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Abstract We analyze the configuration of charged dust
in the context of the higher dimensional and higher cur-
vature Einstein–Gauss–Bonnet–Maxwell theory. With the
prescription of dust, there remains one more prescription
to be made in order to close the system of equations of
motion. The choice of one of the metric potentials appears
to be the only viable way to proceed. Before establishing
exact solutions, we examine conditions for the existence of
physically reasonable charged dust fluids. It turns out that
the branches of the Boulware–Deser metric representing the
exterior gravitational field of a neutral spherically symmet-
ric Einstein–Gauss–Bonnet distribution, serve as upper and
lower bounds for the spatial potentials of physically reason-
able charged dust in Einstein–Gauss–Bonnet–Maxwell grav-
ity. Some exact solutions for 5 and 6 dimensional charged
dust hyperspheres are exhibited in closed form. In particu-
lar the Einstein ansatz of a constant temporal potential while
defective in 5 dimensions actually generates a model of a
closed compact astrophysical object in 6 dimensions. A phys-
ically viable 5 dimensional charged dust model is also con-
trasted with its general relativity counterpart graphically.

1 Introduction

Charged dust spheres have been thoroughly studied within
the context of Einstein’s general relativity, over the last cen-
tury as the simplest matter composed models of stars or the
universe as a whole. Dust consists of a pressure-free fluid
of non-interacting particles. The collapse to a point singular-
ity of such distributions is countered by repulsive Coulom-
bic forces on account of the presence of the electromagnetic
field. The effects of the magnetic field may be negated as
gauge freedom allows for the suppression of the magnetic
field so that only the electric part of the Maxwell field is
actively involved in the dynamics. Attempts at modelling the
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electron as a charged dust were not successful on account of
unrealistic charge–to–mass, charge–to–radius and mass–to–
radius ratios that contradict the actually measured values [1].
A further motivation to investigate charged celestial phenom-
ena is in the work of Cherubini et al. [2] where it is claimed
that the creation of positron-electron pairs in the dyadosphere
of charged black holes could serve as a mechanism to drive
gamma-ray bursts [3]. Detailed studies of electromagnetic
black holes were conducted by Ruffini et al. [4–8].

In this work we study charged dust stars in higher dimen-
sions and with higher curvature effects induced by the Gauss–
Bonnet invariants. It is reasonable to ask why such objects
would be of interest since common experience suggests that
only the four dimensional spacetime manifold is physically
accessible. Although this is true, the existence of extra dimen-
sions has not been ruled out by any experimental evidence
and such speculations have proliferated for several decades.
The Large Hadron Collider project searched for evidence of
higher dimensions but could not detect any large extra dimen-
sions, however, the existence of microscopic compactified
topologically curled extra dimensions has not been elimi-
nated. Motivations for higher dimensional study are usually
made on the grounds that higher curvature gravity is a string
inspired theory [9]. Dimensions of order 10 and 11 are com-
monplace in quantum field theory in the context of super-
string theory and its generalization M−theory. In addition,
there is also the pursuit of a grand unified theory which har-
monizes quantum field theory and gravitational theory. If
such a theory exists then it follows that gravity should also
embody higher dimensions.

Higher dimensional theories are by no means novel. The
seminal work of Kaluza [10] and Klein [11] studied such in
the context of 5 dimensional electromagnetic field theory and
ascribed four dimensions to the electromagnetic field, 10 to
the usual spacetime dimensions and an extra dimension to a
scalar field called a scalaron. More recently brane-world cos-
mologies requiring higher dimensions received considerable
attention although their importance has since waned [12].
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Alternate, extended or modified theories of gravity have
aroused considerable interest recently in view of the inade-
quacy of the general theory of relativity to explain anoma-
lous behavior of gravitational phenomena such as the late
time accelerated expansion of the universe without resorting
to postulating the existence of exotic matter fields such as
dark energy and dark matter with negative pressures driving
the cosmic accelerated expansion. In particular, Einstein–
Gauss–Bonnet (EGB) theory has been intensively studied
over the last few decades. EGB belongs to the class of Love-
lock polynomials [13,14] which serve as the most general
tensorial higher curvature gravity theories that generalize
general relativity and that produce second order equations
of motion. Ostrogradsky ghosts are avoided, the Bianchi
identities are satisfied and energy conservation laws hold.
Importantly the EGB Lagrangian appears in the low energy
effective action of heterotic string theory and the coupling
constant is identified with the string tension [15]. The EGB
action is constructed from quadratic forms of the Riemann
tensor, Ricci tensor and the Ricci scalar. Even if there is
some skepticism against the influence of higher dimensions
in an area such as stellar modelling, investigations into such
objects potentially analyze the self consistency of such theo-
ries. A theory may explain the cosmic accelerated expansion
at late times, but the question of whether the same theory
admits physically viable models of stars and galaxies must
also be confronted. It is in this spirit we undertake to examine
higher dimensional stars in the context of extra curvature.

