)e

−iωt , δVz = vz(r)e
−iωt ,

(3.2)

Note that, the vector gauge field fluctuations decouple from
the metric fluctuations. Therefore, the situation here is differ-
ent with the finite density cases in [39,44,45]. For finite den-
sity system, the non-zero graviton mass terms usually affect
the physics of the system in two ways [39]. First, in thermal
equilibrium, the background geometry is altered by the non-
zero mass terms and especially the near horizon geometry
becomes AdS2 × R

d in the zero-temperature limit. Second,
at the level of linearised perturbations, the dynamical degree
of freedoms are increased and the dual energy momentum
tensor is not conserved due to the non-zero graviton mass
terms. In contrast, as the holographic Weyl semimetals is a
zero density system, the decoupling of vector gauge field fluc-
tuations with the metric fluctuations indicates that the effects

of non-zero mass terms on the transports arise through their
effects on the equilibrium solutions.7

Plugging (3.2) into the vector gauge field equation, we
obtain

v′′
z +

(
u′

u
+ f ′

f
− h′

2h

)
v′
z + ω2

u2 vz = 0 , (3.3)

v′′± +
(
u′

u
+ h′

2h

)
v′± + ω2

u2 v± ± 8αω
A′
z

u
√
h

v± = 0 , (3.4)

where v± = vx ± ivy . Since we are interested in the DC
conductivities, we will use the near-far matching method [12]
to compute these quantities. Finally, the DC conductivities
σxx , σyy and σxy reads

σT = σxx = σyy

= G+ + G−
2iω

= √
h(rh),

σxy = G+ − G−
2ω

= 8α
(
b − Az(rh)

)
, (3.5)

where G± = ω
( ± 8α(b− Az(rh)) + i

√
h(rh)

)
is the Green

functions of v±. Similarly, the longitudinal conductivity σzz
is given by

σzz = Gzz

iω
= f (rh)√

h(rh)
, (3.6)

The anomalous Hall conductivity for the consistent current
reads

σAHE = 8αb − σxy = 8αAz(rh) , (3.7)

3.1 Anomalous Hall conductivity

We will now study the anomalous Hall conductivity. Fig-
ure 3 shows the anomalous Hall conductivity as a function
of M/b at T/b = 0.03, where each curve corresponds to dif-
ferent graviton mass mg|c2|/b. For the translation invariant

7 Instead, the axial gauge field fluctuations will necessary involve the
metric fluctuations. It will be interesting to investigate the axial conduc-
tivity in the presence of non-zero mass terms and verify the 1/3 relation
between axial Hall conductivity and electric Hall conductivity found in
[22].
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Fig. 3 The anomalous Hall conductivity as a function of M/b for dif-
ferent graviton mass mg |c2|/b at T/b = 0.03. The black dashed line is
for the massless case, while the colored solid line are for graviton mass
mg |c2|/b = 0.5 (red), 1.5 (green), 3 (blue), 4.5 (orange), 7 (purple)
from right to left respectively

case (zero graviton mass), as M/b is increased, the (nor-
malized) anomalous Hall conductivity decreases monoton-
ically from 1 in the Weyl semimetal phase to a very small
value in the topological trivial phase. For a non-zero graviton
mass, we find a similar monotonically decreasing behavior
with the increasing of M/b. The anomalous Hall conductiv-
ity decreases rapidly and becomes negligible at large value
of M/b. As the graviton mass becomes large, the anoma-
lous Hall conductivity still decrease monotonically. How-
ever, near M/b ≈ 0, its value is less than 1 and decreases
with the increasing of graviton mass.8

To characterise the effects of non-zero graviton mass terms
on the properties of phase transition, we will also study the
critical point (M/b)c as a function of graviton mass. The crit-
ical value of the phase transition is encoded in the anomalous
Hall conductivity, which is the point with maximum | ∂σAHE

∂(M/b) |.
Figure 4 shows that as the graviton mass is increased, the crit-
ical value (M/b)c decreases monotonically. Above a crit-
ical graviton mass with mg|c2|/b ≈ 5, the critical value
(M/b)c goes to zero. Note that, the Weyl semimetal phase is
characterized by the non-zero anomalous Hall conductivity
and exists for M/b < (M/b)c. Therefore, the behavior of
critical point shows that the non-zero graviton mass terms
can destroy the Weyl points and reduce the region of Weyl
semimetal phase.

