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Abstract This paper explored the physical acceptability
conditions for anisotropic matter configurations in General
Relativity. The study considered a generalized polytropic
equation of state P = κργ +αρ−β for a heuristic anisotropy.
We integrated the corresponding Lane–Emden equation for
several hundred models and found the parameter-space por-
tion ensuring the physical acceptability of the configura-
tions. Polytropes based on the total energy density are more
viable than those with baryonic density, and small positive
local anisotropies produce acceptable models. We also found
that polytropic configurations where tangential pressures are
greater than radial ones are also more acceptable. Finally,
convective disturbances do not generate cracking instabili-
ties. Several models emerging from our simulations could
represent candidates of astrophysical compact objects.

1 Introduction

The polytropic equation of state (EoS) is one of the most
common assumptions for modelling self-gravitating matter
distributions in Newtonian and relativistic astrophysical sce-
narios. From the dynamics and stability of galaxies [1] to
the description of the compact object’s inner structure [2–
4], passing through mechanisms involved in stellar evolution
[5–7], this assumption has a long and venerable tradition in
Astrophysics.

On the other hand, local anisotropy – non-Pascalian fluid
description with unequal radial and tangential stresses, i.e.
P �= P⊥ – is also becoming a familiar premise. Since the
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pioneering works of Jeans [8], and Lemaître [9] this assump-
tion is gaining momentum in describing Newtonian and rel-
ativistic matter configurations (see [10–18] and references
therein). Concerning local anisotropy, it is particularly inter-
esting a recent paper [19], which discuss the instability of
the isotropic pressure distribution in self-gravitating matter
distribution.

Several heuristic strategies introduce anisotropy in rela-
tivistic matter configurations (see a detailed description in
references [20,21]). Here we shall mention some of them.
Firstly, the initial approach of Bowers and Liang [11], fol-
lowed by other schemes like: proportional to gravitation [12];
quasilocal [22]; covariant [23]; Karmarkar embedding class I
[24,25]; gravitational decoupling [26,27]; double polytrope
[28]; conditioning the complexity factor [29] and finally, one
of the most popular proposals: providing both, a particu-
lar barotropic equation of state P = P(ρ) and a density
profile (or equivalently a metric function) [30–37]. Various
of these strategies may lead to viable astrophysical models
[18,38,39].

In a recent work [37], we considered the latter of the
above approaches, i.e. introducing local anisotropy providing
a polytropic EoS and an ansatz on the energy density profile.
We found that this type of anisotropic matter distribution has
a singular tangential sound velocity at the surface when the
polytropic index is n > 1, and is commonly overlooked in
the literature (see, for example, references [35,40–46]). This
is a general outcome when employing the “standard” poly-

tropic EoS, P = κρ1+ 1
n , together with an ansatz on the

metric functions. It is worth mentioning that this pathology
is not present in polytropes when any of the other strategies
are implemented [12,22–25,27,28].

The recent detection of gravitational waves (GW) [47,48],
and new results from X-ray astronomy [49,50] constrain the
equation of state describing the Neutron Stars, NS, interiors.
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It has been crucial to identify, in the gravitational wave sig-
nal, the tidal deformation of the orbiting stars [51–54] which
reduces the parameter space for ultradense EoS [48,55].
Gravitational-wave astronomy provided an estimation of the
tidal deformability of NS, while the Neutron star Interior
Composition ExploreR, NICER, furnishes precise informa-
tion about the mass and radius of selected pulsars [49,50].

In this paper, we continue exploring models emerging
from the generalised polytropic equation, P = κργ +αρ−β,
consisting of a combination of a polytrope plus a linear term
[36,37]. Based on this EoS, we follow the heuristic approach
of L. Herrera and collaborators [12] to include the anisotropic
distribution of pressures within the matter configuration. We
then integrate the corresponding Lane–Emden equation of
stellar structure and identify the parameter space’s portion,
ensuring the acceptability conditions. We checked the strin-
gent criteria of physical acceptability conditions put forth
by Ivanov [20], extended in reference [56], and slightly
improved in this work.

We use this framework as a benchmark in looking for
answers to the following questions:

• Which are the most relevant parameters to ensure the
acceptability for this type of anisotropic polytropes?

• Which anisotropy leads to more acceptable matter con-
figurations: �+ = P⊥ − P > 0 or �− = P⊥ − P < 0?

• Are low anisotropic models, |�| = |P⊥−P| << 1, more
acceptable than those with high anisotropy, i.e. |�| =
|P⊥ − P| >> 1?

• Which of the relativistic polytropic EoS leads to a more
acceptable distribution? Those based on the baryonic
mass density or those implemented with the total energy
density?

• Are these models consistent with upper limit of the mass-
weighted tidal deformability, �̃(1.4)	, predicted by LIGO
[48] and the maximum mass limit discovered by NICER
[50].

This paper is organised as follows. Section 2 describes the
notation and the framework of General Relativity. In Sect. 3,
we list the set of acceptable conditions adhered to by our
models to be acceptable compact stellar object candidates.
In Sect. 4, we present the Lane–Emden anisotropic stellar
structure equations to generalise a polytropic EoS. In Sect. 5
we discuss the modelling, explore the parameter space while
fulfilling several of the acceptability conditions developed.
Finally, in Sect. 6, we present some final remarks and con-
clusions.

2 The field equations

Let us consider the interior of a dense star described by a
spherically symmetric space-time line element written as

ds2 = e2ν(r) dt2 − e2λ(r) dr2 − r2
(

dθ2 + sin2(θ)dφ2
)

, (1)

with regularity conditions at r = rc = 0, i.e. e2νc = constant,
e−2λc = 1, and ν′

c = λ′
c = 0.

Additionally, the interior metric should continuously
match the Schwarzschild exterior solution at the sphere’s
surface, r = rb = R. This implies that e2νb = e−2λb =
1 − 2C	 = 1 − 2M/R, where M is the total mass and
C	 = M/R the compactness of the configuration. From now
on, the subscripts b and c indicate, respectively, the vari-
able’s evaluation at the boundary and the centre of the matter
distribution.

We shall consider a distribution of matter consisting of
a non-Pascalian fluid represented by an energy-momentum
tensor:

T ν
μ = diag [ρ(r),−P(r),−P⊥(r),−P⊥(r)] , (2)

where ρ(r) is energy density, with P(r) and P⊥(r) the radial
and tangential pressures respectively.

From the Einstein’s field equations we obtain these phys-
ical variables in terms of the metric functions as

ρ(r) = e−2λ
(
2rλ′ − 1

) + 1

8πr2 , (3)

P(r) = e−2 λ
(
2r ν′ + 1

) − 1

8π r2 and (4)

P⊥(r) = −e−2λ

8π

[
λ′ − ν′

r
− ν′′ + ν′λ′ − (

ν′)2
]

, (5)

where primes denote differentiation with respect to r .
Now, assuming the metric function λ(r) is expressed in

terms of the Misner “mass” [57] as

m(r) = r2

2
R3

232 ⇔ m(r) = 4π

∫ r

0
T 0

0 r
2dr ⇒ e−2λ

= 1 − 2m(r)

r
, (6)

the Tolman–Oppenheimer–Volkoff equation – i.e.T μ

r ;μ = 0,
the hydrostatic equilibrium equation– for this anisotropic
fluid can be written as

dP

dr
= − (ρ + P)

m + 4πr3P

r(r − 2m)︸ ︷︷ ︸
Fg

+ 2

r
(P⊥ − P)

︸ ︷︷ ︸
Fa

, (7)

which together with

dm

dr
= 4πr2ρ, (8)

constitute the relativistic stellar structure equations.
Clearly, it is equivalent to solve the Einstein system (3)–

(5) or to integrate the structure equations (7)–(8). In the first
case we obtain the physical variables ρ(r), P(r) and P⊥(r)
given the metric functions λ(r) and ν(r), while in the second
approach we integrate the structure Eqs. (7)–(8) providing
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two barotropic equations of state, P = P(ρ) and P⊥ =
P⊥(P(ρ), ρ) ≡ P⊥(ρ).

These two EoS involving the radial and tangential pres-
sures, together with the matching conditions – i.e. initial con-
ditions for the system of first-order differential equations –,
P(R) = Pb = 0 and m(R) = mb = M , lead to a system of
differential equations for ρ(r) which can be solved to obtain
the inner structure of a self-gravitating relativistic compact
object.

As is well known, NS have been modelled for decades as
Pascalian fluids, with isotropic pressure distribution. How-
ever, a considerable number of studies have shown that the
pressures within compact objects could be anisotropic, i.e.
non-Pascalian fluids with unequal radial and tangential pres-
sures, � ≡ P⊥ − P �= 0 [11,14,18,19,23]. It can influence
the stability of the compact object – inducing cracking or
overturning –, its mass-radius ratio, or/and its maximum mass
(see [58–62] and the corresponding bibliographies therein,
particularly, references [14,19]).

As pointed out in the seminal work of anisotropic spheres
in General Relativity, by Bowers and Liang [11], we distin-
guish two opposite terms in Eq. (7) –the gravitational force,
Fg , and the anisotropic strength, Fa– which compete to shape
the reacting pressure gradient. Clearly, the pressure steepness
loosen when the anisotropy is positive, �+ = P⊥ − P > 0,
and tighten up if �− = P⊥ − P < 0. Thus, for a fixed
central stiffness σ = Pc/ρc, the compactness, C	, of the
sphere increases for positive anisotropy �+ and decreases
for negative anisotropy �−. In the first case, we can pack
more massive configurations than the isotropic, �0 = 0,
occurrence, because the tangential stresses support the mass
shells dropping the needed reacting radial pressure in these
circumstances [12–14]. If both forces balance, i.e. Fg = Fa ,
we obtain the particular matter configuration having vanish-
ing radial pressures but only supported by tangential stresses
[63].

