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Abstract In this article, we aim to investigate some cylin-
drically symmetric solutions in a very well known modi-
fied theory named as f (R, φ, X) theory of gravity, where
the terms R, φ and X are clarified as Ricci Scalar, scalar
potential, and kinetic term respectively. For this purpose, we
consider the cylindrically symmetric space-time to discuss
the cylindrical solutions in some realistic regions. We fur-
ther discuss six distinct cases of exact solutions using the
field equations of f (R, φ, X) modified theory of gravity.
Furthermore, we set some suitable values of U0 and α in
f (R, φ, X) = R + αR2 − V (φ) + X for the investigation
of well-known Levi–Civita and cosmic string solutions. The
Energy conditions are also investigated for all different cases
and observed that null energy conditions are violated, which
is the indication of the existence of cylindrical wormholes.

1 Introduction

According to the Big bang theory, a massive blast from a sin-
gle point of uncountable density was the reasoning behind
the existence of our universe. From that stage of matter, it is
expanding at an accelerating rate [1–3]. The reason defined
beyond this accelerating expansion is some kind of matter
and energy known as Dark Matter (DM) and Dark Energy
(DE) [4–11]. In 1905, Albert Einstein provided a very dif-
ferent approach to explain this phenomenon which is named
as “Special Theory of Relativity” (STR). Then in 1915, he
provided “General Theory of Relativity” (GTR) which is the
mixture of STR and the laws of gravity proposed by Isaac
Newton [12]. These two theories depend upon a condition:
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All physics laws will be independent of the inertial frame
of references. It means that they produce the same result in
different places as STR and GTR are failed to explain cos-
mic expansion properly. Therefore, different modified theo-
ries are presented to create different ways for researchers to
reveal the important facts about the accelerating expansion.
Some of these theories are f (R), f (R, T ), f (G), f (G, T )

and f (R,G), where R is the Ricci scalar, G is the Gauss-
Bonnet (GB) term and T is the trace of energy-momentum
tensor [13–20].

In cosmology, the study of cylindrical symmetry provided
different opportunities to get some realistic results. The static
cylindrically symmetric vacuum solutions in Weyl coordi-
nates studied by Azadi et al. in f (R) theory of gravity [21].
In Riemannian geometry, Cogliati presented different terms:
Schouten, Levi–Civita, and the notation of parallelism [22].
To explain the interior and exterior space-time of a model of
cosmic strings, Linet [23] presented a set of static metrics
with cylindrical symmetry. Lian [24] found the cylindrically
symmetric and static vacuum solutions of Einstein’s field
equation with cosmological constant �. The cylindrically
symmetric solutions of the (2 + 1)-dimensional nonlinear σ

model discussed by using the inverse scattering method have
been discussed by Mikhailov, and Yarimchuk [25]. Shamir
and Zahid investigated the exact solutions of cylindrically
symmetric space-time in the background of f (R) theory
of gravity. Sharif and Zaeem [27] explained the structure
scalars for self-gravitating cylindrically symmetric change
the anisotropic fluid. In the case of stationary cylindrical
space-time, the existence of Einstein–Maxwell dilation and
fluid system has been discussed by Klepac and Horskey [28].

Moreover, cylindrically symmetric results in f (R,G) the-
ory of gravity are discussed by Shamir and Zia [29]. The
existence of static solutions to the cylindrically symmetric
Einstein–Vlasov system has been proved by Fajallborg [30]
and sowed that the matter cylinder in two of the three spa-
tial dimensions has finite extension. Momeni and Miraghaei
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[31] investigated the exact solution for the massless cylin-
drically symmetric scalar field in general relativity. Azadi
et al. [32] studied the static cylindrically symmetric vacuum
solutions in Weyl coordinates in the context of the metric
f (R) theories of gravity. This paper constructs the exact solu-
tions corresponding to different f (R) models. Momeni [33]
obtained a two-parameter family of exact solutions which
contains a cosmological constant and proved that in f (R)

gravity the constant curvature solution in cylindrically sym-
metric cases is only one member of the most generalized
Tian family in General relativity. Houndjo et al. [34] investi-
gated the static cylindrically symmetric vacuum solutions in
Weyl coordinates in the framework of f (T ) theory of grav-
ity, where T is the torsion scalar. Houndjo et al. [35] also
presented the detailed cylindrically symmetric solutions for
a type of Gauss-Bonnet gravity and derived the full system
of field equations, and showed that there exist seven families
of exact solutions for three forms of viable modes. Momeni
et al. [36] investigated the cylindrical solutions in mimetic
gravity and noticed that Kasner’s family of exact solutions
needs to be reconsidered under this type of modified gravity.
Delice [37] discussed the static cylindrically symmetric vac-
uum solutions with a cosmological constant in the framework
of the Brans–Dicke theory.

Motivated from all the above work, we are interested in
exploring cylindrically symmetric solutions in f (R, φ, X)

modified theory of gravity. Bahamonde et al. [38] discussed
the most generalized and extended form of the theory of grav-
ity named as f (R, φ, X) modified gravity. This theory con-
tains a wide range of known dark energy and modified gravity
models, for instance, f (R) gravity models or Galileons. In
particular, several cosmological solutions are studied within
the framework of these theories, specific solutions that can
provide cosmic acceleration at late times, and even the exact
�CDM evolution. Shamir and Malik considered this the-
ory and investigated some exact solutions using the differ-
ent equations of state parameters [39]. Bahamonde, along
with his collaborators [40] investigated new exact spheri-
cally symmetric solutions in f (R, φ, X) modified gravity
by Noether’s symmetry approach. Recently, Shamir et al.
[41] discussed the wormhole solutions in the background of
f (R, φ, X) modified gravity. The same Authors [42] also
investigated non-commutative wormhole geometry in the
said gravity. Bahamonde et al. [43] discussed the minimally
and non-minimally curvature-coupled scalar-tensor theory
and studied the occurrence of accelerating universe versus
decelerating. Furthermore, by using the same theory, some
thought-provoking topics have been discussed in [44–53].