The phenomena described above are similar to that of
axion fields induced momentum relaxation studied in Ref.
[32]. Note that, the massive gravity and axion model are
different approaches for translation symmetry breaking and
momentum relaxation. Therefore, regardless of the different
mechanism of translational symmetry breaking in these two

8 We will explain this point in the following subsection.

Fig. 4 The critical point as a function of graviton mass mg |c2|/b at
T/b = 0.03

Table 1 The instability condition for scalar field perturbations

T/b = 0 T/b = 0.03

mg |c2|/b 1 5.45

models, their effects of momentum relaxation on the holo-
graphic Weyl semimetals are universal.

All these phenomena are also consistent with the predic-
tions from weakly coupled field theory [3]. We will now give
an intuitive picture, similar to the Ref. [32], to explain it.9

The explanation starts by relating kL (the width of Brillouin
zone) to the graviton mass mg|c2|/b, and we fix the distance
between Weyl points to be 1. Thus, it is natural to expect
that kL will decrease with the increasing of graviton mass, as
the massless case corresponds to translation invariance with
kL → ∞. Therefore, there exists a critical mg|c2|/b to make
kL = 1 where the two Weyl points meet at the boundary
of Brillouin zone and annihilate with each other. The disap-
pearance of the Weyl semimetal phase can be understood as
a result of the annihilation of Weyl points.

3.2 Spontaneous symmetry breaking solutions at M/b = 0

To explain the behavior of anomalous Hall conductivity near
M/b ≈ 0, we will discuss two solutions of the background
system at M/b = 0. First, we have an analytical solution
[46]

u = r2 − r4
h

r2 + Fm2
gc1

3
r

(
1 − r3

h

r3

)

9 There are opinions that the massive gravity captures the phenomenon
of disorder in field theory. One may interpret the phenomenon here as
disorder-induced localization for the topological degrees of freedom.
We thank Francisco Pena-Benitez for pointing out this.
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Fig. 5 Left: the transverse (solid lines) and longitudinal (dashed lines)
conductivities as a function of M/b for different graviton mass at
T/b = 0.03. The plot is for mg |c2|/b = 0 (black), 0.25 (red), 1 (green),
2 (blue), 3 (orange). The dashed gray lines are the location of critical

points of the phase transition. Right: the diagonal conductivities as a
function of graviton mass. The green line is for the analytical result at
M/b = 0, while the red (blue) dashed lines are for numerical results of
transverse (longitudinal) conductivities at M/b = 0.01

+F2m2
gc2

(
1 − r2

h

r2

)
+ 2F3m2

gc3

r

(
1 − rh

r

)
,

f = h = r2, Az = b,

φ = 0, (3.8)

Note that, this solution is equal to the analytical solution in

Ref. [32], if we choose c2 = − β2

4F2m2
g

and c1 = c3 = 0. It

is worth noting that, only in the isotropic case (i.e. f = h),
the background solutions are the same for the U2 sector of
massive gravity and the axion model.10 From (3.7), we obtain
σAHE
8αb |M=0 = 1, which is different from the numerical results

in Fig. 3 at large graviton mass near M/b ≈ 0.
Second, in addition to the analytical solution (3.8), the

system also has a spontaneous symmetry breaking (SSB)
solution. This comes from the observation that the zero
temperature near-horizon limit of (3.8) is AdS2 × R

3. At
zero temperature, the near horizon expansion of metric func-
tion takes u = u2(r − rh)2 + · · · = (2 − c2F2m2

g/r
2
h −

2c3F3m2
g/r

3
h )(r − rh)2 + · · · . By analyzing the scalar field

fluctuations following [48], its effective mass near the AdS2

horizon reads m2
e f f = m2

u2
+ b2q2

r2
h u2

. Thus, if the effective

mass is below the Breitenlohner-Freedman (BF) bound of
AdS2, i.e. m2

e f f < m2
BF = −1/4, the scalar field perturba-

tions are unstable. This instability indicates the existence of
new phases with non-trivial φ, which can be identified as a
spontaneous symmetry breaking solution. The condition for
instability can be computed analytically at zero temperature,
which is determined by mg|ci |/b. As we turn on the tem-
perature and keep T/b fixed, there exists a critical mg|ci |/b
above which the SSB solution appears at M/b = 0. We show
the condition for instability in the table for mg|c2|/b.