3 The physical acceptability conditions

In addition to solving the structure Eqs. (7) and (8) for a par-
ticular set of equations of state (e.g. P = P(ρ) and P⊥ =
P⊥(ρ)), the emerging physical variables have to comply with
the several acceptability conditions [64]. Ivanov [20,21] dis-
cussed the several independent acceptability conditions ful-
filled by any relativistic anisotropic compact object.

Acceptability conditions are crucial when considering
self-gravitating stellar models. Only acceptable objects are
of astrophysical interest and, in this work, those models have
to comply with nine requirements stated as:

C1: 2m/r < 1, which implies

(a) That the metric potentials eλ and eν are positive,
finite and free from singularities within the matter
distribution, satisfying eλc = 1 and eνc = const at
the center of the configuration.

(b) The inner metric functions match the exterior
Schwarzschild solution at the boundary surface.

(c) The interior redshift should decrease with the
increase of r [65,66].

C2: Positive density and pressures, finite at the center of
the configuration with Pc = P⊥c [66].
C3: ρ′ < 0, P ′ < 0, P ′⊥ < 0 with density and pressures
having maximums at the center, thusρ′

c = P ′
c = P ′⊥c = 0

with P⊥ ≥ P .
C4: The trace energy condition ρ − P −2P⊥ ≥ 0, which
is more retrictive than the strong energy condition, ρ +
P + 2P⊥ ≥ 0, for imperfect fluids [21,67,68].
C5: The dynamic perturbation analysis restricts the adi-
abatic index [14,69–71]

� = ρ + P

P
v2
s ≥ 4

3
.

C6: The causality conditions on sound speeds: 0 < v2
s ≤

1 and 0 < v2
s⊥ ≤ 1 [60,64].

C7: The Harrison–Zeldovich–Novikov stability condi-
tion: dM(ρc)/dρc > 0 [72,73].
C8: The cracking instability against local density pertur-
bations, δρ = δρ(r), briefly described in Appendix A
(for more details the reader is referred to [56,61,62]).
C9: The adiabatic convective stability condition ρ′′ ≤ 0,
which is more restrictive than the outward decreasing
density and pressure profiles [56].

Notice that condition C1 differs from condition (m/r)′ >

0 in [20]. The reasons for this change will be justified with a
counterexample in Sect. 5.1.

Observe that in references [20,21], Ivanov assumes in C3
that P⊥ ≥ P avoiding a global cracking perturbation insta-
bility [60]. In principle, this assumption is not mandatory for
anisotropic fluids but is commonly adopted in the literature
because it allows more massive matter configurations. The
requirement, P⊥ ≥ P , implies that the sign of the anisotropic
force Fa may counterbalance the gravitational force Fg . As
we shall show, the anisotropic heuristic scheme chosen in the
present work [12] satisfies this condition for all models.

As discussed in references [74,75], the condition C5, bor-
rowed from the isotropic case, does not consider the complex
behaviour of non-Pascalian fluids. There, M. Gleiser and K.
Dev extended the formalism developed by Chandrasekhar
to study the stability of general relativistic isotropic spheres
against radial perturbations. They obtained stable relativis-
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tic anisotropic spheres having adiabatic exponents differing
from the isotropic case.

In this work, our models incorporate in C8 a more elab-
orate cracking criterion considering local density perturba-
tions, δρ = δρ(r) [56,61,62]. Local perturbed schemes are
based on the fluid variables’ reaction to a density fluctuation
that drives the system out of its equilibrium. In this case, pres-
sure gradients may be affected by stabilizing the system. (see
Appendix A and references [37,56] for detailed discussions).

Finally, the instability due to convection, C9, has almost
been forgotten in most stability analyses. It is an elementary
criterion that implements the Archimedes principle in any
hydrostatic matter configuration [4,76,77].

4 The Lane–Emden anisotropic equation of structure

The Lane–Emden equation is a dimensionless form of
Tolman–Oppenheimer–Volkoff expression (7) for a poly-
tropic EoS [3]. In this section, we shall derive the correspond-
ing relativistic hydrostatic equilibrium equation for a gener-
alized polytropic EoS [36,37] (see Appendix B). Following
a heuristic strategy used in reference [78], we integrate it
for a wide range of its parameter space, and the modelling
performed will be discussed in Sect. 5.

4.1 The “master” Lane–Emden equation

Just for completeness and to identify the physical parame-
ters involved, we outline here the main characteristics of the
master polytropic EoS,

P(ρ) = κρ1+ 1
n + αρ − β. (9)

where P , ρ, κ and n are: the isotropic pressure, the mass
density and the polytropic index, respectively (for details,
we refer the reader to previous paper concerning this EoS
[36,37]).

Notice that κ, α and β are non-independent parameters.
From Eq. (9), and the fact that on the surface the radial pres-
sure vanishes, we have

β = κρb
1+ 1

n + αρb, (10)

with

κ = σ − α [1 − �]

ρc
1
n

[
1 − �1+ 1

n

] , (11)

where

• σ = Pc/ρc, describes the stiffness at the centre of the
matter distribution and

• � = ρb/ρc, sketches the density drop from the centre to
the surface of the compact object.

To apply the master polytropic equation of state (9) in
more realistic astrophysical scenarios, we integrated numer-
ically the system of structure Eqs. (7) and (8) assuming the
equation of state (9). This lead to a generalization of the
Lane–Emden equation for anisotropic relativistic fluids with
the radial coordinate, energy density and mass written as

r = aξ, ρ = ρc�
n(ξ) and m = 4πa3ρc η(ξ), (12)

respectively. Here a, is the “Lane–Emden dimension radius”,
which can be written in terms of the most fundamental phys-
ical parameters as

a2 = ϒ (1 + n)

4πρc
with ϒ = κρ

1/n
c = σ − α (1 − �)

1 − �1+1/n
.

Replacing the new variables in Eq. (9) and dividing by
central density, we have

P ≡ P

ρc
= ϒ

(
�n+1 − �1+1/n

)
+ α

(
�n − �

)
. (13)

Now, with Eq. (13) and considering the expressions (12),
TOV Eq. (7) can be expressed as

�̇(ξ) = −1

ξ

[[
η+ξ3P] [

1+P�−n
]

ξ − 2ϒ (1 + n) η
− 2�

ρcϒ (1 + n) �n

]

×
[

1 + αn

ϒ(1 + n)�

]−1

, (14)

where, as usual, � = P⊥ − P represents the anisotropy.
The second structure Eq. (8), becomes

η̇ = ξ2�n . (15)

In both Eqs. (14) and (15), the dots denote derivatives with
respect to the new variable ξ . Finally, we shall define ξ̄ =
ξ/ξb as a plotting device.

4.2 The anisotropic scheme and the Lane–Emden equation

Several years ago, Herrera and Barreto, using a heuristic strat-
egy, developed a general formalism to incorporate anisotropy
in polytropic Newtonian and relativistic spheres [12,78,79].
Their heuristic procedure implements a previous method
found in [12], which assumes the anisotropy proportional
to the gravitational force, Fg , as

� ≡ P⊥ − P = Cr Fg ≡ Cr(ρ + P)

[
m + 4πr3P

r(r − 2m)

]
, (16)

where C quantifies the anisotropy sign in each model.
Replacing the former equation into (7) we get

dP

dr
= −h

(ρ + P)(m + 4πr3P)

r(r − 2m)
, (17)

with h = 1 − 2C . It is clear that when h = 1 the isotropic
case is recovered.
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Fig. 1 The left plot displaysm′ ≡ ϒ(n+1)η̇;m/r ≡ ϒ(n+1)η/ξ and
(m/r)′ ≡ ϒ(n + 1)(η̇/ξ − η/ξ2), for models with n = 1.5, σ = 0.12,
α = −0.01, � = 0.05 and C = 0.0625. The right plot exhibits the met-
ric potential e2λ ≡ 1 − 2ϒ(n+ 1)η/ξ and the mass function in an inset

plot. In this particular case, near the boundary of the configuration, we
have (m/r)′ < 0 and a physically reasonable metric coefficient. Thus,
(m/r)′ > 0 should be considered as a sufficient but not a necessary
condition

Notice that C3 condition and Eq. (17) implies h > 0,
therefore if ρb �= 0 we have,

h = 1 − 2C > 0 ⇒ C <
1

2
, and since

P⊥ ≥ 0 ⇒ 0 ≤ C <
1

2
. (18)

The tangential pressure should be positive at the boundary
P⊥ b ≥ 0 within the matter distribution, and from Eq. (16)
it restricts the anisotropic parameter to 0 ≤ C < 1

2 for EoS
having ρb �= 0. This is the case for the generalised polytrope
(9) with β �= 0. When β = 0 (or any EoS that admits ρb = 0)
the range of the anisotropy factor becomes C < 1

2 admitting
negative values for the C .

The Eq. (17) in the new “polytropic” variables (12)
becomes

�̇(ξ) = − (1 − 2C)
[
η + ξ3P] [

1 + P�−n
]

ξ [ξ − 2ϒ (1 + n) η]

×
[

1 + αn

ϒ(1 + n)�

]−1

, (19)

and (16) can now be written as (see Appendix B for details)

�̃ ≡ �

ρc
= Cϒ (1 + n)

(
η + ξ3P)

(�n + P)

ξ − 2ϒ (1 + n) η
. (20)

If we introduce Eqs. (19) and (20) in (14)–(15) we can
integrate them, with the appropriate set of initial conditions:

�c ≡ �(ξ = 0) = 1, ηc ≡ η(ξ = 0) = 0 (21)

and

Pb ≡ P(ξ = ξb) = ϒ
(
�n+1

b − �1+1/n
)

+α
(
�n

b − �
) = 0. (22)

5 Modelling and acceptability conditions

In this section, we shall examine, through extensive mod-
elling, the consequences of the acceptability conditions. We
identify the most relevant EoS parameters, their range and
their relevance in the specific acceptability conditions. We
also explore the model stability associated with the sign of
the anisotropic term, � = P⊥ − P in Eq. (7). Finally, we
investigate the effect of the models’ acceptability emerging
from both relativistic polytropes considered.