The considerations of spherically symmetric spacetime
in finding the solution has been a task by many theoretical
astrophysicists. However, the non-spherically objects, like
cylindrical metric, axially symmetric, etc, are also seen to be
the ingredients of our cosmos. Handling axially symmetric

spacetime (with both non-diagonal terms) in this modified
gravity is an ardent task. In view of this, we have considered
cylindrical spacetime in the analysis. Such a mathematical
may be used to analyze cosmological filaments as well as
cosmic webs. For the present manuscript, we aim to find
realistic regions for studying some cylindrically symmetric
solutions in f (R, φ, X) theory of gravity. We are inspired to
discuss the cylindrical solutions in the f (R, φ, X) theory of
gravity. To the best of our knowledge, this is so far the first
attempt to investigate the cylindrical solutions in f (R, φ, X)

gravity. The rest of the manuscript is planned as follows:

• In Sect. 2, we defined the formation of field equations in
f (R, φ, X) modified gravity.

• Section 3 deals with the f (R, φ, X) theory of gravity
model and discusses six different cases by considering
the different metric potentials in each case.

• Energy conditions along with their graphical behavior for
all six cases are investigated in Sect. 3.

• In Sect. 4 and 4, we deal with the Levi–Civita (LC) solu-
tions and cosmic string solutions in f (R, φ, X) modified
gravity.

• In the last section, we have some conclusions regarding
the findings of our work.

2 Basic formulism in f (R, φ, X) modified gravity

The worthwhile transformation of extended theories of grav-
ity is suggested using R, φ, X defined as Ricci Scalar, scalar
potential, and kinetic term, respectively. We consider the
action as

S =
∫

d4x
√−g

[
Lm + 1

2k2 f (R, φ, X)

]
, (1)

where lagrangian matter is denoted by Lm = Lm(g, ψ) (ψ
denotes matter fields) and g is the determinant of metric ten-
sor gμν . Here, the value of X is defined as

X (φ) = −1

2
[∂αφ∂αφ]ξ. (2)

The parameter ξ is defined in Eq. (2) based on the condi-
tions that: if we set ξ = 1 it will imply to the canonical
scalar field, and if we set ξ = −1 then it will imply to a
non-canonical scalar field. In this study, we used (ξ = 1)

canonical scalar field. For simplicity, we used λ2 ≡ 8πG
and f ≡ f (R, φ, X). We have our field equation if we vary
Eq. (1) concerning the metric tensor as follows

HGμν − 1

2
( f − RH)gμν − ∇μ∇νH + gμν∇α∇αH

−ξ

2
F(∇μφ)(∇νφ) = λ2Tμν, (3)
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where, Eq. (3) represents a partial differential equation of
order four. Also, H ≡ ∂ f

∂R , F ≡ ∂ f
∂X and the expression ∇μ

is define as the covariant derivative. In similar fashion, by
varying Eq. (1) with respect to φ we will get Klein–Gordon
equation as defined below

∇μ(F∇μφ) + ξ fφ = 0, (4)

where, fφ ≡ ∂ f
∂φ

. In our present work, we considered the fol-
lowing stress-energy-momentum tensor for ordinary matter
T (mat.)

μν

T (mat.)
μν = 1

2
[ρe2ψ, pr e

2χ−2ψ, pφe
−2ψζ 2, pze

2χ−2ψ ]. (5)

The terms ρ, pr and pφ and pz in Eq. (5) are used for
energy density and pressure terms respectively. We will dis-
cuss cylindrically symmetric solutions under the considera-
tion of matter distribution. In this regard, we picked up the
cylindrically symmetric line element as follows

ds2 = dt2

e−2ψ(r)
− dr2 + dz2

e2(ψ(r)−χ(r))
− ζ 2dφ2

e2ψ
, (6)

where, ψ = ψ(r), χ = χ(r) and ζ 2 = ζ 2(r). The Ricci
scalar corresponding to that metric tensor is defined as

R = 2e(2ψ−2χ)

[
ζ ′′

ζ
− ψ ′ζ ′

ζ
− ψ ′′ + ψ ′2 + χ ′′

]
. (7)

We can get the expressions for energy density and pressure
terms by substituting Eqs. (2), (5) and (6) in Eq. (3) as bellow

−2e(2ψ−2χ) f ′′
R + 2e(2ψ−2χ)

(
3ψ ′ − 2χ ′ − ζ ′

ζ

)
f ′
R

+2e(2ψ−2χ)

(
ψ ′′ − 2χ ′′ + ψ ′ζ ′

ζ

)
fR − f = λ2ρ, (8)

2e(2ψ−2χ)

(
−3ψ ′ + 3χ ′ + ζ ′

ζ

)
f ′
R

+2e(2ψ−2χ)

(
ψ ′′ − χ ′′ + ψ ′ζ ′

ζ
+ χ ′ζ ′

ζ
− 2ψ ′2 − ζ ′′

ζ

)

× fR − e(2ψ−2χ)ξ fXφ′2 + f = λ2 pr , (9)

2e(2ψ−2χ) f ′′
R + 2e(2ψ−2χ)(2χ ′ − ψ ′) f ′

R

+2e(2ψ−2χ)

(
ψ ′′ − ζ ′′

ζ
+ ψ ′ζ ′

ζ

)
fR + f = λ2 pφ,

(10)

2e(2ψ−2χ) f ′′
R + 2e(2ψ−2χ)

(
χ ′ − ψ ′ + ζ ′

ζ

)
f ′
R

+2e(2ψ−2χ)

(
ψ ′′ − χ ′′ − ζ ′χ ′

ζ
+ ζ ′ψ ′

ζ

)
fR

+ f = λ2 pz, (11)

where Eqs. (8)–(11) are the mathematical terms for the
energy density, radial pressure, azimuthal pressure, and
axial pressure. The terms involved in these equations are
mathematically defined as: metric parameters [ψ(r), χ(r),

ζ(r)] and functions ( f, fX , fφ) along their radial derivatives
involving different unknowns. It’s worth mentioning here that
the prime represents the derivative w.r.t the r . It is observ-
able that Eqs. (8)–(11) are non-linear differential equations
in nature. We used the f (R, φ, X) modified gravity model
to find their explicit form for further calculation and graph-
ical analysis. In the coming sections, we will consider their
explicit form by putting the f (R, φ, X) model and showing
their graphical behavior for six cases by considering different
values of unknowns in them.