In summary, there exist two branches of background solu-
tions at M/b = 0 for large graviton mass. When mg|c2|/b
10 Similarly, the solution of massive gravity can also be mapped to that
of conformal gravity in 4d [47].

is bigger than the critical value shown in the table, the
background solutions approach to the spontaneous symme-
try breaking solution in the M/b → 0 limit. Therefore, its
anomalous Hall conductivity will deviate 1 and generally
depend on mg|c2|/b, as is shown in Fig. 3 for M/b → 0.
However, a detailed analysis of the physics near M/b = 0 is
beyond the scope of this paper and demands more works.

3.3 Transverse and longitudinal conductivities

Apart from the anomalous Hall conductivity, it is interesting
to study the transverse (σT ) and longitudinal (σL ) conductiv-
ities as a function of M/b for different graviton mass, which
is shown in the left plot Fig. 5. For fixed graviton mass, the
σT and σL have a same value at M/b = 0.01. Then with the
increasing of M/b, the σT increase while the σL decrease.
At the intermediate range of M/b, the σT produces a peak
while the σL produces a minimal. Finally, they both approach
to a constant value at large M/b. On the other hand, as we
increase the graviton mass, the diagonal conductivities are
increased. Especially, the peak and minimal of the diago-
nal conductivities move to a small value of M/b with the
increasing of graviton mass, which is similar to the behavior
of critical point of the phase transition.

At M/b = 0.01, the σT and σL are equal, which can be
compared to the conductivities obtained from the analyti-

cal solution (3.8) (i.e. σdiag = 1
2

(
πT + √

π2T 2 − 2c2

)
). In

the right plot of Fig. 5, we show the diagonal conductivi-
ties as a function of graviton mass for numerical results at
M/b = 0.01 and the analytical results at M/b = 0. As the
graviton mass is increased, the numerical results are equal
to the analytical results. However, for large graviton mass,
the numerical conductivities departure from the analytical
conductivities, which is due to the appearance of sponta-
neous symmetry breaking solution discussed in the previous
subsection. In summary, the behavior of diagonal conduc-
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tivities under momentum relaxation is consistent with the
phenomenon we found in anomalous Hall conductivity.

4 Conclusion and discussion

In this work, we have studied the effects of momentum relax-
ation on the holographic Weyl semimetals, which is char-
acterized by a quantum phase transition between the Weyl
semimetal phase and a topological trivial phase. The momen-
tum relaxation in field theory is induced by the non-zero
graviton mass terms. By tuning the graviton mass, we have
computed the anomalous Hall conductivity as a function of
M/b, which further determines the critical value of the phase
transition. We have found that the critical value decreases
with the increasing of graviton mass and finally goes to zero
above a critical graviton mass. This phenomenon is quali-
tatively similar to the results in Ref. [32], indicating a uni-
versal phenomenon in the momentum relaxed holographic
Weyl semimetals, which is also consistent with the predic-
tions from the weakly coupled field theory. We have also
pointed out the existence of a spontaneous symmetry break-
ing solution at M/b = 0, which interprets the deviation of
anomalous Hall conductivity from 1 near M/b = 0 at large
graviton mass.

Notably, the physics described above has also evidenced
from the behavior of diagonal conductivity, where the peak
(minimal) in the transverse (longitudinal) conductivity goes
to zero as the graviton mass is increased. We have also stud-
ied the diagonal conductivities as function of graviton mass
at small M/b and compared it with the analytical result at
M/b = 0.

Our study of momentum relaxation in holographic Weyl
semimetals reveals interesting and universal phenomenon of
the system, and there are several directions that are worth the
further study. First, it is natural to study the zero tempera-
ture ground-state of the holographic Weyl semimetals in the
presence of non-zero graviton mass terms, which is impor-
tant to reveal the underlying physics. Second, as the vector
gauge field fluctuations studied in this paper decouple from
the metric fluctuations, the d.c. conductivities are encoded
in the equilibrium solutions. Thus, it will be interesting to
study the axial gauge field fluctuations to see the effects of
graviton mass at linear perturbation level.
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Appendix A: Equations of motion and asymptotic expan-
sions

Upon setting 2κ2 = L = 1, the background equations of
motion for the ansatz (2.2) are

u′′

u
− f ′′

f
+ h′

2h

(
u′

u
− f ′

f

)