5.1 Examining the acceptability conditions for anisotropic
models

The standard 2m/r < 1 condition is different from the
stronger (m/r)′ > 0, required by Ivanov in [20]. Clearly,
if (m/r)′ > 0 we obtain well behaved metric functions but
there are cases with (m/r)′ < 0 also having physically rea-
sonable metric coefficients. One of these examples can be
appreciated in Fig. 1 where, despite (m/r)′ < 0, the metric
potential and physical variables fulfil all the required condi-
tions C1a, C1b and C1c. Thus, (m/r)′ > 0 should be con-
sidered as a sufficient but not a necessary condition.

On the other hand, Fig. 2 displays the metric coefficient
and the physical variables profiles for various polytropic
indexes. The metric potentials are not singular, and the physi-
cal variables are well behaved. Density, radial and tangential
pressures are decreasing functions of the radial ξ variable.
Thus, we found the obvious restriction on the local com-
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Fig. 2 Physical variables (density, radial/tangential pressures, mass)
and metric coefficients within matter configuration for the numeric
solution of the Lane–Emden master equation. They are displayed as
functions of ξ̄ for models having α = −0.01, � = 0.17, C = 0.05,
σ = 0.175, for several values of n. The metric potentials are not singu-

lar. Density, radial and tangential pressures are decreasing functions of
the ξ̄ variable. All the physical and geometrical variables for numeric
models are well behaved and comply with the acceptability criteria C1,
C2 and C3

pactness, C = m/r < 1/2 is enough to obtain physically
reasonable metric coefficients. In Sect. 5.2.3 we shall dis-
cuss in details the implementation of C3 with the restriction
(18).

Figure 3 (left plate) displays the fulfilment of the trace
energy condition C4, as well as the expected dynamic sta-
bility criterion C5, for models having different polytropic
indices (n = 0.5 through n = 2.0) and stiffness σ . We will
use criterion C4 to limit the possible values of σ , so that
with 0 < σ < 1/3 we guarantee the fulfilment of conditions
C1–C9.

As we have pointed out, C5 does not consider the com-
plex behaviour of non-Pascalian fluids. Even the formalism
presented in references [74,75] assumes radial perturbations
do not affect the tangential pressure distributions. Figure 3
exhibits a singularity of the adiabatic index at the boundary
surface. This effect emerges from the isotropic definition of
� implemented for an anisotropic EoS (9). Non-Pascalian
fluids should have complex EoS among the state variables
(energy density, radial/tangential pressures and other vari-
ables of state) [80]. The validity of this criterion should
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Fig. 3 Trace energy condition (left plate) and adiabatic index gamma
(right plate) as a function of ξ̄ for the Lane–Emden master equation,
for models with parameters α = −0.01, � = 0.17, σ = 0.175 and

C = 0.05 for several values of n. From these plots it is clear that the
models considered comply both C4 and C5 criteria for various poly-
tropic indexes

be further explored when considering relativistic anisotropic
matter distributions.

It is also clear from Fig. 4, that the models considered
comply with the causality conditions on sound speeds, C6;
i.e. 0 < v2

s ≤ 1 and 0 < v2
s⊥ ≤ 1. As expected, the higher

the stiffness, σ , is, the more restricted the models are. If
we refer only to condition C6, then those models having
σ ≥ 2/3 present a non-causal region near the centre of the
matter distribution. On the other hand, models with lower σ ,
comply the criterion C6 for different values of the polytropic
indexes.

Configurations with positive anisotropy (� > 0) allow
more massive stellar models than isotropic ones (see Sect.
5.2.3). Thus, the Harrison–Zeldovich–Novikov stability con-
dition C7, dM(ρc)/dρc > 0, is very sensitive to the
anisotropic parameter C . For configurations with the same
central density, an increase in anisotropy leads to an incre-
ment in the total acceptable mass, as seen in Fig. 5. There-
fore, anisotropic configurations need lower central densities
to achieve stable models with the same total mass. M(ρc)

and M − R curves (Figs. 5, 6 respectively) were set up vary-
ing σ between 0.1 and 0.9 in steps of 0.025. When n = 0.5
lines close to the isotropic condition C = 0, do not climb to
a maximum mass in this range.

Criterion C8 concerns to the cracking instability for local
density perturbations and Fig. 7, left panel, plots δR sev-
eral polytropic indexes with fixed α = −0.01, � = 0.17,
σ = 0.175 and C = 0.05. All these models satisfy the sta-
bility criterion C8 because no cracking or overturning occurs

within the matter configuration. As discussed in references
[56,61,62], if the pressure gradient is not affected by the
density perturbation, δR may change its sign, and potential
cracking instabilities may appear. On the other hand, if the
gradient reacts to the perturbation, we find that δR does not
change sign, and the matter configuration becomes stable to
cracking. The inset plot displays the effect of the global per-
turbation when the pressure gradient is not affected by the
density perturbation. The change of sign for the force distri-
bution near the boundary of the configuration is clear.

Finally, the convective adiabatic stability criterion, C9,
completes the set of acceptability conditions. As men-
tioned above, this is a simple criterion that implements the
Archimedes principle introducing a very stringent condition
in the density profile, i.e. ρ′′ ≤ 0. Figure 7, right panel, dis-
plays the convective adiabatic stability criterion, C9. Only
one of the models presented, n = 0.5, fulfils this criterion
within the whole configuration.

5.2 The modelling, the acceptability and the parameter
space

We shall identify the most significant parameters in the com-
ing sections and relate them to the specific criterion’s fulfil-
ment (or failure). We will also explore which anisotropic sig-
natures lead to more acceptable models. Finally, we explore
the acceptability of the particular expressions for relativistic
polytropes.
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Fig. 4 Radial sound speed (left plates) and tangential sound speed
(right plates) as a function of ξ̄ for the Lane–Emden master equation,
for models with parameters α = −0.01, � = 0.17 and C = 0.05.
Top plates with σ = 0.175 and several values of n. Bottom plates with

n = 0.75 and several values of σ . From these plots it is clear that the
models considered comply causality condition C6 for several polytropic
indexes. High values of the stiffness σ may have radial and tangential
sound speed higher than the speed of light and are discarded
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Fig. 5 The total mass, M , as a function of ρc for models with param-
eters α = −0.01, � = 0.17, and varying C (the anisotropic factor)
for several values of the polytropic index n. From the graphics, we can
see that the shape of the curves are highly related to the polytropic
index n, and they are susceptible to C . The smaller the polytropic index
n is, the greater the range of densities that fulfil C7. A star-shaped

mark represents maximum masses, which dictate the onset of unsta-
ble models. In each plot, have set two lines. One horizontal indicating
the 2.08 M
 recently discovered pulsar [50] and other vertical repre-
senting the stiffest condition at the centre of the distribution, σ = 1.
Several stable anisotropic models could describe masses like reported
for J0740+6620 pulsar

5.2.1 The most significant acceptability parameters

As can be seen from Eqs. (9), (10), (11) and (16), there are five
fundamental physical parameters for the generalized poly-
tropic EoS (9), i.e.

• n, the polytropic index,
• α, the linear coefficient related to the radial sound veloc-

ity,

• σ = Pc/ρc, the stiffness at the centre of the matter dis-
tribution,

• C , the anisotropic factor and,
• � = ρb/ρc, the density drop from the centre to the surface

of the compact object.

123



176 Page 10 of 22 Eur. Phys. J. C (2022) 82 :176

Fig. 6 Total mass-total radius curves, M − R, for models with α =
−0.01, � = 0.17, and varying C (the anisotropic factor) for several
values of the polytropic index n. The curves appearance are highly
related to the polytropic index n, and are sensitive to variations in the

anisotropic index C . As in Fig. 5 it is clear that, for the parameters α, �
and n considered here, only anisotropic models could describe 2.08 M

NS [50]

We found that the first four parameters are the most signif-
icant because their variation gives us a wide range of accept-
able models.

The variation of n describes a wide range of materials.
For standard polytropic EoS (α = β = 0 in Eq. (9)), the
case n = 0 is associated with an incompressible fluid [81],
while n = 3 is used to model an utterly degenerate gas in the
relativistic limit [82].

The parameter σ – the ratio of pressure to energy den-
sity at the centre of the configuration – indicates the mate-
rial’s stiffness and how relevant the relativistic regime is. In
case of σ → 0 TOV Eq. (17) reduces to the Newtonian

hydrostatic equilibrium equation [3], changing to the non-
relativistic description of the fluid.

As mentioned before, the linear coefficient α in master
polytropic EoS is closely related to the speed of sound: posi-
tive values of α decrease the radial and tangential velocity of
sound, while negative values have the opposite effect. How-
ever, models with negative values are more stable (see Fig.
8).

Finally, the parameter � – the ratio between the central
and the surface density – does not have a greater incidence in
parameter space variation. When � = 0.05 (Fig. 8, top plates)
the parameter space does not differ much from the data-set
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Fig. 7 Perturbed hydrostatic equilibrium equation (left plate) and con-
vective adiabatic stability criterion (right plate) as a function of ξ̄ for the
Lane–Emden master equation, for models with parameters α = −0.01,
� = 0.17, σ = 0.175, C = 0.05 and several values of n. There are no
changes in the sign of R̄ in the left plate. Therefore there is no cracking
or overturning within the material configuration: all models shown fulfil

C8. The left plate’s inset shows the effect when the local perturbations
do not affect the pressure gradient. In this case, there is cracking near
the boundary of the distribution. On the other hand, notice that only
one of the models presented, n = 0.5, fulfils the convective adiabatic
stability criterion, C9, within the whole configuration

implemented with � = 0.2 (Fig. 8, bottom plates). However,
this parameter is important when dealing with convective
stability.