The Lovelock construction and its special cases EGB and
pure Lovelock gravity are natural extensions of general rel-
ativity to higher dimensions. Recall that in Lovelock theory
the critical spacetime dimensions d are d = 2N + 1 and
d = 2N + 2 where N is the order of the Lovelock poly-
nomial [16]. EGB theory is the quadratic case of the Love-
lock polynomial and incorporates the Einstein contribution
(N = 1) as well as the N = 2 term. In dimensions less
than 5 the Lovelock polynomial is the same as that of gen-
eral relativity. Note that pure Lovelock gravity entails a sin-
gle term of the Lovelock polynomial as the generator of the
Lagrangian as opposed to the sum of the terms. Important
properties of pure Lovelock gravity such as its impact on
black holes were considered in [17,18] while the dynamical
structure of pure Lovelock gravity was examined in [19]. A
most intriguing result is reported in [20] where it is shown
that for d = 3N + 1 there exists higher dimensional mani-
folds that mimic the four dimensional standard case. In other
words it is impossible to tell if one is in a four dimensional
spacetime or 7 dimensional one as both exterior fields have
a 1/r fall-off. In pure Lovelock geometry the coupling con-
stants have no importance and consequently one drawback is
that higher curvature effects may not be switched off as can
be achieved in full Lovelock theory by setting the coupling
constants to vanish. Nevertheless the N = 1 case corre-

sponds to four dimensions, the standard Einstein theory and
all its successes are regained. Using a Chern-Simons gauge
Chamseddine showed that both odd and even pure Lovelock
Lagrangians are dynamical [21–27]. Of late, an odd dimen-
sional universe model was considered in [28] and shown to
be dynamical and not kinematic as some have previously
claimed [29]. The even dimensional case was treated in [30]
and closed compact astrophysical models are admitted since
a bounded hypersphere exists.

Exact solutions for five dimensional neutral static per-
fect fluid metrics were only recently discovered [31–34] in
view of the complexity of the master field equation. The
six dimensional EGB theory is more complicated than the
five dimensional counterpart, however, physically reasonable
stellar models have been found in this framework as well
[35,36]. Promoting the fluid to the charged regime makes
the problem considerably simpler and a physically reason-
able model was presented in [37]. In the case of charged
stars there are two free variables to be prescribed upfront
for a complete model. Additionally, as is well known in the
Einstein case, it is also true in the charged EGB case that all
of the dynamical and electric quantities may be expressed in
terms of the metric potentials which implies that any met-
ric, barring a few classes, will generate a complete charged
fluid model. Naturally, it would be far-fetched to expect that
a random choice of metric will result in a model that obeys
elementary conditions for physical admissability. For exam-
ple, it is hardly conceivable that an equation of state between
the pressure and density would exist. It was shown in [37]
that the EGB terms assisted the model to conform to what
is physically reasonable whereas the absence of the EGB
term yielded defective models. The complexity level of the
system of nonlinear partial differential equations increases
if some restriction is imposed at the outset. This is the case
for charged dust or a prescribed equation of state. While
there still remains one more choice to be made, the prob-
lem is nevertheless nontrivial. In the case of charged dust
the pressure vanishes and the master equation consists of the
two metric potentials. One must be prescribed and the other
found by integration; thereafter the energy density, electric
field intensity and proper charge density may be determined.
We analyze this problem along these lines. The associated
problem in the standard Einstein theory was discussed by
Hansraj et al. [38] where it was shown that all static charged
dust distributions in spherical symmetry possess a necessary
curvature singularity at the stellar centre and an algorithm to
detect all charged dust solutions was proposed. In the work at
hand, such an algorithm was not forthcoming. Note that the
exterior field of a static spherically symmetric distribution
of charged matter in EGB theory is given by the Wiltshire
[39] metric. Ordinarily we take the junction condition to be
the same as in Einstein theory namely the vanishing of the
pressure at a boundary hypersurface. The actual boundary
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conditions have been considered by Davis [40] however are
not yet in a form that is easily applicable. In the current prob-
lem of charged dust, we follow the custom as in the standard
theory that the vanishing of the energy density is required to
determine the boundary if it exists.