+
m2

g

(
6F2Fzc3

√
h + 2FFzc2

√
f h + 2F2c2h + Fc1

√
f h

)

u f h
= 0 ,

u′′

2u
+ f ′′

f
+ u′ f ′

u f
− f ′2

4 f 2 − 6

u
− A′2

z

4h

+φ2

2u

(
m2 + λ

2
φ2 − q2A2

z

h

)

+φ′2

2
− m2

g

(
F2c2 + Fc1

√
f
)

u f
= 0 ,

6

u
− u′

2u

(
f ′

f
+ h′

2h

)
− f ′h′

2 f h

− f ′2

4 f 2 + A′2
z

4h
− φ2

2u

(
m2 + λ

2
φ2 + q2A2

z

h

)
+ φ′2

2

+
m2

g

(
6F2Fzc3

√
h+4FFzc2

√
f h+2F2c2h+2Fc1

√
f h+Fzc1 f

√
h
)

2u f h
= 0 ,

A′′
z +

(
u′

u
+ f ′

f
− h′

2h

)
A′
z − 2q2φ2

u
Az = 0 ,

φ′′ +
(
u′

u
+ f ′

f
+ h′

2h

)
φ′

−
(
q2A2

z

uh
+ m2

u

)
φ − λφ3

u
= 0 ,

where the prime denotes the derivative of radial coordinate
r . Note that, in contrast to the minimal model [12], the above
equations of motion contain new terms proportional to the
graviton mass. Meanwhile, in the presence of non-zero gravi-
ton mass terms, the scaling symmetries involve the scaling
of the reference metric. Particularly, there are three scaling
symmetries

(I.) (x, y) → γ (x, y), f → γ −2 f, F → γ −1F ;
(II.) z → γ z, h → γ −2h, (Az, Fz) → γ −1(Az, Fz) ;

(III.) r → γ r, (t, x, y, z) → γ −1(t, x, y, z), (u, f, h) →
γ 2(u, f, h), (Az, F, Fz) → γ (Az, F, Fz);
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A.1 Near horizon expansions

At the black hole horizon, we take the ansatz

u = 4πT (r − rh) + · · · ,

f = f0 +
[

4F3

√
h0

m2
gc3 +

(
2F2 + 2F2√ f0√

h0

)
m2

gc2

+
(

F f0
3
√
h0

+ 5F
√

f0
3

)
m2

gc1

+ f0

(
8 − 2m2φ2

0

3
− λφ4

0

3

)]
(r − rh)

4πT
+ · · · ,

h = h0 +
[

4F3√h0

f0
m2

gc3 + 4F2√h0√
f0

m2
gc2

+
(

4F
√
h0

3
+ 2Fh0

3
√

f0

)
m2

gc1

+h0

(
8 − 2m2φ2

0

3
− λφ4

0

3

)

−2q2A2
z0φ

2
0

]
(r − rh)

4πT
+ · · · ,

Az = Az0 + q2Az0φ
2
0

2πT
(r − rh) + · · · ,

φ = φ0 + φ0
(
q2A2

z0 + h0(m2 + λφ2
0)

)
4h0πT

(r − rh) + · · · ,

Note that, we have set Fz = F in the above expan-
sions. The independent parameters in the expansions are
T, rh, f0, h0, Az0, φ0, ci (i = 1, 2, 3), which can be reduced
by the above scaling symmetries and are mapped into dimen-
sionless parameters ( Mb , T

b ,
mgci
b ) in the field theory. There-

fore, the numerical solutions can be obtained by integrat-
ing the background equations from the horizon to the AdS
boundary by properly choosing the shooting parameters.