The following section will show how the acceptability
conditions are affected or constrained to particular ranges of
these physical parameters.

5.2.2 Parameters and the acceptability criteria

For each criterion, we can associate an acceptability range
for, at least, one of the above physical parameters:

• C4: SEC fails when σ is less than 1/3. This comes
straightforward from dividing SEC by Pc and evaluat-
ing at the centre of the distribution.

• C6: Causality condition breaks down when the stiffness
σ is high. Figure 4 (bottom plates) shows how radial
and tangential sound speeds increase proportionally to
σ . Moreover, negative values of α also increase sound
speed. This behaviour is characteristic for any value of
the polytropic index n.

• C7: Polytropic index n shapes the M = M(ρc) curve
for Harrison-Zeldovich-Novikov criteria. The bigger n
is, the fewer models fulfil this condition. These plots are
also sensitive to the variation of anisotropic factorC in the
same way as n (shown in Fig. 5). It is worth mentioning

that in Fig. 5, the central density values are given after
the integration and do not affect the outline of the curves,
only shifting them.

• C8: Matter configurations may present cracking for
higher σ (see Fig. 9). However, these stiff models do
not comply with the causality condition C6.

• C9: Convective instabilities occur when the polytropic
index n is greater than 1 (Fig. 7). However, a high value
of � may lead to the second derivative of ρ being entirely
concave since the density drop from the centre to the
surface is low.

5.2.3 The anisotropy and acceptability

It is clear that when P⊥ > P , a repulsive anisotropic force,
Fa , appears in the hydrostatic equilibrium Eq. (7) in the
opposite direction to the gravitational force, Fg . Now, when
P⊥ < P , implies that, both forces, Fa and Fg , have the
same direction [74,83]. In principle, both signs are permit-
ted. However, usually, we find the preferred sign P⊥ > P in
the literature because it leads to more massive matter config-
urations, which could help to explain recent observations of
high mass pulsars [50,84]. We show several of these exam-
ples in Table 1 at the end of the present section.

As we showed in Eq. (18), the anisotropic heuristic scheme
chosen in the present work [12] satisfies the condition P⊥ ≥
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Fig. 8 Parametric space for the Lane–Emden master equation, for
models with polytropic index n = 1.0 and parameters α, σ and C vary-
ing from −0.1 to 0.1, 0.05 to 0.8 and 0.0 to 0.25, respectively. When
� = 0.05 (top plates) the parameter space does not differ much from

the dataset implemented with � = 0.2 (bottom plates). Thus, the ratio
between central and surface density does not have a greater incidence
in parameter space variation

P for all models with ρb �= 0. Clearly, P⊥ ≥ P does not
necessarily implies P ′⊥ > P ′, but the reverse is true. As
stressed in [20,21],

P ′⊥ > P ′ ⇒ v2
s⊥ < v2

s ⇒ P⊥ > P. (23)

In this case, δRa , the anisotropic force distribution emerging
from the perturbation of the hydrostatic equation will always
be in the same direction of the gravitational force δRg , (Eqs.
(38), (39) in Appendix A). If the density perturbations do
not affect the pressure gradient, no cracking instability will
appear.

On the other hand, for a local cracking perturbation
approach, the value of the perturbation force should com-
pete (or cooperate) with the magnitude of the reaction to the
pressure gradient δRp = δP ′, creating cracking instabilities
within the matter configuration.

Finally, Fig. 10 explores in more detail the amount of
anisotropy needed to generate stable models around the
isotropic case. We studied the perturbation of the isotropy
for the standard polytropic EoS (i.e. α = β = 0 in Eq. (9)).
In this case we also reproduced two previous polytropes:
isotropic Tooper’s solutions for , C = 0.0 [3], and Herrera
and Barreto’s models for C = 0.25 [78]. We considered both
cases: 0 < C < 1

2 ⇔ P⊥ > P andC < 0 ⇔ P⊥ < P and
found that small positive anisotropy leads to more acceptable
models.

5.2.4 Energy density: baryonic vs total mass

From the perspective of General Relativity, two formulations
exist for polytropic EoS having the same Newtonian limit and
only differing in the density considered: energy density or
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Fig. 9 Left: perturbed hydrostatic equilibrium equation as a function
of ξ̄ for the Lane–Emden master equation, showing the distribution of
the net force immediately after it departures from equilibrium, for mod-
els with parameters α = −0.01, � = 0.17, n = 0.75, C = 0.05 and
several values of σ . Models that present cracking also unfulfill causality

condition C6 (see Fig. 4 bottom plates). Right: M − R (total mass-total
radius) curves for NS candidates in Table 1. Central density increases
from right to left along the curve. All candidates are in the stable region
models (to the right of the maximum mass)

baryonic mass density. This difference could have significant
consequences when describing the parameter space range in
a compact object description [85].

Following [37,78], we briefly present both cases:

1. First, we consider the particle density, N = ρ̂/m0 with
m0 the baryonic mass and ρ̂ the baryonic mass density
and combining the equation of state P = κρ̂1+1/n with
the adiabatic first law of thermodynamics, we obtain:

d
( ρ

N
)

+ Pd

(
1

N
)

= 0 ⇒ d

dρ̂

(
ρ

ρ̂

)
= P

ρ̂2

⇒ 1

ρ̂

dρ

dρ̂
− ρ

ρ̂2 = P

ρ̂2 , (24)

thus, equation (24) can be integrated and we obtain two
possible solutions

dρ

dρ̂
− ρ

ρ̂
= κρ̂γ−1,

⇒

⎧⎪⎪⎨
⎪⎪⎩

γ �= 1 ⇒ ρ = κρ̂γ

γ − 1
+ ς1ρ̂

γ = 1 ⇒ ρ = [
κ ln(ρ̂) + ς1

]
ρ̂

(25)

where γ = 1 + 1
n is the polytropic exponent, and ς1 a

constant of integration.

2. The second approach takes into account the energy density
ρ and beginning with

P = κργ , (26)

so that Eq. (24) becomes

dρ

dρ̂
− ρ

ρ̂
= κ

ρ̂
ργ ⇒

∫
dρ

κργ + ρ

= ln

(
ρ̂

ς2

)
with γ �= 1, (27)

which can solved as

ρ = ρ̂

ς2

[
1 − κ

(
ρ̂

ς2

) 1
n
]−n

= ρ̂[
ς

1
n

2 − κρ̂
1
n

]n , (28)

and if γ = 1, Eq. (24) can be integrated as

dρ

dρ̂
− ρ

ρ̂
= κ

ρ̂
ρ ⇒ ρ = ς2 ρ̂1+κ , (29)

again, with ς2 a constant of integration.

As shown in Fig. 11, the matter configurations are more
viable for the total energy density, ρ than those for baryonic
mass density ρ̂. It is worth mentioning that many models
considering baryonic mass density do not meet the condition
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Fig. 10 Parametric space for the Lane–Emden equation (α = β = 0)

with energy density (bottom plates in Figure 11), for several values of
anisotropic factor C . Isotropic case, C = 0.0, corresponds to Tooper’s

solutions [3], while C = 0.25 corresponds to Herrera and Barreto’s
models [78]. In general, more stable models are obtained for small and
positive values of the anisotropic factor

at the boundary radius of the configuration, i.e. P(R) = Pb =
0. We considered these models as non-integrable. Numerical
integration was performed in Python, using theRK45 method
with the solve_ivp routine having an accuracy of 10−15 for
vanishing the dimensionless pressure at the surface.

5.2.5 Cracking and convective instability

We wanted to explore the incidence of convective instability
with cracking since the second derivative of density appears
in the perturbed hydrostatic equilibrium equation for crack-

ing stability (see Eq. 44, Appendix A). However, as we can
be seen from Fig. 7 when the model is unstable to convec-
tive motions (right plate), it does not present cracking within
the material configuration. Hence, convective motions do not
affect sign change in the perturbed hydrostatic equilibrium
equation due to local perturbations.

5.2.6 Tidal deformability of anisotropic relativistic spheres

Tidal effects arise on extended bodies when immersed in
an external gravitational field and measure the quadrupole
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Fig. 11 Parametric space for the Lane–Emden equation (α = β = 0)

with mass density (top plates) and energy density (bottom plates), for
models with polytropic index from n = 0.5 to n = 4.0, and parameters

C and σ varying from 0 to 0.25 and 0.05 to 0.8, respectively. None of
the models with polytropic EoS with baryonic mass density fulfil all the
conditions, and about half were not integrable

deformation in response to a companion perturbating star
[86]. Several authors studied the influences of anisotropy
on the deformability limits of various ultradense EoS (see
[38,39,87–90] and references therein) through two standard
quantities: the dimensionless tidal polarizability, �̄	, and
Love number k2	 of the each NS. The �̄	, is often employed
in gravitational-wave Astronomy and can be expressed as

�̄	 = �	

M5
	

= 2k2	

3C5
	

. (30)

The tidal Love number, k2, quantifies the deformability of
a star [52,54,86] and is calculated in terms of the compact-

ness C	 and the logarithmic derivative, y(R), of the perturbed
metric evaluated at the star’s boundary surface, as

k2 = A1

A2
, (31)

where the numerator and denominator are

A1 = 8

5
(1 − 2C	)

2C5
	 [2C	(y(R) − 1) − y(R) + 2] and

(32)

A2 = 2C	

[
4(y(R) + 1)C4

	 + (6y(R) − 4)C3
	

]

+2C	

[
(26 − 22y(R))C2
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+3(5y(R) − 8)C	 − 3y(R) + 6
]

−3(1 − 2C	)
2
[
2C	(y(R) − 1) − y(R) + 2

]

× ln

(
1

1 − 2C	

)
. (33)

In the Appendix C we briefly sketch the ideas behind
deformability of anisotropic relativistic spheres, and also see
references [39] and [54] for more details.