This paper is structured as follows. We derive the mas-
ter equation for charged dust spheres in 5 and 6 dimensions
which are the only two dimensions of importance. Then we
prove that the spatial metric potentials are constrained within
the Boulware-Deser potential as upper and lower bounds for
a physically realistic model where the energy density, electric
field intensity and proper charge density are all positive. We
proceed to find general classes of exact solutions for charged
dust fluids incorporating higher curvature terms. Some spe-
cial cases are examined to find closed form solutions in terms
of elementary functions. We conclude with a discussion.

2 Einstein–Gauss–Bonnet Gravity

The action

S = 1

2κ

∫
R
√−gd4x, (1)

is the standard Einstein–Hilbert action of general relativity.
Here g = det(gab) is the determinant of the metric tensor
gab, R is the Ricci scalar and κ = 8πGc−4 where G is the
Newton’s gravitational constant and c is the speed of light
in vacuum. The Lovelock tensor in d dimensions may be
written as

Gab =
[(d−1)/2]∑

n=0

αnGn
ab, (2)

so that the Lovelock [13,14] Lagrangian has the form

L =
n∑

n=0

αnRn (3)

where Rn= 1
2n δ

c1d1...cndn
a1b1...anbn

�n
r=1R

arbr
cr dr

and Rab
cd is the Riemann

or curvature tensor. Also δ
c1d1...cndn
a1b1...anbn

= 1
n!δ

c1[
a1

δ
d1
b1

...δ
cn
anδ

dn
bn

] is

the required Kronecker delta. The quantity [v] refers to the
greatest integer value satisfying [v] ≤ v. Note that Gab is
obtained by suitable contractions on a tensor product of n
copies of the Riemann tensor that trivially vanish whenever
n > [(d − 1)/2]. In the event that d = 3, 4, Gn

ab vanishes
for all n > 1. The Lovelock terms become a total derivative
or a topological invariant for d = 3, 4 and hence do not
contribute to the dynamics. Moreover, each term Rn in L
represents the dimensional extension of the Euler density in
2n dimensions and contribute to the field equations only if
n < d/2. For this reason, the critical spacetime dimensions
of Lovelock gravity are d = 2n + 1 and d = 2n + 2. In

the case of EGB gravity n = 2 so the critical dimensions
are d = 5, 6. For n = 3, the salient dimensions are 7, 8 and
so on. A detailed treatment of this aspect may be found in
[41–43]. The Lovelock action (3) may be expanded as

L = √−g
(
α0 + α1R + α2

(
R2 + Rabcd R

abcd − 4Rcd R
cd

)

+α3O(R3)
)

in general. Up to second order of the Lovelock polynomial
we define the Gauss–Bonnet (GB) term as

R2 = R2 + Rabcd R
abcd − 4Rcd R

cd

often denoted as LGB . This term arises in the low energy
effective action of heterotic string theory [15]. As a result
the Einstein–Gauss–Bonnet field equations are given by

Ga
b + αHa

b = T a
b (4)

where

Hab = 2
(
RRab − 2RacR

c
b − 2Rcd Racbd + Rcde

a Rbcde

)

−1

2
gabR2.

and we have followed the custom of using geometrized units
such that κ = 1. The Gauss–Bonnet action is written as

S =
∫ √−g

[
1

2
(R − 2� + αLGB)

]
dnx + S matter (5)

where α is the GB coupling constant. The constant α is linked
with the string tension in string theory [15]. The remark-
able feature of the GB action lies in the fact that despite the
Lagrangian being quadratic in the Ricci tensor, Ricci scalar
and the Riemann tensor, the equations of motion turn out to
be second order quasilinear. The GB term has no effect for
n ≤ 4 as it is topological or becomes a total derivative but
is generally non-zero for n > 4. We now consider the 5 and
6 dimensional cases in turn. These are the critical spacetime
dimensions when the order of the Lovelock polynomial is 2.