3 Graphical analysis and physical aspects with
f (R, φ, X) modified gravity model

In this section firstly we consider the following model

f (R, φ, X) = η(R) − V (φ) + X. (12)

In order to reconstruct some particular solutions, we are con-
sidering the following

η(R) = R + αR2, (13)

where η is a constant free parameter with the appropriate
dimensions, this gravitational action is a very well-known
one in the literature, as it is capable of reproducing infla-
tion, and it shows exponential growth for early-time cosmic
expansion [54]. For our current analysis, we further choose
V (φ) = U0φ

m , whereU0 andm are any real numbers. More-
over, scalar field φ term can be calculated through [55]

φ ≡ φ(r) = a0(b0r
−1)σ1 , r �= 0 (14)

where a0, b0 and d are any arbitrary real numbers. Substi-
tuting the model defined (13) in Eqs. (8)–(11), we get

− 4ηe(2ψ−2χ)R′′ + 4ηe(2ψ−2χ)

(
3ψ ′ − 2χ ′ − ζ ′

ζ

)
R′

+ 2e(2ψ−2χ)

(
ψ ′′ − 2χ ′′ + ψ ′ζ ′

ζ

)
(1 + 2ηR)

− R(1 + ηR) − X + V (φ) = λ2ρ, (15)

4ηe(2ψ−2χ)

(
−3ψ ′ + 3χ ′ + ζ ′

ζ

)
R′

+ 2e(2ψ−2χ)

(
ψ ′′ − χ ′′ + ψ ′ζ ′

ζ
+ χ ′ζ ′

ζ
− 2ψ ′2 − ζ ′′

ζ

)

× (1 + 2ηR) − e2ψ−2χξφ′2

+ R(1 + ηR) + X − V (φ) = λ2 pr , (16)

4ηe(2ψ−2χ)R′′ + 4ηe(2ψ−2χ)(2χ ′ − ψ ′)R′

+ 2e2ψ−2χ

(
ψ ′′ − ζ ′′

ζ
+ ψ ′ζ ′

ζ

)
(1 + 2ηR)

+ R(1 + ηR) + X − V (φ) = λ2 pφ, (17)
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4ηe(2ψ−2χ)R′′ + 4ηe(2ψ−2χ)

(
χ ′ − ψ ′ + ζ ′

ζ

)
R′

+ 2e(2ψ−2χ)

(
ψ ′′ − χ ′′ − ζ ′χ ′

ζ
+ ζ ′ψ ′

ζ

)
(1 + 2ηR)

+ R(1 + ηR) + X

− V (φ) = λ2 pz . (18)

These Eqs. (15)–(18) help us to discuss the behavior of
energy conditions. For our current work, we use ψ ≡ ψ(r),
χ ≡ χ(r) and ζ ≡ ζ(r).

3.1 Analysis of energy conditions

This section involves a discussion about the energy con-
ditions and especially null energy conditions. We will do
analysis related to all energy conditions for the specific six
cases. Our focus is on NEC because violation of NEC may
lead to the existence of cylindrical wormholes. For cylindri-
cally symmetric solutions, the following energy conditions
are defined as

• Null Energy Condition (NEC) ρ � −pn ,
• Weak Energy Condition (WEC) ρ ≥ 0, ρ ≥ −pn ,
• Strong Energy Condition (SEC) ρ ≥ −pn , ρ ≥

−3pn ,
• Dominant Energy Condition (DEC) ρ − |pn| > 0.

In the above relation, the term pn represents the term pr , pφ

and pz for n = 1, n = 2 and n = 3 respectively.

Case (A)

In this case, we have done our calculations by using the
following metric potentials

ψ(r) = ln[ζ(r) + A0r ],
χ(r) = ln[ζ(r)],
ζ(r) = B0 + C0r, m = 1, (19)

where A0, B0 and C0 are arbitrary constants. Substituting
these metric potentials in Eqs. (15)–(18), we get

ρ = K−6 J−2[2B (A0 (C0r − B0) + C0K )

× (A0 (B0 + 2C0r)

+2C0K ) (12A0B0C0ηK + 4A2
0B0ηM

+ K 4) − J (24A2
0B

2
0C0ηB (A0 (5B0 + 9C0r)

+9C0K ))] − k−8[k4(2A0B0 (A0M + 3C0K ))

+ 4A2
0B

2
0η (A0M + 3C0K ) 2 + k2(32A0B0C

2
0ηB

× (A0 (4B0 + 9C0r) + 9C0K ))] + N , (20)

pr = n2r2n−2B + k−8[k4(2A0B0 (A0M + 3C0K ))

+ 4A2
0B

2
0η (A0M + 3C0K ) 2] − 2A0B0Bk

−6 J−2

× [(A0(3B0 + 5C0r) + 5C0K )(12A0B0C0ηK

+ 4A2
0B0ηM + K 4) − 4C0η(A0(3B0 − C0r)

− C0K )(A0(5B0 + 9C0r) + 9C0K )] − N , (21)

pφ = [−K (2A0BB0(A0 + C0)(12A0B0C0ηK

+ 4A2
0B0ηM + K 4)) + J (8A0BB0C0η

× (A0(B0 − C0r) − C0K )(A0(5B0 + 9C0r)

+ 9C0K ))]k−6 J−2

+ [k4(2A0B0(A0M + 3C0K ))

+ 4A2
0B

2
0η(A0M + 3C0K )2

+ k2(32A0BB0C
2
0η(A0(4B0 + 9C0r)

+ 9C0K ))]k−8 − N , (22)

pz = [−K (2A0BB0(A0 + C0)(12A0B0C0ηK

+ 4A2
0B0ηM + K 4)) + J (8A0BB0C0η

× (A0(B0 − C0r) − C0K )(A0(5B0 + 9C0r)

+ 9C0K ))]k−6 J−2 + [k4(2A0B0(A0M + 3C0K ))

+ 4A2
0B

2
0η(A0M + 3C0K )2

+ k2(32A0BB0C
2
0η(A0(4B0 + 9C0r)

+ 9C0K ))]k−8 − N , (23)

where, we set the expressions as follow:

K = B0 + C0r, J = r (A0 + C0) + B0, M = 2B0 + 3C0r,

B = e2 log(J )−2ln(K ), N = U0
(
rn

)m + 1

2
n2r2n−2.