After we obtain k2 for each NS with Eq. (31), and each
dimensionless tidal polarizability, �̄	, from Eq. (30), we can
calculate mass-weighted tidal deformation, �̃(1.4)	, of a par-
ticular star with mass, m	 and tidal deformability �̄	, with
respect to companion of mass m(1.4) = 1.4 M
:

�̃(1.4)	

= 16

13

(
m(1.4) + 12m	

)
m4

(1.4)�̄(1.4) + (
m	 + 12m(1.4)

)
m4

	�̄	

(
m(1.4) + m	

)5
.

(34)

From the event GW170817, LIGO reported a constraint
on �̃(1.4)	 as 50 ≤ �̃(1.4)	 ≤ 800 at the 90% confidence
level [48,91].

5.3 Neutron stars candidates

The models that emerge from the integration of (14)–(15) are
physically interesting. In table 1 we show four NS that result
from numerically integrating Eqs. (14)–(15) using (19) and
(20). The first two could be associated, with respect to their
masses, with neutron stars such as the pulsar J0737-30309
(n = 0.5) of mass M = 1.33M
 [92,93] and the pulsar
J1518+490 (n = 1.0) of mass M = 1.56M
 [94,95], the
estimated radii for these two objects are 11.49 and 9.88 km,
respectively. The third compact object, which we will call
GMn075 (n = 0.75), corresponds to a Generic Model of
mass 1.50 M
 and radius 10.0 Km. In this paper we will
use this generic model to show our results for values of n =
0.5, 1.0, 1.5 and n = 2.0, so the above-mentioned objects
would be included by the values of n considered. The fourth
object is like the third one but with α = β = 0, that is, the
polytropic case, already studied in [16] and which we will
call the Polytropic Model PMn075 (n = 0.75).

Figure 9 (right plate) displays the M − R curves for NS
candidates considered in Table 1. As we varied the cen-
tral density, we found a family of stable models for each
NS-candidates. Regarding the case of Mass-Radius for the
J1518+4904, we see that it could also represent any of the
other candidates.

For all these candidates we compute the dimensionless
tidal polarizability, �̄1.4	, and Love number k2	. All the
obtained values are less than the critical upper limit estimated
by LIGO [48,91].

In Figs. 5 and 6 we have indicated the value of M ≈
2.08 ± 0.07M
 corresponding to the recently observed PSR
J0740+6620 [50]. In these plots, it is clear that for the values
of the parameters α, � and n, considered in our modelling,
only anisotropic matter configurations could describe this
massive compact object. We have also shown the stiffness
threshold of σ = 1, implying that the region with σ ≥ 1 is
ruled out for our modelling.

6 Conclusions and final remarks

Modelling compact objects with anisotropic polytropes
started in 2013 [78] and generated many exciting candidates.
A quick search in ADS retrieves more than fifty papers 1. In
this work, we study the EoS introduced previously [37] and
identified the parameter-space portion ensuring the configu-
rations’ acceptability.

We refined the acceptability condition C1 presented by
Ivanov [20] and later extended in [56]. We found that the
usual restriction on the local compactness, C = m/r < 1/2
is enough to obtain physically reasonable metric coefficients.
The Ivanov C1 acceptability condition on the mass-metric
coefficient, (m/r)′ > 0, should be considered as a sufficient
but not a necessary restriction.

We explored compact objects’ modelling emerging from
the generalization of the polytropic EoS (9). Our framework
includes five important physical variables: the polytropic
index, n; the linear coefficient α; the stiffness at the centre of
the matter distribution, σ = Pc/ρc; the anisotropic factor C
and, � = ρb/ρc, the density drop from the centre to the sur-
face of the compact object. This EoS includes several other
particular cases found in the literature (see Refs. [36,37] and
references therein), and the variation of these variables gen-
erate a parameter-space representing a wide range of possible
astrophysical candidates.

Following the heuristic approach found in references
[12,78], we included the anisotropic distribution of pressures.
This approach is free of the pathologies pointed out in the pre-
vious article [37]. We then integrate the corresponding Lane–
Emden structure equations and identify the most significant
variables and parameter space zone leading to acceptable
astrophysical candidates.

We implemented several hundred models based on the
fulfilment of the nine acceptability conditions, and we found
the following answers to our initial questions.

• The parameter n, α, σ and C are the most important. The
variation of � does not significantly change the stability
of the generated models.

1 ADS Database https://ui.adsabs.harvard.edu/ with: anisotropic pres-
sures AND polytropic equation of state AND General Relativity
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Table 1 Parameters for the
numeric solution of the Master
Lane–Emden Eqs. (14)–(15),
modelling two NS candidates:
the Pulsar J0737-30309, the
Pulsar J1518+4904, a Generic
Model of the compact star
(GMn075) and a Polytropic
model (PMn075), which
correspond to the case
α = β = 0 [96]. The output
parameter displayed are: total
mass M , total radius R, NS
compactness C	 at surface,
central density ρc, boundary
density ρb, the mass-weighted
dimensionless tidal
polarizability, �̃(1.4)∗, and Love
number k2	

Object

J0737-3039 J1518+4904 GMn075 PMn075
n = 0.50 n = 1.00 n = 0.75 n = 0.75

Input parameters

C 0.09 0.125 0.05 0.05

α −0.01 0.01 −0.01 0.0

� 0.05 0.15 0.17 0.0

σ 0.10 0.15 0.18 0.18

ρc × 1015 (g/cm3) 0.66 1.79 1.41 1.41

Output parameters

M (M
) 1.33 1.56 1.50 1.56

R (km) 11.49 9.88 10.0 10.9

2C	 0.34 0.47 0.44 0.42

ρb × 1014 (g/cm3) 0.33 2.69 2.4 0.0

k2	 0.06 0.03 0.04 0.04

�̃(1.4)∗ 165.30 50.80 63.60 70.40

• Low polytropic indexes,n < 1, lead to acceptable models
and configurations having high stiffness do not comply
with the causality condition.

• When the isotropy is perturbed with P⊥ > P , improves
the configurations’ acceptability of the models. Small
positive anisotropies produce better models than either
negative or large anisotropy. The smaller the anisotropy
is, the more acceptable models are.

• Polytropic matter configurations are more viable when
considering the total energy density [96]. Many models
considering baryonic mass density do not meet the con-
dition at the boundary radius of the configuration, i.e.
P(R) = Pb = 0.

• Unstable models against convective motions do not
present cracking. Hence, convective disturbances do not
affect the sign change in the perturbed hydrostatic equi-
librium equation due to local perturbations.

• The models emerging from our simulations could repre-
sent physically interesting astrophysical objects. In Table
1 we show four of these NS candidates. The mass-
weighted tidal polarizability, �̃(1.4)	 for all these models
are less than the critical upper limit estimated by LIGO
[48,91].

• Regarding the massive recently observed pulsar J0740+
6620 [50] we found that, for the values of the parameters
α, � and n considered in our modelling, only anisotropic
matter configurations could describe this massive com-
pact object.

These findings are not general but depend on the pro-
vided heuristic relation between radial and tangential pres-
sure given in equation (17) for the generalized polytropic
EoS (9).

As we have mentioned, there are diverse heuristic strate-
gies to generate an anisotropic distribution of pressures
within matter distributions: the standard one – discussed in
our previous work [37] –; the present approach described in
Eq. (16) [12,78]; the original one [11]; the quasilocal assump-
tion [22]; the covariant way [23]; Karmarkar embedding class
I [24,25]; conditions on the complexity factor [29]; double
polytrope schemes [28] and gravitational decoupling [27].
These strategies may lead to viable interesting astrophysical
models [18] within particular acceptability parameter spaces.
We are exploring how similar the above answers are for all
these other strategies. This is a work in progress and will be
reported shortly.
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Appendices

Appendix A: On the criteria of cracking and adiabatic
convectivity

Just for completeness we shall consider in this Appendix
the local perturbations of density, δρ = δρ(r), and show
the difference between the present C8 and the previous
more simple cracking criterion [60]. The δρ(r) fluctuations
induce variations in all the other physical variables, i.e.
m(r), P(r), P⊥(r) and their derivatives, generating a non-
vanishing total radial force distribution. For further details,
we refer interested readers to [37,56,61,62] and references
therein.

Following [62], we take Eq. (7) and define:

R ≡ dP

dr
+ (ρ + P)

m + 4πr3P

r(r − 2m)
− 2

r
(P⊥ − P) . (35)

Next, expanding this TOV equation as R ≈ R0(ρ, P, P⊥,

m, P ′) + δR, thus

δR ≡ ∂R
∂ρ

δρ + ∂R
∂P

δP + ∂R
∂P⊥

δP⊥ + ∂R
∂m

δm + ∂R
∂P ′ δP

′,

(36)

where R0(ρ, P, P⊥,m, P ′) = 0, because initially the con-
figuration is in equilibrium.