3 General field equations

The general static d-dimensional spherically symmetric met-
ric is taken to be

ds2 = −eνdt2 + eλdr2 + r2d
2
d−2 (6)

where d
2
d−2 is the metric on a unit (d − 2)-sphere

and where ν = ν(r) and λ = λ(r) are the metric
potentials. The energy–momentum tensor for the comov-
ing fluid velocity vector ua = e−ν/2δa0 has the form T a

b =
diag (−ρ, p, p, p, p, . . . ) for a neutral perfect fluid.
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The Lovelock–Maxwell system of field equations is given
by

Gab + αHab = Tab + Eab (7)

Fab;c + Fbc;a + Fca;b = 0 (8)

Fab;b = Ja (9)

where Eab is the electric field intensity tensor, Fab is the Fara-
day tensor and J is the d-current density. The electrostatic
field tensor is defined by

Eab = FacFb
c − 1

4
gabFcd F

cd (10)

where Fab is skew–symmetric. The d-current density for a
non-conducting fluid is given by Ja = σua where σ is the
proper charge density. The electromagnetic field tensor Fab
is defined in terms of the d-potential A by

Fab = Ab;a − Aa;b. (11)

Gauge freedom permits the choice of the d-potential
with a single non-vanishing component in the form Aa =
(φ(r), 0, 0, . . . ) so that the magnetic field is eliminated and

only the electric field is dynamic. The sole surviving com-
ponent of the Faraday tensor Fab is given by F01 = −φ′(r)
with the help of (11). The corresponding contravariant com-
ponent may be expressed in the form F01 = e−2(ν+λ)φ′(r) =
e−(ν+λ)E(r) where we have set

E(r) = e−(ν+λ)φ′(r) (12)

to be the electric field intensity in harmony with Her-
rera and Ponce de Leon [44]. The electromagnetic field
energy tensor components (10) evaluate to Ea

b = diag(
− 1

2 E
2, − 1

2 E
2, 1

2 E
2, 1

2 E
2, 1

2 E
2, . . .

)
. Equation (9) gen-

erates the condition

e−λ
(
r2E

)′ = r2σ (13)

which will enable the computation of the proper charge den-
sity σ . The conservation laws

(
T ab + Eab

)
;b = 0 reduce to

the equation

p′ + (ρ + p)ν′ = E

r2

(
r2E

)′
(14)

sometimes called the equation of hydrodynamical equilib-
rium or the continuity equation. Note that the repulsion due
to electric charges are assumed to be distinct from the classi-
cal pressure p. The contribution of the Coulombic repulsion
is expressed through the Faraday tensor (11). From Eq. (14)
it may be inferred that the absence of both isotropic particle
pressure p and the electrostatic field intensity E is not phys-
ically viable. In such a case, either ρ = 0 corresponding to
the vacuum which is already known or ν = a constant sug-
gesting geodesic motion. Of course any one of E or p could
vanish. In the former case a variety of perfect fluid distribu-
tions may be sought [31–33] while in the latter case charged
dust distributions may be investigated as is being undertaken
in this study.

The Einstein–Gauss–Bonnet–Maxwell (EGBM) Eqs. (7)–
(9) when expanded read as

ρ + E2

2
= (d − 2)e−λ

{[
r3λ′ + r2(d − 3)

(
eλ − 1

)] − ᾱ
(
e−λ − 1

) (
2rλ′ − (d − 5)(1 − eλ)

)}
2r4

(15)

pr − E2

2
= (d − 2)e−λ

{[
r2(d − 3)(eλ − 1) − r3ν′] + ᾱ

(
e−λ − 1

) (
2rν′ − (d − 5)(eλ − 1)

)}
2r4 (16)

pθ + E2

2
= −e−λ

4r2

[
r2(2ν′′ + ν′2 − ν′λ′) + 2(d − 3)r(ν′ − λ′) + 2(d − 3)(d − 4)(1 − eλ)

]

+ ᾱe−λ
[(

1 − e−λ
) {

r2(2ν′′ + ν′2 − ν′λ′) + (d − 5)(2r(ν′ − λ′) + (d − 6)(1 − eλ))
}]