The energy density is positive, while the graphical repre-
sentation of pr is negative, but the representation of Pφ and
pz is initially positive and becomes negative when we move
away towards boundary as seen in Fig. 1. The graphical plot-
ting of ρ + pr , ρ + pφ , and ρ + pz is negative, which means
that NEC is violated as shown in Fig. 2. The graphical behav-
ior in Fig. 3 clearly shows that SEC is violated in a particular
regions due to ρ + 3pr , ρ + 3pφ and ρ + 3pz . Moreover, It
can be seen that DEC is also violated for this case due to the
negative nature of ρ − pr as shown in Fig. 4.

Case (B)

We proceed this case for different metric potentials, which
are defined as

ψ(r) = ln[ζ(r) + A0r
2],

χ(r) = ln[ζ(r)],
ζ(r) = B0, m = 1, (24)

where, A0 and B0 are the arbitrary constants. Under the con-
sideration of these metric potentials, we have the following
expressions
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Fig. 1 The graphical behavior of energy density (MeV/fm3), pr (MeV/fm3), pφ (MeV/fm3) and pz (MeV/fm3) can be seen in this panel. CASE
(A)

Fig. 2 Here, we shows variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = n = 1. CASE (A)

Fig. 3 This panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. CASE (A)

123
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Fig. 4 These figures shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1 and
α = −0.01. CASE (A)

ρ = M
[
−384A5

0B0ηr
8eJ − 8A4

0B
2
0r

6
(
eJ

(
3r2 − 8η

)

−96ηeK
)

− 288A6
0ηr

10eJ2A0B
5
0r

2

×
(

4eK + eJ
(
2r2U0

(
rn

)m + n2r2n + 4
))

− 8A3
0B

3
0r

4
(
eJ

(
5r2 − 16η

) − 128ηeK
)

+ B6
0e

J

× (
2r2U0

(
rn

)m + n2r2n) A2
0B

4
0 + r2

(
eJ

(
2r4U0

(
rn

)m

+n2r2n+2 − 8
(
4η + r2)) − 8eK

(
32η + r2))]

, (25)

pr = M
[
288A6

0ηr
10eJ + 384A5

0B0ηr
8eJ

+8A4
0B

2
0r

6
(
eJ

(
3r2 − 8η

)
− 264ηeK

)

+ 8A3
0B

3
0r

4
(
eJ

(
5r2 − 16η

)
− 80ηeK

)

+ B6
0

(
−2r2U0e

J (
rn

)m − n2r2n
(

2eK + eJ
))

+ 2r2A0B
5
0

(
−2eK

(
n2r2n − 2

)
− eJ

(
2r2U0

(
rn

)m
+n2r2n + 4

))
+ A2

0B
4
0r

2(eJ (32η − 2r4U0
(
rn

)m
−n2r2n+2 + 8r2) − 2eK

(
32η + r2

(
n2r2n + 20

))]
,

(26)

pφ = M
[
384A5

0B0ηr
8eJ + 8A4

0B
2
0r

6

×
(
eJ

(
3r2 − 8η

)
− 48ηeK

)

+ 288A6
0ηr

10eJ + 8A3
0B

3
0r

4

×
(

32ηeK + eJ
(

5r2 − 16η
))

− B6
0e

J
(

2r2U0
(
rn

)m
+n2r2n

)
+ 2r2A0B

5
0

(
4eK − eJ (4

+2r2U0
(
rn

)m + n2r2n
))

+ A2
0B

4
0r

2
(
eJ (32η

−2r4U0
(
rn

)m−n2r2n+2+8r2
)
−8eK

(
r2−16η

))]
,

(27)

pz = M
[
384A5

0B0ηr
8eJ + 8A4

0B
2
0r

6

×
(
eJ

(
3r2 − 8η

)
− 48ηeK

)

+ 288A6
0ηr

10eJ + 8A3
0B

3
0r

4

×
(

32ηeK + eJ
(

5r2 − 16η
))

− B6
0e

J
(

2r2U0
(
rn

)m
+n2r2n

)
+ 2r2A0B

5
0

(
4eK − eJ (4 + 2r2U0

(
rn

)m
+n2r2n

))
+ A2

0B
4
0r

2
(
eJ

(
32η − 2r4U0

(
rn

)m
−n2r2n+2 + 8r2

)
− 8eK

(
r2 − 16η

))]
. (28)

Here, to reduce the expressions we set the terms as

K = 2 ln
(
A0r

2 + B0

)
,

J = 2 ln (B0) ,

M = e−J

2B4
0r

2
(
A0r2 + B0

)
2
.

The graphical behavior of energy density and pressure com-
ponents and energy conditions for this case is elaborated
graphically in Figs. 5, 6, 7 and 8. The graphical analysis
of energy density is positive and increasing but the graphi-
cal analysis of radial pressure, azimuthal pressure, and axial
pressure has the same energy density. All these pressure com-
ponents are negative with decreasing nature, as shown in
Fig. 5. The negative behavior of these components may cause
the presence of exotic matter and violation of energy condi-
tions. From Figs. 6, 7 and 8, it can be seen that NEC and SEC
are satisfied but DEC is violated for the given region.

Case (C)

In this case, we use the following metric potentials

χ(r) = ln[ζ(r)], ζ(r) = B0, m = 1. (29)
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Fig. 5 The graphical variation of ρ (MeV/fm3), pr (MeV/fm3), pφ (MeV/fm3) and pz (MeV/fm3) is showed in this figure with respect to the
radial co-ordinate r . CASE (B)

Fig. 6 The variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = n = 1 is shown in this panel.
CASE (B)

Fig. 7 This panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) and A0. CASE (B)

123



166 Page 8 of 22 Eur. Phys. J. C (2022) 82 :166

Fig. 8 These figures shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1 and
α = −0.01. CASE (B)

The value used for χ(r) and ζ(r) is the same as defined in
Case B, but here we use a different approach to find out the
value ofψ(r). While exploring the cylindrical solutions in the
f (G) theory of gravity, Houndjo et al. [35] used an approach
to find out the metric potential. The authors developed a rela-
tionship between the expression between Gauss-Bonnet and
R to find the other parameter. For our current analysis, we are
going to investigate the Klein–Gordon equation to develop
the other parameter. The Klein–Gordon equation is defined
as