The above Eq. (36) can be reshaped as:

δR ≡ δ P ′︸︷︷︸
Rp

+δ

[
(ρ + P)

m + 4πr3P

r(r − 2m)

]

︸ ︷︷ ︸
Rg

+δ

(
2
P

r
− 2

P⊥
r

)

︸ ︷︷ ︸
Ra

= δRp + δRg + δRa, (37)

where it is clear that the density perturbations δρ(r) are influ-
ence the distribution of reacting pressure forces Rp, grav-
ity forces Rg and anisotropy forces Ra . Depending on this
effect, each perturbed distribution force can contribute in a
different way to the change of sign of δR: each term can be
written as

δRp =
(
P ′′

ρ′

)
δρ =

(
(v2

s )
′ + v2

s
ρ′′

ρ′

)
δρ,

δRg =
(

∂Rg

∂ρ
+ ∂Rg

∂P
v2
s + ∂Rg

∂m

4πr2ρ

ρ′

)
δρ and (38)

δRa =
(

v2
s − v2

s⊥
r

)
δρ, (39)

with

∂Rg

∂ρ
= m + 4πr3P

r(r − 2m)
,

∂Rg

∂P
=

[
m + 4πr3(ρ + 2P)

r(r − 2m)

]
and

∂Rg

∂m
=

[
(ρ + P)(1 + 8πr2P)

(2m − r)2

]
. (40)

Notice that if, as in [60], the perturbation δρ is constant and
does not affect the pressure gradient, we have: δRp = 0,

δR̃g =
(

2
m + 4πr3(ρ + 2P)

r(r − 2m)

+4πr2

3

(ρ + P)(1 + 8πr2P)

(2m − r)2

)
δρ, and

δR̃a =
(

v2
s − v2

s⊥
r

)
. (41)

Thus, only anisotropic matter distribution can present
cracking instabilities because δR̃g > 0 for all r and the
possible change of sign for δR should emerge from δRa and
the criterion against cracking is written as:

− 1 ≤ v2
s⊥ − v2

s ≤ 0 ⇔ 0 ≥ dP⊥
dr

≥ dP

dr
. (42)

For the present anisotropic case R is

R ≡ dP

dr
+ h(ρ + P)

m + 4πr3P

r(r − 2m)
= 0, (43)

and we get

∂R
∂ρ

= h
(
m + 4πr3P

)

r(r − 2m)
,

∂R
∂m

= h (ρ + P)
(
1 + 8π Pr2

)

(r − 2m)2 ,

∂R
∂P

= h
[
m + 4πr3 (ρ + 2P)

]

r(r − 2m)
and

∂R
∂P ′ = 1.

Hence, we have

δR
δρ

= h
(
m + 4πr3P

)

r(r − 2m)
+ h (ρ + P)

(
1 + 8π Pr2

)

(r − 2m)2

4πr2ρ

ρ′

+h
[
m + 4πr3 (ρ + 2P)

]

r(r − 2m)
v2 +

[(
v2

)′ + v2 ρ′′

ρ′

]
,

(44)

and in the Lane–Emden variables we get

R̄ = a
δR
δρ

≡ hϒ(1 + n)

n

[
n

[
η + ξ3P]

ξ [ξ − 2ϒ (1 + n) η]
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+ξ2�
[
�n + P] [1 + 2ϒ (1 + n)Pξ2]
�̇ [ξ − 2ϒ (1 + n) η]2

+ 1

�

ϒ (1 + n)
[
η + ξ3

[
�n + 2P]]

�

ξ [ξ − 2ϒ (n + 1) η]

+n�̇2 + ��̈

h�̇

]
+ α

[
(n − 1)�̇

�
+ �̈

�̇

]
, (45)

where

� =
[

1 + αn

ϒ(1 + n)�

]−1

.

On the other hand, in reference [56] is developed a simple
criterion to identify unstable state equations to convection
and explore the influence of buoyancy on cracking (or over-
turning) for isotropic and anisotropic relativistic spheres. The
criterion of adiabatic stability against convection consists of
analyzing a fluid element displaced towards the sphere’s cen-
tre and its interaction with the surrounding environment. It
is found that the material configuration will be stable under
this type of disturbance if the second derivative of the density
concerning the radius is less than or equal to zero (ρ′′ ≤ 0).

Starting from the density equation

ρ = ρc�
n(ξ),

we compute the second derivative of density respect to ξ as
follows

�̈n = n
�n

�

[
(n − 1)

�̇2

�
+ �̈

]
. (46)

Appendix B: The “master” Lane–Emden equation

The hydrostatic equilibrium Eq. (17) can be written as

r (r − 2m)

ρ + P

dP

dr
+ h

(
m + 4π Pr3

)
= 0. (47)

Using a change of variables for energy density, ρ = ρc�
n ,

we have

P = Kρ
γ
c �nγ + αρc�

n − β

= Kρ
1+ 1

n
c �n+1 + αρc�

n − β (48)

and

dP

dr
= Kρ

1+ 1
n

c (n + 1)�n d�

dr
+ αρcn�n−1 d�

dr
. (49)

Substituting the energy density, (48) and (49) in (47),
yields

r (r − 2m)

1 + Kρ
1
n
c � + α − β/ρc�n

[
Kρ

1
n
c (n + 1) + αn

�

]
d�

dr

+h

[
m + 4π

(
Kρ

1+ 1
n

c �n+1 + αρc�
n − β

)
r3

]
= 0.

(50)

Introducing the radial coordinate as r = aξ , where

a2 = ϒ (1 + n)

4πρc
with

ϒ = κρ
1/n
c = σ − α (1 − �)

1 − �1+1/n
; � = ρb

ρc
,

we have

a2ξ [ξ − 2m/a]

(1 + α) + ϒ� − (β/ρc)�−n

[
ϒ(n + 1) + αn

�

]

× 1

4πρca4

d�

dξ

+h

{
m

4πρca3 + ξ3
[
ϒ�n+1 + α�n − β/ρc

]}
= 0.

(51)

Now, the dimensionless mass is

η(ξ) = m

4πa3ρc
, (52)

yielding

ξ
[
ξ − 2

(
4πρca2η

)]

(1 + α) + ϒ� − (β/ρc)�−n

[
ϒ(n + 1) + αn

�

]

× 1

4πρca2

d�

dξ

+h
{
η + ξ3

[
ϒ�n+1 + α�n − β/ρc

]}
= 0. (53)

Finally, making

ϒ(n + 1)

4πa2ρc
= 1,

we get

ξ [ξ − 2ϒ (n + 1) η]

(1 + α) + ϒ� − (β/ρc)�−n

[
1 + αn

ϒ(n + 1)�

]
d�

dξ

+h
{
η + ξ3

[
ϒ�n+1 + α�n − β/ρc

]}
= 0. (54)

By using (10), Eq. (54) becomes

ξ [ξ − 2ϒ (n + 1) η]

(1 + α) + ϒ� − (β/ρc)�−n

[
1 + αn

ϒ(n + 1)�

]
d�

dξ

+h
{
η + ξ3

[
ϒ

(
�n+1 − �1+ 1

n

)
+ α

(
�n − �

)]} = 0,

(55)

and together with Eq. (15) they form master Lane–Emden
equation for the generalized polytropic equation of state.

Appendix C: Tidal deformability of anisotropic relativis-
tic spheres

When a companion NS provides an external gravitational
tidal field (Ei j ) generating a quadrupole moment (Qi j ) on
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the corresponding NS. This moment is

Qi j = −2k2	R5

3
Ei j ≡ −�	Ei j . (56)

Here, k2	 is the tidal Love number quantifying the deforma-
bility of a star immersed in an external field [86] and �̄	,
the dimensionless tidal polarizability often employed in
gravitational-wave astronomy. It can be expressed as

�̄	 = �	

M5
	

= 2k2	

3C5
	

, (57)

where C	 ≡ M	/R	 denotes the compactness of the matter
configuration.

Following [39] and perturbing the metric (1) and its corre-
sponding field Eqs. (3), (4) and (5), we obtain a second order
differential equation for the even parity metric perturbations
H(r),

H ′′ + D1(r)H
′ + D0(r)H = 0, (58)

where the coefficients D1(r) and D0(r) are given by

D1(r) = 2

r
+ e2λ

(
2m

r2 + 4πr(P − ρ)

)
and (59)

D0(r) = e2λ

(
− 6

r2 + 4π(P + ρ)(1 + v2
s )

v2
s⊥

+ 4π(4ρ + 8P)

)

+16π(P − P⊥)e2λ − (
ν′)2

, (60)

see references [39,54] for details.
Next, to simplify the integration of the perturbation Eq.

(58), it is conventional to introduce the logarithmic derivative
y(r) ≡ r H ′/H , to obtain a Riccati equation [54],

r y′ + y(y − 1) + r D1y + r2D0 = 0. (61)

Now, integrating the system (14), (15) and (61), guarantee-
ing the continuity of y and its derivative across the boundary
surface, r = R

y|R− = y|R+ = y(R) and y′∣∣
R− = y′∣∣

R+ = y′(R),

(62)

it is possible to calculate the Love number k2 from the fol-
lowing expression

k2 = A1

A2
, (63)

where

A1 = 8

5
(1 − 2C	)

2C5
	 [2C	(y(R) − 1) − y(R) + 2], and

(64)

A2 = 2C	

[
4(y(R) + 1)C4

	 + (6y(R) − 4)C3
	

]

+2C	

[
(26 − 22y(R))C2

	

+3(5y(R) − 8)C	 − 3y(R) + 6]

−3(1 − 2C	)
2[2C	(y(R) − 1) − y(R) + 2]

× ln

(
1

1 − 2C	

)
, (65)

see references [54] and [39] for details.
After we obtain k2 for each NS, we can calculate mass-

weighted combination of a star with mass, m	 and tidal
deformability �	, with respect to companion star of mass
m(1.4) = 1.4 M
:

�̃(1.4)

= 16

13

(
m(1.4) + 12m	

)
m4

(1.4)�̄(1.4) + (
m	 + 12m(1.4)

)
m4

	�̄	

(
m(1.4) + m	

)5
,

(66)

that can be compared with data from GW observations.