2r4

+ ᾱe−2λν′λ′

r2 (17)

where we have set ᾱ = (d − 3)(d − 4)α following Dadhich
[45]. The change of coordinates x = Cr2, e−λ = Z(x) and
eν = y2(x) used often historically is motivated by the fact
that the nonlinear isotropy of pressure equation becomes a
second order linear differential equation in one of the vari-
ables. Under this change of variables Eqs. (15) to (17) trans-
form to the system The most general EGBM field equations
is given by

ρ

C
+ E2

2C
= (d − 2)

[−2x Ż + (d − 3)(1 − Z)
]

2x

+ (d − 2)ᾱ(1 − Z)C
[−4x Ż + (d − 5)(1 − Z)

]
2x2

(18)
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pr
C

− E2

2C
= (d − 2) [−4x Z ẏ + (d − 3)(1 − Z)y]

2xy

+ (d − 2)ᾱ(1 − Z)C [8x Z ẏ − (d − 5)(1 − Z)y]

2x2y

(19)

pθ

C
+ E2

2C
= − 1

2xy

[
8x2Z ÿ +

(
4(d − 2)x Z + 4x2 Ż

)
ẏ

+ (
2(d − 3)x Ż + (d − 3)(d − 4)(Z − 1)

)
y
]

+ ᾱC

2x2y

[
16x2Z(1 − Z)ÿ

+
(

8(d − 4)x Z(1 − Z) + 8x2 Ż(1 − 3Z)
)
ẏ

+(1 − Z)
(
4(d − 5)x Ż − β(1 − Z)

)
y
]

(20)

where we have introduced the simplification β = 2ᾱC . The
equation of pressure isotropy pr = pθ takes the form

0 = 4x2Z [x + 2ᾱC(1 − Z)] ÿ

+2x
[
x2 Ż − 2ᾱC

(
2Z(1 − Z) − (1 − 3Z)x Ż

)]
ẏ

+(Ż x − Z + 1)((d − 3)x + 2ᾱC(d − 5)(1 − Z))y

(21)

in the case that the electrostatic field is turned off. This is done
to obtain the corresponding vacuum metric which will feature
prominently in the discussion on the physical acceptability
of solutions. For the exterior we put Z = y2 in (21) which
gives the differential equation
(

2xy ẏ − y2 + 1
) (

(d − 3)x − β(d − 5)
(
y2 − 1

))

+4x2y
(
β − βy2 + x

)
ÿ

+4x ẏ
(
−3βxy2 ẏ + x(β + x)ẏ + βy3 − βy

)
= 0 (22)

with general solution

y = √
Z = 1 + x

β

(
1 ±

√
1 − 2βc2 − 8βc1

(d − 1)x
d−1

2

)
(23)

where we identify the quantity 8βc1
(d−1)

with the gravitational
mass of the hypersphere. The result (23) is the same as the
Boulware–Deser solution when c2 = 0. Note that the second
integration constant c2 arises because the isotropy equation is
second order. The same result may be achieved by setting the
energy density (18) to a constant ρ0 to obtain the generalized
interior Schwarzschild metric potential

Z = 1 + x

β

(
1 ±

√
1 + 4βρ0

(d − 2)(d − 1)
+ β2c3

x
d−1

2

)
(24)

and as a bonus we obtain the exterior

Z = 1 + x

β

(
1 ±

√
1 + βc3

x
d−1

2

)
(25)

by setting ρ0 = 0 since there is no matter in the exterior. The
solutions (23) and (25) may be reconciled if the constants
are related by c1 = −βc3(d−1)

8 . Note that in order for the
exterior metric to be asymptotically flat, which is physically
reasonable, only the negative branch of Z may be considered
while the positive branch must be discarded. Clearly α =
0 = β is not tenable in (25) however, if (25) is expanded as
a series in powers of β then the limiting case β approaching
0 gives the exterior Schwarzschild metric in d dimensions.

As mentioned earlier, the critical dimensions in EGB the-
ory are 5 and 6 in fact 2N + 1 and 2N + 2 for the general
N -th order Lovelock polynomial. Therefore we proceed now
to consider the 5 and 6 dimensional cases in turn.