∇μ(F∇μφ) + ε fφ = 0, (30)

where, F ≡ ∂ f
∂X and fφ ≡ ∂ f

∂φ
. After solving the Eq. (30), we

get the expression of the form

−e−χ(r)
[
φ′′(r) ∂ f

∂X
+ φ′(r)∂ fX

∂r
e2χ(r)

+φ′(r) ∂ f

∂X

(
ψ ′(r)

2
+ χ ′(r)

2
+ 2

r

)]

+ε
∂ f

∂φ
= 0. (31)

To find out the value of ψ(r), we put Eq. (13) and Eq. (29)
in Eq. (31) and get

ψ(r) = c1 + 1

2

⎡
⎢⎣

2mmr2v0w0ε
( d
r

)−2σ1
(( d

r

)σ1
)m

σ1((m − 2)σ1 − 2)

+4(σ1 − 1) log(r)

⎤
⎥⎦ . (32)

It can be noticed that the metric potential defined in Eq. (29)
and the other parameter, which is developed in Eq. (32), are
used to observe the graphical analysis. The graphical behav-
ior of energy density is fascinating for this case, as shown
in Fig. 9. For this case, it can be observed that the SEC is
satisfied, but NEC and DEC are violated due to the negative

trends of some pressure components, as shown in Figs. 10,
11 and 12).

Case (D)

In this section, we have done our work by considering the
following values

χ(r) = ln[ζ(r)], ζ(r) = √
2, m = 1. (33)

As same in the previous case, we used the Klein–Gordon
equation to work out the value of a metric potential ψ(r) as

ψ(r) = c1 −
√

2mr6V0ε
(
d2φ0
r2

)
m

d4(6 − 2m)φ2
0

+ 2 log(r). (34)

The metric potentials mentioned in Eqs. (33) and (34) are
utilized to determine the graphical aspects of energy density,
pressure components, and energy conditions for this case.
The graphical behavior of energy density initially decreases
and increases on the radial coordinate, as shown in Fig. 13.
The graphical behavior of radial pressure, azimuthal pres-
sure, and axial pressure is negative near the origin but
becomes positive when moving away from the center, as rep-
resented in Fig. 13. Figure 14 clearly shows the validity of
NEC at r � 0 due to the positive nature of all the compo-
nents. The behavior of SEC and DEC are violated due to the
negative nature of pressure components, as shown in Figs. 15
and 16.

Case (E)

For this case, we consider the different metric potential as
follows

ψ(r) = ln[A0ζ(r)],
χ(r) = ln[ζ(r)],
ζ(r) = B0 + C0r, m = 1. (35)

The graphical behavior of energy density, pressure terms,
and different energy conditions can be seen through different
panels. As shown in Fig. 17, the graphical representation of
energy density is positive and has a maximum value near
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Fig. 9 The graphical variation shows the behavior of ρ (MeV/fm3), pr (MeV/fm3), pφ (MeV/fm3) and pz (MeV/fm3). CASE (C)

Fig. 10 This panel shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) and A0 parameter
with m = n = 1. CASE (C)

Fig. 11 The graphical variation in this panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t
r (km) and A0 parameter with m = n = 1 and α = −0.01. CASE (C)
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Fig. 12 This panel shows the variation of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with n = m = 1 along
with α = −0.01. CASE (C)

Fig. 13 This panel illustrate the variation of density (MeV/fm3), pr (MeV/fm3), pφ (MeV/fm3) and pz (MeV/fm3) w.r.t r . CASE (D)

Fig. 14 This panel shows the variation of (ρ + pr ) (MeV/fm3) and (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) and A0 parameter
with m = n = 1. CASE (D)
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Fig. 15 The graphical variation in this panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t
r (km) with m = n = 1 and α = −0.01. CASE (D)

Fig. 16 This panel shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1 and
α = −0.01. CASE (D)

the origin. Whereas the other panels of Fig. 17 shows the
negative trends of radial pressure, azimuthal pressure, and
axial pressure. The graphical representation of ρ+pr , ρ+pφ ,
and ρ + pz is positive, which means that NEC is satisfied for
this case as shown in Fig. 18. Moreover, one can see that
the SEC violates throughout the region for r > 0 as seen in
Fig. 19 and DEC is satisfied, as shown in Fig. 20.

Case (F)

For this case, the following metric potentials are consid-
ered as follows

ψ(r) = ln[A0r + ζ(r)],
χ(r) = ln[ζ(r)],
ζ(r) = B0, m = 1. (36)

The graphical behavior of energy density is positive and
increasing w.r.t radial coordinate, as shown in Fig. 21.
Whereas, the graphical behavior of pr , pφ and pz has oppo-
site nature like energy density. All these pressure components
are negative and have decreasing behavior, as seen in Fig. 21.
It can be noticed that NEC, WEC, SEC, and DEC are satis-
fied due to positive and increasing trends of pressure, as seen
in Figs. 22, 23 and 24.

3.2 Comparison

Azadi and his collaborators [32] investigated the cylindri-
cal solutions in f (R) theory of gravity and obtained a new
family of solutions with constant Ricci scalar explicitly as
a particular case (R=0) and non-zero Ricci scalar. We have
investigated the cylindrical solutions in f (R, φ, X) theory of
gravity and observed the graphical behavior of energy den-
sity, pressure components, and energy conditions for both
zero and non-zero Ricci scalar, which makes our work dif-
ferent from [32,33]. Houndjo et al. [34] investigated the static
cylindrically symmetric vacuum solutions in the framework
of f (T ) theory of gravity. Now, we have investigated the non-
vacuum solutions f (R, φ, X) theory of gravity. Houndjo et
al. [35] discussed the cylindrical solutions for different cases
by using potential metrics and investigated only NEC in
f (G) gravity. We adopted the same metric potentials for six
cases and investigated the graphical analysis of NEC, SEC,
and DEC in f (R, φ, X) theory of gravity. Moreover, the
authors assumed the relationship between the Gauss-Bonnet
term and Ricci scalar to develop the metric potential. We
have developed the metric potentials using the Klein–Gordon
equation, making our work different from the previous one.