References

1. G. Wolansky, On nonlinear stability of polytropic galaxies. Ann.
Inst. Henri Poincare Anal. 16(1), 15–48 (1999)

2. S. Chandrasekhar, An introduction to the study of stellar structure
(Dover, New York, 1967)

3. R.F. Tooper, General relativistic polytropic fluid spheres. Astro-
phys. J. 140, 434–459 (1964)

4. A. Kovetz, Schwarzschild’s criterion for convective instability in
general relativity. Z. Astrophys. 66, 446 (1967)

5. W.A. Fowler, Massive stars, relativistic polytropes, and gravita-
tional radiation. Rev. Mod. Phys. 36(2), 545–555 (1964)

6. S. Rappaport, F. Verbunt, P.C. Joss, A new technique for calcula-
tions of binary stellar evolution application to magnetic braking.
Astrophys. J. 275, 713–731 (1983)

7. G.B. Cook, S.L. Shapiro, S.A. Teukolsky, Rapidly rotating poly-
tropes in general relativity. Astrophys. J. 422, 227–242 (1994)

8. J.H. Jeans, The motions of stars in a Kapteyn universe. Mon. Not.
R. Astron. Soc. 82, 122–132 (1922)

9. G. Lemaıtre, L’univers en expansion. Ann. Soc. Sci.(Bruxelles) A
53, 51–85 (1933)

10. M. Ruderman, Pulsars: structure and dynamics. Annu. Rev. Astron.
Astrophys. 10, 427–476 (1972)

11. R.L. Bowers, E.P.T. Liang, Anisotropic spheres in general relativ-
ity. Astrophys. J. 188, 657–665 (1974)

12. M. Cosenza, L. Herrera, M. Esculpi, L. Witten, Some models of
anisotropic spheres in general relativity. J. Math. Phys. 22, 118
(1981)

13. L. Herrera, L. Núñez, Modeling “hydrodynamic phase transitions”
in a radiating spherically symmetric distribution of matter. Astro-
phys. J. 339, 339–353 (1989)

14. L. Herrera, N.O. Santos, Local anisotropy in self-gravitating sys-
tems. Phys. Rep. 286(2), 53–130 (1997)

15. A.P. Martínez, H.P. Rojas, H.M. Cuesta, Magnetic collapse of a
neutron gas: can magnetars indeed be formed? Eur. Phys. J. C
29(1), 111–123 (2003)

16. L. Herrera, W. Barreto, Evolution of relativistic polytropes in
the post-quasi-static regime. Gen. Relativ. Gravit. 36(1), 127–150
(2004)

17. L. Herrera et al., Dissipative collapse of axially symmetric, general
relativistic sources: a general framework and some applications.
Phys. Rev. D 89(8), 084034 (2014)

18. A.M. Setiawan, A. Sulaksono, Anisotropic neutron stars and per-
fect fluid’s energy conditions. Eur. Phys. J. C 79(9), 755 (2019)

123



Eur. Phys. J. C (2022) 82 :176 Page 21 of 22 176

19. L. Herrera, Stability of the isotropic pressure condition. Phys. Rev.
D 101(10), 104024 (2020)

20. B.V. Ivanov, Analytical study of anisotropic compact star models.
Eur. Phys. J. C 77(11), 738 (2017)

21. B.V. Ivanov, A conformally flat realistic anisotropic model for a
compact star. Eur. Phys. J. C 78(4), 332 (2018)

22. D.D. Doneva, S.S. Yazadjiev, Nonradial oscillations of anisotropic
neutron stars in the cowling approximation. Phys. Rev. D 85(12),
124023 (2012)

23. G. Raposo et al., Anisotropic stars as ultracompact objects in gen-
eral relativity. Phys. Rev. D 99(10), 104072 (2019)

24. K.R. Karmarkar, Gravitational metrics of spherical symmetry and
class one. Proc. Indian Acad. Sci. 27(1), 56 (1948)

25. J. Ospino, L.A. Núñez, Karmarkar scalar condition. Eur. Phys. J.
C 166 (2020)

26. J. Ovalle, Decoupling gravitational sources in general relativity:
from perfect to anisotropic fluids. Phys. Rev. D 95(10), 104019
(2017)

27. G. Abellán, Á. Rincón, E. Fuenmayor, E. Contreras, Anisotropic
interior solution by gravitational decoupling based on a non-
standard anisotropy. Eur. Phys. J. Plus 135(7), 606 (2020)

28. G. Abellán, E. Fuenmayor, E. Contreras, L. Herrera, The gen-
eral relativistic double polytrope for anisotropic matter. Phys. Dark
Univ. 30, 100632 (2020)

29. L. Herrera, New definition of complexity for self-gravitating fluid
distributions: the spherically symmetric, static case. Phys. Rev. D
97(4), 044010 (2018)

30. B.W. Stewart, Conformally flat, anisotropic spheres in general rel-
ativity. J. Phys. A Math. Gen. 15(8), 2419–2427 (1982)

31. M.R. Finch, J.E.F. Skea, A realistic stellar model based on an ansatz
of Duorah and Ray. Class. Quantum Gravity 6(4), 467–476 (1989)

32. H. Hernández, L.A. Núñez, Nonlocal equation of state in
anisotropic static fluid spheres in general relativity. Can. J. Phys.
82(1), 29–51 (2004)

33. L. Herrera, J. Ospino, A. Di Prisco, All static spherically symmetric
anisotropic solutions of Einstein’s equations. Phys. Rev. D 77(2),
027502 (2008)

34. H. Hernández, L.A. Núñez, Plausible families of compact objects
with a nonlocal equation of state. Can. J. Phys. 91(4), 328–336
(2013)

35. G. Abellán, P. Bargueño, E. Contreras, E. Fuenmayor, All static
spherically symmetric anisotropic solutions for general relativistic
polytropes. Int. J. Mod. Phys. D 29(12), 2050082 (2020)

36. R.N. Nasheeha, S. Thirukkanesh, F.C. Ragel, Anisotropic models
for compact star with various equation of state. Eur. Phys. J. Plus
136(1), 1–20 (2021)

37. H. Hernández, D. Suárez-Urango, L.A. Núñez, Acceptability con-
ditions and relativistic barotropic equation of state. Eur. Phys. J. C
81 (241) (2021)

38. B. Biswas, S. Bose, Tidal deformability of an anisotropic com-
pact star: implications of gw170817. Phys. Rev. D 99(10), 104002
(2019)

39. A. Rahmansyah, A. Sulaksono, Recent multimessenger constraints
and the anisotropic neutron star. Phys. Rev. C 104(6), 065805
(2021)

40. S. Thirukkanesh, F.C. Ragel, Exact anisotropic sphere with poly-
tropic equation of state. Pramana 78(5), 687–696 (2012)

41. S.A. Ngubelanga, S.D. Maharaj, S. Ray, Compact stars with
quadratic equation of state. Astrophys. Space Sci. 357(1), 74 (2015)

42. P.M. Takisa, S.D. Maharaj, Some charged polytropic models. Gen.
Relativ. Gravit. 45(10), 1951–1969 (2013)

43. M. Malaver, Polytropic stars with Tolman IV type potential.
AASCIT J. Phys. 1(4), 309–314 (2015)

44. S.A. Ngubelanga, S.D. Maharaj, New classes of polytropic models.
Astrophys. Space Sci. 362(3), 43 (2017)

45. M. Sharif, S. Sadiq, Cracking in anisotropic polytropic models.
Mod. Phys. Lett. A 33(24), 1850139 (2018)

46. M. Azam, I. Nazir, Cracking of some polytropic models via local
density perturbations. Can. J. Phys. (2020)

47. B.P. Abbott, R. Abbott, T.D. Abbott et al., Multi-messenger obser-
vations of a binary neutron star merger. Astrophys. J. Lett. 848(2),
L12 (2017)

48. B.P. Abbott, R. Abbott, T.D. Abbott, et al. (LIGO Scientific Collab-
oration, and Virgo Collaboration), Properties of the binary neutron
star merger gw170817. Phys. Rev. X 9, 011001 (2019)

49. M.C. Miller, F.K. Lamb, A.J. Dittmann, S. Bogdanov, Z. Arzou-
manian, K.C. Gendreau, S. Guillot, A.K. Harding, W.C.G. Ho,
J.M. Lattimer, R.M. Ludlam, S. Mahmoodifar, S.M. Morsink, P.S.
Ray, T.E. Strohmayer, K.S. Wood, T. Enoto, R. Foster, T. Oka-
jima, G. Prigozhin, Y. Soong, PSR J0030+0451 mass and radius
from NICER data and implications for the properties of neutron
star matter. Astrophys. J. Lett. 887(1), L24 (2019)

50. M.C. Miller, F.K. Lamb, A.J. Dittmann, S. Bogdanov, Z. Arzou-
manian, K.C. Gendreau, S. Guillot, W.C.G. Ho, J.M. Lattimer, M.
Loewenstein, S.M. Morsink, P.S. Ray, M.T. Wolff, C.L. Baker, T.
Cazeau, S. Manthripragada, C.B. Markwardt, T. Okajima, S. Pol-
lard, I. Cognard, H.T. Cromartie, E. Fonseca, L. Guillemot, M.
Kerr, A. Parthasarathy, T.T. Pennucci, S. Ransom, I. Stairs, The
radius of PSR j0740+6620 from NICER and XMM-newton data.
Astrophys. J. Lett. 918(2), L28 (2021)

51. E.E. Flanagan, T. Hinderer, Constraining neutron-star tidal love
numbers with gravitational-wave detectors. Phys. Rev. D 77(2),
021502 (2008)