A.2 Asymptotic boundary expansions

Close to the conformal boundary, i.e. r → ∞, we have

u = r2 + c1Fm2
gr

3
− M2

3

+c2F
2m2

g + c1Fm2
gM

2 + 12c3F3m2
g

6r

+ (3λ + 2)M4 ln r

18r2 + u2

r2 · · · ,

f = r2 − M2

3
+ 8c1Fm2

gM
2

27r

+
[ (3λ + 2)M4

18
− 2c2

1F
2m4

gM
2

27
+ c2F2m2

gM
2

6

] ln r

r2

+ f2
r2 + · · · ,

h = r2 − M2

3
+ 8c1Fm2

gM
2

27r

+
[ (3λ + 2)M4

18
+ q2b2M2

2

−2c2
1F

2m4
gM

2

27
+ c2F2m2

gM
2

6

] ln r

r2

+h2

r2 + · · · ,

Az = b − bq2M2 ln r

r2 + η

r2 + · · · ,

φ = M

r
− 2c1Fm2

gM

3r2

−
[ (3λ + 2)M3

6
+ Mb2q2

2

−2c2
1F

2m4
gM

9
+ c2F2m2

gM

2

] ln r

r3

+O

r3 + · · · ,

with h2 = −2 f2 + 1
8b

2M2q2 + 7M4

36 + λM4

8 − MO −
19
54c

2
1F

2m4
gM

2 + 1
8c2F2m2

gM
2. Note that, we have set Fz =

F to get this expansions. It is worth noting that the metric
functions acquire nontrivial terms in the presence of non-
zero graviton mass terms. In contrast to the minimal model
of holographic Weyl semimetals [12], the two conserved
charges no longer exist under momentum relaxation. There-
fore, we can not express u2, f2 and h2 in the metric expan-
sions in terms of M, O, b and η. Furthermore, the above
expansions are determined up to a radial shift r → r + a.

Appendix B: Thermodynamics

The Euclidean action reads

SE = −
∫

d5x
√−gL, (B.1)

From the symmetry of the background ansatz (2.2), we can
observe that the t t component of χab and Tab only contain
terms proportional to the metric. Therefore, the t t component
of Einstein equation can be simplified as

Rtt = 1

2
gttL, (B.2)

Therefore, the on shell action is a total derivative

SE = −
∫

d4x
∫ r∞

rh
dr

√−g(2Rt
t )

=
∫

d4x
∫ r∞

rh
dr [u′ f

√
h]′

=
∫

d4x

[
u′ f

√
h
∣∣∣
r∞

− u′ f
√
h
∣∣∣
rh

]
, (B.3)
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Note that, the above expression is divergent near the AdS
boundary. To compute the free energy, one need to add bound-
ary counterterms, which takes the form

SROS = SE + SGH + Sc.t., (B.4)

where the Gibbons–Hawking term

SGH = 1

κ2

∫
d4x

√−γ K ,

and the counterterm

Sc.t. = 1

2κ2

∫
d4x

√−γ

[
− 6 − �2 + log(r)

(
1

4
FμνFμν + 1

4
FμνF

μν

+|Dμ�|2 + λb�
4
)

− m2
gc1

3
Û1

−
(
m2

gc2

2
− m4

gc
2
1

72

)
Û2

−
(
m2

gc3 − m4
gc1c2

12
+ m6

gc
3
1

432

−M2m2
gc1

12F2

)
Û3

]
,

Note that, λb = 1
3 + λ

2 − 4m4
gc

2
1F

2

9M2 +m2
gc2F2

M2 and Ûi (i = 1, 2, 3)

are graviton mass terms written in terms of induced metric
γi j . The coefficients of each terms can be determined by
demanding that the renormalized on-shell action is finite.
Note that the counterterms of massive gravity herein are suf-
ficient to cancel the divergence coming from the bulk gravi-
ton mass terms and see Ref. [49] for more systematic treat-
ment. Interestingly, in the presence of non-zero graviton mass
terms, the counterterm of scalar field is slightly different.

Having substituted the asymptotic expansions, we can
obtain the renormalized on-shell action SROS. Consequently,
the free energy reads

�

V
= − SROS

V

= 7M4

36
− 2MO − T s − 3u2

−23

72
m4

gc
2
1F

2M2 − 1

2
m2

gc2F
2M2

+m4
gc1c3F

4 + 3

4
m4

gc
2
2F

4

−1

8
m6

gc
2
1c2F

4 + 5m8
gc

4
1F

4

1728
. (B.5)

where s = 4π f0
√
h0 is the entropy density.

The expectation value of the boundary stress tensor reads

Tμν = 2(Kμν − Kγμν) + 2√−γ

δSc.t.

δγ μν
, (B.6)

Therefore, the energy density is

ε = T 0
0 = 7M4

36
− 2MO − 3u2

−23

72
m4

gc
2
1F

2M2 − 1

2
m2

gc2F
2M2

+m4
gc1c3F

4 + 3

4
m4

gc
2
2F

4

−1

8
m6

gc
2
1c2F

4 + 5m8
gc

4
1F

4

1728
. (B.7)

Consequently, the thermodynamics relation �
V = ε − T s

holds.
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