4 Levi–Civita solution

In this case, we deal with a particular case named Levi–
Civita (LC) solution. Therefore, we discussed the solutions
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Fig. 17 This panel shows the graphical behavior of energy density (MeV/fm3), Pr (MeV/fm3), Pφ (MeV/fm3) and Pz (MeV/fm3) w.r.t r km.
CASE (E)

Fig. 18 Here, we shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = n = 1. CASE
(E)

Fig. 19 This panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. CASE (E)
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Fig. 20 These figures shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. CASE (E)

Fig. 21 The first graph show the graphical behavior of energy density (MeV/fm3) which is positive and increasing w.r.t radial coordinate. Whereas,
the graphical behavior of Pr (MeV/fm3), Pφ (MeV/fm3) and Pz (MeV/fm3) is negative and decreasing w.r.t radial coordinate. CASE (F)

Fig. 22 The graphs shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = n = 1.
One can clearly sees the validity of NEC through this panel for r ≥ 0. CASE (F)
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Fig. 23 This panel shows the behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. Here, we can clearly see that the SEC satisfied throughout the region for r > 0. CASE (F)

Fig. 24 These figures shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. CASE (F)

by considering f (R, φ, X) theory of gravity and the follow-
ing metric parameters as:

ψ(r) = A0ln[ζ(r)],
χ(r) = B0ln[ζ(r)],
ζ(r) = r, m = 1, (37)

where, A0 and B0 are any arbitrary constants. The gauge term
can be fixed by taking w(r) = r in the LC solutions for mak-
ing the solutions much charming, which is called harmonic
gauge function over the subspace. The harmonic subspace
can be defined by choosing two constants sheets, i.e., time
and space like sheets constant (r=constant and t=constant).
This implies that it satisfies the following equation

∇i∇ iζ(r) = 0. (38)

The above mentioned Eq. (38) has a linear solution in term
of r as ζ(r) = D0 + D1r . To find out the value of constants,
we used some conditions (i.e.). Using the conical cylinder
shift symmetry, we have D0 = 0, and by re-defining r , we
set the value of D1. Likewise, ζ(r) we have ψ(r) and χ(r)
in our metric-space defined in Eq. (37). These two metric
potentials ψ(r), χ(r) are also harmonic functions satisfies
Eq. (38). These three metric potentials are singular when r
is near to origin. The interior solution with thickness scale
r0 for LC metric should be a real comic string, and classical
methods do not achieve this thickness for real comic string.
Because the core of comic string takes it back to the quantum

properties of the singularities. With the choice as defined in
Eq. (37), we have the following equations

ρ = 1

2
e−MLr−4(B0+1)

[
−8η

(
A2

0 − B0

)
2r4A0eML

+ 4r2(A0+B0)B0 − A2
0

(
r2eML + 8eKLη (B0 + 2

+A0 (−A0 + B0 − 1))) + r4B0+2
(

8B0e
KL

+eML
(

2r2U0
(
rn

)m + n2r2n
))]

, (39)

pr = − 1

2
n2r2n−2

(
2e2(A0−B0)lnr + 1

)
+ 2r−4(B0+1)A2

0

− B0

(
r2(A0+B0+1) + 2η

(
A2

0 − B0

)
r4A0 + 2r2B0

×
(
−4η

(
3 (1 − 2A0) B0 + (1 − 2A0)

2 + 3B2
0

)
r2A0

−r2B0+2
)
e2(A0−B0)lnr

)
−U0

(
rn

)m
, (40)

pφ = −1

2
n2r2n−2 + 2

(
A2

0 − B0

)
r2A0−2B0−4e−ML (8 (A0

−3) η (A0 − B0 − 1) eKL + r2eML
)

+ 4η
(
A2

0 − B0

)
2r4A0−4B0−4 −U0

(
rn

)m
, (41)

pz = 1

2
e−MLr−4B0−5

[
8η

(
A2

0 − B0

)
2r4A0+1eML

+ 4r2(A0+B0)A2
0 − B0

(
r3eML + 4eKLη

(
2A2

0r

123



Eur. Phys. J. C (2022) 82 :166 Page 15 of 22 166

Fig. 25 This panel shows the graphical behavior of energy density (MeV/fm3), Pr (MeV/fm3), Pφ (MeV/fm3) and Pz (MeV/fm3) w.r.t radial
coordinate. CASE (Levi–Civita)

+2r B0 + 1) B0 + 2 + A0 (B0(1 − 4r) − 7r)))

+ r4B0+2
(
−4A0 (r − B0) e

KL − eML r
(
n2r2n

+2r2U0
(
rn

)m))]
, (42)

where, KL = 2A0lnr and ML = 2B0lnr . The graphical
analysis of energy density is initially decreasing and then
becomes increasing, as shown in Fig. 25. On the other panels
of Fig. 25 show the graphical depictions of radial pressure,
azimuthal pressure, and axial pressure, which are negative.
The negative behavior of pressure components indicates the
presence of exotic matter and may cause the violation of
energy conditions. The graphical depictions of ρ + pφ and
ρ + pz are positive while the remaining component of ρ + pr
is negative, which show that NEC is violated as shown in
Fig. 26. We know that WEC is linked with NEC, so we can
claim that WEC is also violated for LC solutions. It can also
be noticed that SEC is violated due to the negative behavior
of ρ + 3pr , ρ + 3pφ and ρ + 3pz as shown in Fig. 27.
Moreover, DEC is satisfied for this case due to the positive
nature of ρ − pr , ρ − pφ and ρ − pz as shown in Fig. 28.

4.1 Comparison

Rodrigues et al. [56] investigated the LC’s Solution in mod-
ified Gauss-Bonnet gravity analytically and considered the-

ses solutions as a generalization of the exterior solution
of a Cosmic string in the modified Gauss-Bonnet gravity.
But, we discuss the physical aspects of LC solutions in this
manuscript, which makes our work interesting. This type
of special case is also discussed in f (G) gravity for a spe-
cial model f (G) = αGn . Azadi and his collaborators [32]
reduced a set of the modified Einstein equations is to a single
equation and shown how one can construct exact solutions
corresponding to different f (R) models. In this work, we
investigated a special case for zero Ricci scalar (i.e R = 0)
with graphical representation, which makes this work charm-
ing from Azadi’s work.