52. T. Hinderer, Tidal love numbers of neutron stars. Astrophys. J.
677(2), 1216 (2008)

53. T. Binnington, E. Poisson, Relativistic theory of tidal love numbers.
Phys. Rev. D 80(8), 084018 (2009)

54. T. Damour, A. Nagar, Relativistic tidal properties of neutron stars.
Phys. Rev. D 80(8), 084035 (2009)

55. D. Radice, A. Perego, F. Zappa, S. Bernuzzi, GW170817: joint con-
straint on the neutron star equation of state from multimessenger
observations. Astrophys. J. 852(2), L29 (2018)

56. H. Hernández, L.A. Núñez, A. Vásquez-Ramírez, Convection and
cracking stability of spheres in general relativity. Eur. Phys. J. C
78(11), 883 (2018)

57. C.W. Misner, D.H. Sharp, Relativistic equations for adiabatic,
spherically symmetric gravitational collapse. Phys. Rev. 136, 571–
576 (1964)

58. L. Herrera, Cracking of self-gravitating compact objects. Phys.
Lett. A 165(3), 206–210 (1992)

59. A. Di Prisco, L. Herrera, V. Varela, Cracking of homogeneous
self-gravitating compact objects induced by fluctuations of local
anisotropy. Gen. Relativ. Gravit. 29(10), 1239–1256 (1997)

60. H. Abreu, H. Hernández, L.A. Núñez, Sound speeds, cracking
and stability of self-gravitating anisotropic compact objects. Class.
Quantum Gravity 24(18), 4631–4646 (2007)

61. G.A. González, A. Navarro, L.A. Núñez, Cracking of anisotropic
spheres in general relativity revisited. J. Phys. Conf. Ser. 600(1),
012014 (2015)

62. G.A. González, A. Navarro, L.A. Núñez, Cracking isotropic and
anisotropic relativistic spheres. Can. J. Phys. 95(11), 1089–1095
(2017)

63. P.S. Florides, A new interior schwarzschild solution. Proc. R. Soc.
Lond. A A337, 529–535 (1974)

64. M.S.R. Delgaty, K. Lake, Physical acceptability of isolated, static,
spherically symmetric, perfect fluid solutions of Einstein’s equa-
tions. Comput. Phys. Commun. 115, 395 (1998)

65. H.A. Buchdahl, General relativistic fluid spheres. Phys. Rev.
116(4), 1027–1034 (1959)

66. B.V. Ivanov, Maximum bounds on the surface redshift of
anisotropic stars. Phys. Rev. D 65(10), 104011 (2002)

123



176 Page 22 of 22 Eur. Phys. J. C (2022) 82 :176

67. C.A. Kolassis, N.O. Santos, D. Tsoubelis, Energy conditions for an
imperfect fluid. Class. Quantum Gravity 5(10), 1329–1338 (1988)

68. O.M. Pimentel, F.D. Lora-Clavijo, G.A. González, Ideal magne-
tohydrodynamics with radiative terms: energy conditions. Class.
Quantum Gravity 34(7), 075008 (2017)

69. H. Heintzmann, W. Hillebrandt, Neutron stars with an anisotropic
equation of state: mass, redshift and stability. Astron. Astrophys.
38, 51–55 (1975)

70. R. Chan, L. Herrera, N.O. Santos, Dynamical instability for radi-
ating anisotropic collapse. Mon. Not. R. Astron. Soc. 265(3), 533–
544 (1993)

71. R. Chan, L. Herrera, N.O. Santos, Dynamical instability for shear-
ing viscous collapse. Mon. Not. R. Astron. Soc. 267(3), 637–646
(1994)

72. B.K. Harrison et al., Gravitation theory and gravitational collapse
(University of Chicago Press, Chicago, 1965)

73. Y.B. Zeldovich, I.D. Novikov,Relativistic astrophysics. Vol.1: stars
and relativity (University of Chicago Press, Chicago, 1971)

74. K. Dev, M. Gleiser, Anisotropic stars II: stability. Gen. Relativ.
Gravit. 35(8), 1435–1457 (2003)

75. M. Gleiser, K. Dev, Anistropic stars: exact solutions and stability.
Int. J. Mod. Phys. D 13(07), 1389–1397 (2004)

76. H. Bondi, Massive spheres in general relativity. Proc. Math. Phys.
Eng. Sci. 282(1390), 303–317 (1964)

77. K.S. Thorne, Validity in general relativity of the Schwarzschild
criterion for convection. Astrophys. J. 144, 201–205 (1966)

78. L. Herrera, W. Barreto, General relativistic polytropes for
anisotropic matter: the general formalism and applications. Phys.
Rev. D 88(8), 084022 (2013)

79. L. Herrera, W. Barreto, Newtonian polytropes for anisotropic mat-
ter: general framework and applications. Phys. Rev. D 87(8),
087303 (2013)

80. D. Horvat, S. Ilijic, A. Marunovic, Radial pulsations and stabil-
ity of anisotropic stars with a quasi-local equation of state. Class.
Quantum Gravity 28(2), 025009 (2011)

81. S.A. Bludman, Stability of general-relativistic polytropes. Astro-
phys. J. 183, 637–648 (1973)

82. G.P. Horedt, Polytropes: applications in astrophysics and related
fields, vol. 306 (Springer Science & Business Media, Berlin, 2004)

83. M.K. Gokhroo, A.L. Mehra, Anisotropic spheres with variable
energy density in general relativity. Gen. Relativ. Gravit. 26(1),
75–84 (1994)

84. T.E. Riley, A.L. Watts, S. Bogdanov, P.S. Ray, R.M. Ludlam, S.
Guillot, Z. Arzoumanian, C.L. Baker, A.V. Bilous, D. Chakrabarty,

K.C. Gendreau, A.K. Harding, W.C.G. Ho, J.M. Lattimer, S.M.
Morsink, T.E. Strohmayer, A nicer view of psr j0030+0451: mil-
lisecond pulsar parameter estimation. Astrophys. J. 887(1), L21
(2019)

85. G. Arroyo-Chávez, A. Cruz-Osorio, F.D. Lora-Clavijo, C.
Campuzano-Vargas, L.A. García-Mora, Neutron and quark stars:
constraining the parameters for simple eos using the gw170817.
Astrophys. Space Sci. 365(2), 02 (2020)

86. E. Poisson, C.M. Will, Gravity: Newtonian, post-Newtonian, rela-
tivistic (Cambridge University Press, Cambridge, 2014)

87. K. Yagi, N. Yunes, I-love-q anisotropically: universal relations for
compact stars with scalar pressure anisotropy. Phys. Rev. D 91(12),
123008 (2015)

88. G. Raposo, P. Pani, M. Bezares, C. Palenzuela, V. Cardoso,
Anisotropic stars as ultracompact objects in general relativity. Phys.
Rev. D 99, 104072 (2019)

89. S. Das, S. Ray, M. Khlopov, K.K. Nandi, B.K. Parida, Anisotropic
compact stars: constraining model parameters to account for phys-
ical features of tidal Love numbers. Ann Phys (N Y) 433, 168597
(2021)

90. J.D.V. Arbañil, G. Panotopoulos, Tidal deformability and radial
oscillations of anisotropic polytropic spheres. Phys. Rev. D 105(2),
024008 (2022)

91. C. Chirenti, C. Posada, V. Guedes, Where is love? Tidal deforma-
bility in the black hole compactness limit. Class. Quantum Gravity
37(19), 195017 (2020)

92. M. Burgay et al., An increased estimate of the merger rate of dou-
ble neutron stars from observations of a highly relativistic system.
Nature 426(6966), 531–533 (2003)

93. A.G. Lyne, M. Burgay, M. Kramer, A. Possenti, R.N. Manchester, F.
Camilo, M.A. McLaughlin, D.R. Lorimer, N. D’Amico, B.C. Joshi,
J. Reynolds, C.C. Freire, A double-pulsar system: a rare labora-
tory for relativistic gravity and plasma physics. Science 303(5661),
1153–1157 (2004)

94. D.J. Nice, R.W. Sayer, J.H. Taylor, PSR J1518+4904: a mildly
relativistic binary pulsar system. Astrophys. J. Lett. 466(2), L87–
L90 (1996)

95. G.H. Janssen, B.W. Stappers, M. Kramer, D.J. Nice, A. Jess-
ner, I. Cognard, M.B. Purver, Multi-telescope timing of PSR
J1518+4904. Astron. Astrophys. 490(2), 753–761 (2008)

96. D. Suárez-Urango, L.A. Núñez, H. Hernández, Relativistic
anisotropic polytropic spheres: physical acceptability (2021).
arXiv:2102.00496

123

http://arxiv.org/abs/2102.00496

	Acceptability conditions and relativistic anisotropic generalized polytropes
	Abstract 
	1 Introduction
	2 The field equations
	3 The physical acceptability conditions
	4 The Lane–Emden anisotropic equation of structure
	4.1 The ``master'' Lane–Emden equation
	4.2 The anisotropic scheme and the Lane–Emden equation

	5 Modelling and acceptability conditions
	5.1 Examining the acceptability conditions for anisotropic models
	5.2 The modelling, the acceptability and the parameter space
	5.2.1 The most significant acceptability parameters
	5.2.2 Parameters and the acceptability criteria
	5.2.3 The anisotropy and acceptability
	5.2.4 Energy density: baryonic vs total mass
	5.2.5 Cracking and convective instability
	5.2.6 Tidal deformability of anisotropic relativistic spheres

	5.3 Neutron stars candidates

	6 Conclusions and final remarks
	Acknowledgements
	Appendices
	Appendix A: On the criteria of cracking and adiabatic convectivity
	Appendix B: The ``master'' Lane–Emden equation
	Appendix C: Tidal deformability of anisotropic relativistic spheres
	References