4 The five dimensional case

The field Eqs. (15)–(17) assume the form

ρ

C
= 3

xy

[
2Z ẏ − Ż y

]
[β(1 − Z) + x] (26)

E2

C
= 6(1 − Z)

x
− 12Z ẏ

y
− 12β(1 − Z)Z ẏ

xy
(27)

0 = 2x Z (β(1 − Z) + x) ÿ

+
(
x2 Ż + 12x Z + β

[
10Z(1 − Z) + x Ż(1 − 3Z)

])
ẏ

+ (
x Ż − 5(1 − Z)

)
y (28)

σ 2

C
= 4Z

x

(
x Ė + E

)2 (29)

when p = 0 for dust. In the above system of Eqs. (26), (27)
and (29) may be taken as definitions for the density ρ, electric
field intensity E and the proper charge density σ respectively.
Observe that each of these three equations contains at least
three of the unknowns thus eliminating them as viable options
to commence with since there remains only one choice to be
made. We are forced to accept Eq. (28) as the master field
equation and one of the metric potentials must be specified a
priori. We may rewrite Eq. (28) in terms of Ż and Z as(

x2 ẏ + xy + βx ẏ
)
Ż − 3βx ẏZ Ż − 2β (x ÿ + 10 ẏ) Z2

+
(

2βx ÿ + 2x2 ÿ + 12x ẏ + 10β ẏ + 5y
)
Z − 5y = 0

(30)

however, the Eq. (30) is nonlinear in Z . It may still be possible
to utilize this form to locate exact solutions. But before pro-
ceeding to find exact solutions it is important to determine
whether solutions satisfying the most elementary physical
demands exist. Clearly it is required that the energy density
and electric field intensity both be positive. These conditions
will place restrictions on acceptable exact solutions. Note that
that the causality requirement that the sound speed does not
exceed the light speed within the star may not be examined
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meaningfully since the usual constraint on the sound speed
squared 0 ≤ dp

dρ < 1 is trivially satisfied. Ordinarily a hyper-
surface of vanishing pressure is expected to indicate a bound-
ary of a star, however, since the pressure vanishes everywhere
it is customary to consider the hypersurface where the energy
density vanishes as the onset of the vacuum exterior.

5 Existence of physically reasonable charged 5D dust
fluids

In order for models to represent realistic distributions of
charged dust, it is necessary that the density and the quantity
E2 remain positive everywhere. Note that the positivity of
σ 2 is guaranteed so it does not feature in this discussion. We
take α > 0 as it is related to the string tension although a
negative value is not necessarily ruled out.

• Let us firstly assume that x + β(1 − Z) > 0 that is
Z < 1 + x

β
in (26). Then positivity of energy density

demands that

ẏ

y
≥ Ż

2Z
(31)

from (26). Additionally ensuring that E2 ≥ 0 requires
that

ẏ

y
≤ 1 − Z

2Z (x + β(1 − Z))
(32)

Now (31) and (32 ) together generate the relationship

(x + β(1 − Z)) Ż + Z − 1 ≤ 0. (33)

For equality (33) is an Abel equation of the first kind and
belongs to a class that can be solved explicitly in the form

Z = β + x ± √
β2 + x2 + 2βC1

β
(34)

where C1 is a constant of integration. Essentially (34)
solves an algebraic quadratic equation so we may infer
that for a positive density and E2 the functions Z should
satisfy

1 + x

β

⎛
⎝1 −

√
1 + β2 + 2βC1

x2

⎞
⎠ ≤ Z ≤ 1

+ x

β

⎛
⎝1 +

√
1 + β2 + 2βC1

x2

⎞
⎠ (35)

Observe that the constraining functions in (35) are
exactly the same as the negative and positive branches
of the Boulware–Deser (34) metric potential applicable
to uncharged fluids in 5 dimensions. Recall that we are
considering the case Z < 1 + x

β
so we conclude that

physically reasonable charged dust spatial metric poten-
tials lie in the interval

1 + x

β

⎛
⎝1 −

√
1 + β2 + 2βC1

x2

⎞
⎠ < Z < 1 + x

β
(36)

for this case. Note also that Z = 1 + x
β

is the well-
known Schwarzschild interior metric potential. To justify

the inequality (36) we may denote � = 1+ β2+2βC1
x2 and

then it is easy to observe that 1 + x
β

> 1 + x
β

(
1 − √

�
)

and 1 + x
β

< 1 + x
β

(
1 + √

�
)

for all β > 0 and � > 0.