5 Cosmic string case

In this section, we discussed a very important sub-case of LC
solutions named a Cosmic String Case. We have discussed
this case under the application of f (R, φ, X) theory of grav-
ity for the following metric potentials

ψ(r) = A0ln[ζ(r)],
χ(r) = B0ln[ζ(r)],
ζ(r) = C0r, m = n = 1, (43)

where, A0, B0 andC0 are any arbitrary constants. Also, if we
put C0 = 1 in Eq. (43) then it becomes LC solutions defined
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Fig. 26 The graphs shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = n = 1.
CASE (Levi–Civita)

Fig. 27 Here, the panel shows the graphical behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km)
with m = n = 1 and α = −0.01. Here, we can clearly see that the SEC violated throughout the region for r ≥ 0. CASE (Levi–Civita)

Fig. 28 These graphs shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and α = −0.01. CASE (Levi–Civita)

in (40). By taking this, we obtain

dS2 = (C0r)
2A0dt2 − (C0r)

2−2A0dφ2

−(C0r)
2B0−2A0(dr2 + dz2). (44)

Now, putting these metric potentials in Eqs. (15)–(18), we
have the following equations as

ρ = 1

2r4 (4
(
B0 − A2

0

)
e−2B0ln(C0r) (8η (A0 (−A0 + B0 − 1)

+B0 + 2) e2A0ln(C0r) + r2e2B0ln(C0r)
)

× r2
(

8B0e
2(A0−B0)ln(C0r) + 2r2U0

(
rn

)m + n2r2n
)

− 8η
(
A2

0 − B0
) 2 (C0r)

4(A0−B0) + (C0r)
2(A0−B0)),

(45)

pr = − 1

2r4

(
2n2r2n+2e2(A0−B0)ln(C0r)

+ 32ηe2(A0−B0)ln(C0r)

− 4r2
(
A2

0 − B0

)
(C0r)

2(A0−B0) + n2r2n+2

× (3A0 − 3B0 − 1) (A0 − B0 − 1)

×
(
A2

0 − B0

)
(C0r)

2(A0−B0)

− 8η
(
A2

0 − B0

)
2 (C0r)

4(A0−B0) + 8
(
A2

0 − B0

)

×
(

4η
(
A2

0 − B0

)
(C0r)

2(A0−B0) + r2
)

e2(A0−B0)ln(C0r) + 2r4U0
(
rn

)m)
, (46)
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Fig. 29 This panel shows the graphical behavior of energy density (MeV/fm3) which is positive w.r.t radial coordinate. Whereas, the graphical
behavior of Pr (MeV/fm3), Pφ (MeV/fm3) and Pz (MeV/fm3) is negative w.r.t radial coordinate

Fig. 30 This panel shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km) with m = −3 and
n = 2. One can clearly sees that NEC is valid at some particular values of the radial coordinate.)

Fig. 31 Here, the graphical behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) with m = −3, n = 2
and α = −0.01 shown in this panel. We can clearly see that the SEC violated throughout the region for r > 0
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Fig. 32 These graphs shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = −3,
n = 2 and α = −0.01. Here, the graphs shows that DEC is satisfied throughout the region

Fig. 33 This panel shows the graphical behavior of energy density (MeV/fm3), pr (MeV/fm3), pφ (MeV/fm3) and pz (MeV/fm3) w.r.t radial
coordinate. CASE (Cosmic String)

pφ = 1

2r4 (−n2r2n+2 + 4e−2B0ln(C0r)(r2e2B0ln(C0r)

+ 8e2A0ln(C0r)ηA0 − 3(−1 + A0B0))A
2
0

− B0(C0r)
2(A0−B0) + 8η(A2

0 − B0)
2(C0)

4(A0−B0)

− 2r4U0(r
n)m), (47)

pz = 1

2C0r5

(
8η

(
A2

0 − B0
) 2 (C0r)

4A0−4B0+1

+ 4e−2B0ln(C0r)A2
0 − B0 (C0r)

2(A0−B0)

×
(
C0r

3e2B0ln(C0r)

+4η
(
C0r

(−A0 (4B0 + 7) + 2A2
0 + 2 (B0 + 1) (B0 + 2)

)
+A0B0) e

2A0ln(C0r)
)

+ r2
(

4e2(A0−B0)ln(C0r)

A0 (B0 − C0r) − C0r
(
2r2U0

(
rn

)m + n2r2n))) . (48)

These set of Eqs. (45)–(48) involves some constants A0, B0

and C0. The graphical behavior of energy density and pres-
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Fig. 34 This panel shows the variation of (ρ + pr ) (MeV/fm3), (ρ + pφ) (MeV/fm3) and (ρ + pz) (MeV/fm3) w.r.t r (km). CASE (Cosmic String)

Fig. 35 Here, the graphical behavior of (ρ + 3pr ) (MeV/fm3), (ρ + 3pφ) (MeV/fm3) and (ρ + 3pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and C0 = 0.5 shown in this panel. CASE (Cosmic String)

Fig. 36 These graphs shows the behavior of (ρ − pr ) (MeV/fm3), (ρ − pφ) (MeV/fm3) and (ρ − pz) (MeV/fm3) w.r.t r (km) with m = n = 1
and C0 = 0.5. CASE (Cosmic String)

sure components including energy conditions can be seen
through Figs. 29, 30, 31 and 32. If we restrict these constants
to some values like A0 = 0, B0 = 0 andC0 only lies between
the interval (0, 1) then the space-time is corresponding to the
exterior metric of a cosmic string with the following line ele-
ment [57]

dS2 = dt2 − (C0r)
2dφ2 − dr2 − dz2. (49)

The metric defined in Eq. (49) tells about the exposing
the configuration around a straight cosmic string, which is
similar is flat space-time. By considering the Ricci flat solu-
tions, we obtained a conical space-time namely zero curva-
ture space-time as a special case, which includes the cosmic
string space-time.

Now, after putting the values of A0 = 0 and B0 = 0 in
Eqs. (45)–(48), it can be observed that C0 vanish through out
the expressions. For our current analysis, we have considered
m = −3, n = 2 and observed their three dimensional analy-
sis by varying V0 elaborated as shown in Figs. 33, 34, 35 and
36. In Fig. 33, the energy density shows positive behavior
under the consideration of A0 = B0 = 0 and C0 = 0.5. In
Fig. 34, one can clearly sees that NEC is valid for some par-
ticular values of the radial coordinate. It can be seen that the
SEC violated through out the region for r > 0 as depicted
in Fig. 35. In the last panel of Fig. 36, the graphical analysis
show that DEC is satisfied throughout the region.
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5.1 Comparison

This type of space-time and Ricci flat solution also discussed
in cylindrical solutions in f (R), f (G) and f (T ) theories of
gravity [32–35]. Momeni [58] investigated a static cylindri-
cal symmetric solution which describes Cosmic string as a
special case and also investigated some possible solutions.
In our current analysis, we investigated the Cosmic string
solutions by observing the physical features of energy den-
sity, radial pressure, azimuthal pressure, and axial pressure.
Moreover, we also observed the graphical representation of
NEC, WEC, SEC and DEC, which makes our work more
interesting.

6 Conclusion

In the current study, we have discussed cylindrically sym-
metric solutions by using a very compatible model name as
f (R, φ, X) gravity model. This model is the combination of
Ricci Scalar, scalar potential and kinetic term respectively,
which make our theory more general and attractive. We have
calculated the field equations in term of density and pres-
sure expressions, which are the mathematical expressions
for the ρ, pr , pφ and pz . Firstly, we have discussed six dif-
ferent cases of cylindrically symmetric solutions. Later on,
we investigated the Levi–Civita Solutions and a special case
named as Cosmic string solutions. Some important outcomes
of the study in this paper are itemized as below:

• The graphical behavior of energy density is monotonic
and positive, as shown in Fig. 1. On the other hand, graph-
ical representation of pr is negative, but the representa-
tion of Pφ and pz is initially positive and becomes neg-
ative when we move away towards boundary as seen in
Fig. 1. The graphical plotting of ρ + pr , ρ + pφ , and
ρ + pz is negative, which means that NEC is violated as
shown in Fig. 2. The graphical behavior in Fig. 3 clearly
shows that SEC is violated in a particular regions due to
ρ + 3pr , ρ + 3pφ and ρ + 3pz . Moreover, It can be seen
that DEC is also violated for this case as shown in Fig. 4.
It is worth mentioning that NEC is violated due to exotic
matter, which indicates the presence of exotic matter in
that particular region.

• The graphical behavior of energy density and pressure
components and energy conditions for this case is elab-
orated graphically in Figs. 5, 6, 7 and 8. The graphical
analysis of energy density is positive and all these pres-
sure components are negative with decreasing nature, as
shown in Fig. 5. The negative behavior of these compo-
nents may cause the presence of exotic matter and viola-
tion of energy conditions. From Figs. 6, 7 and 8, it can be

seen that NEC and SEC are satisfied but DEC is violated
for the given region.

• It can be noticed that the metric potential defined in Eq.
(29) and the other parameter, which is developed in Eq.
(32), are used to observe the graphical nature of energy
density and pressure components as well as energy con-
ditions. The graphical behavior of energy density is fas-
cinating for this case, as shown in Fig. 9. For this case,
it can be observed that the SEC is satisfied, but NEC
and DEC are violated due to the negative trends of some
pressure components, as shown in Figs. 10, 11 and 12.

• The metric potentials mentioned in Eq. (33) and Eq. (34)
are utilized to determine the graphical aspects of energy
density, pressure components, and energy conditions for
this case. The graphical behavior of energy density ini-
tially decreases and increases on the radial coordinate,
as shown in Fig. 13. The graphical behavior of radial
pressure, azimuthal pressure, and axial pressure is neg-
ative near the origin but becomes positive when moving
away from the center, as represented in Fig. 13. Figure 14
clearly shows the validity of NEC at r � 0 due to the
positive nature of all the components. The behavior of
SEC and DEC are violated due to the negative nature of
pressure components, as shown in Figs. 15 and 16.

• The graphical behavior of energy density, pressure terms,
and different energy conditions can be seen through dif-
ferent panels. As shown in Fig. 17, the graphical repre-
sentation of energy density is positive and has a maximum
value near the origin. Whereas the other panels of Fig. 17
shows the negative trends of radial pressure, azimuthal
pressure, and axial pressure. The graphical representation
of ρ+ pr , ρ+ pφ , and ρ+ pz is positive, which means that
NEC is satisfied for this case as shown in Fig. 18. More-
over, one can see that the SEC violates throughout the
region for r > 0 as seen in Fig. 19 and DEC is satisfied,
as shown in Fig. 20.

• The graphical behavior of energy density is positive and
increasing w.r.t radial coordinate, as shown in Fig. 21.
Whereas, the graphical behavior of pr , pφ and pz has
opposite nature like energy density. All these pressure
components are negative and have decreasing behavior,
as seen in Fig. 21. It can be noticed that NEC, WEC,
SEC, and DEC are satisfied due to positive and increasing
trends of pressure, as seen in Figs. 22, 23 and 24.

• The graphical analysis of energy density is initially
decreasing and then becomes increasing, as shown in
Fig. 25. On the other panels of Fig. 25 show the graphi-
cal depictions of radial pressure, azimuthal pressure, and
axial pressure, which are negative. The negative behavior
of pressure components indicates the presence of exotic
matter and may cause the violation of energy conditions.
The graphical depictions of ρ + pφ and ρ + pz are posi-
tive while the remaining component of ρ+ pr is negative,
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which show that NEC is violated as shown in Fig. 26. It
can also be noticed from Figs. 27 and 28 that SEC is
violated but DEC is satisfied for this case.

• The graphical behavior of energy density and pressure
components including energy conditions can be seen
through Figs. 29, 30, 31 and 32. If we restrict these con-
stants to some values like A0 = 0, B0 = 0 and C0 only
lies between the interval (0, 1) then the space-time is
corresponding to the exterior metric of a cosmic string.
In Fig. 33, the energy density shows positive behavior
under the consideration of A0 = B0 = 0 and C0 = 0.5.
In Fig. 34, one can clearly sees that NEC is valid for some
particular values of the radial coordinate. It can be seen
that the SEC violated through out the region for r > 0
as depicted in Fig. 35. In the last panel of Fig. 36, the
graphical analysis show that DEC is satisfied throughout
the region.
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