At the extremes both the energy density as well as the
electric field vanish resulting in a vacuum with no electro-
magnetic field, hence the Boulware–Deser spacetime and
not the Wiltshire metric emerges. This is an interesting
behavior for charged dust fluids. In summary, we find that
for metric potential functions that lie below Z = 1 + x

β
,

the left branch of the Boulware–Deser metric is a lower
bound and the Schwarzschild interior is the upper bound.
Effectively we have shown that only metric potentials
lying between the Boulware-Deser branches may yield
models of charged dust with a positive density and square
of electric field intensity. We emphasize that this is only
a necessary condition and not a sufficient one. Moreover,
even if such a suitable function is selected, there is no
guarantee that the y function satisfying the differential
Eq. (28) will in fact be suitable to generate a well behaved
model.

• Next suppose Z > 1 + x
β

.
This time, the inequality in (31) is reversed. Also

ẏ

y
≥ 1 − Z

2Z(x + β(1 − Z))
(37)

since x + β(1 − Z) is now negative. Now we have that

Ż

2Z
≤ 1 − Z

2Z(x + β(1 − Z))

as before and consequently

1 + x

β

(
1 − √

�
)

≤ Z ≤ 1 + x

β

(
1 + √

�
)

. (38)

But Z > 1 + x
β

forces the constraint
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1 + x

β
≤ Z ≤ 1 + x

β

(
1 + √

�
)

(39)

revealing that for metric functions lying above Z = 1+ x
β

the
right arm of the Boulware-Deser metric serves as an upper
bound while the Schwarzschild interior metric is the lower
bound.

We illustrate these constraint functions graphically to
check the veracity of our deductions. Figures 1, 2 and 3 depict
three different typical values for C1 namely 2, −2, and 0
respectively. In each plot the thick line represents the plus
branch of the Boulware–Deser metric and the dashed curve
represents the minus branch of the Boulware–Deser metric.
The thin lines represents the Schwarzschild metric potential

Z = 1 + x
β

= 1 + r2

β
. To characterize the generic behavior

of the functions we have plotted curves for β = 1, 2 and 3 on
the same system of axes. Favorable spatial potentials must
accordingly lie between the thick lines and their dashed coun-
terpart. What this analysis shows is that physically reasonable
charged dust solutions in EGBM theory are not ruled out.

6 Some exact EGBM 5D charged dust solutions

Locating exact interior metrics by solving (28) is a compli-
cated mathematical problem. We now present some solutions
expressible in closed form. We also comment on some well

Fig. 1 Plots of feasible spatial potential regions for C1 = 0

Fig. 2 Plots of feasible spatial potential regions for C1 = 2
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Fig. 3 Plots of feasible spatial potential regions for C1 = −2

known ansatze which have been considered in the context of
ordinary Einstein gravity.

6.1 Constant spatial potential

Amongst the simplest prescriptions for the spatial potential
is the case Z = k for some constant k. When constructing
models of compact stars, it is known that the prescription
of a constant spatial potential results in isothermal behavior
in the pure Gauss–Bonnet theory and its generalization pure
Lovelock theory [46]. Equation (28) assumes the form

x(x − β(k − 1))ÿ + (6x − 5β(k − 1))ẏ + 5(k − 1)

2k
y = 0

(40)

which may be recognized as a hypergeometric differential
equation. The solution of Eq. (40) may be expressed in the
form

y = c1z
3
√

3k+2
2
√
k

− 5
2

× 2F1

(
− 3

2
− 3

√
3k + 2

2
√
k

,
5

2
− 3

√
3k + 2

2
√
k

, 1 −
√

5(3k + 2)√
k

,
1

z

)

c2z
−3

√
3k+2

2
√
k

− 5
2

× 2F1

(
− 3

2
+ 3

√
3k + 2

2
√
k

,
5

2
+ 3

√
3k + 2

2
√
k

, 1 +
√

5(3k + 2)√
k

,
1

z

)

(41)

where c1 and c2 are constants of integration and 2F1 is the
well known hypergeometric function. Hypergeometric func-
tions possess some special cases that are realizable as ele-
mentary functions however it was not possible to detect any
such solutions except for the case k = 1. The solution in this
case is

y = − A

5x5
+ B (42)

where A and B are constants of integration. The density,
electric field intensity and proper charge density are given
by

ρ = − 30A

Ar2 − 5Br12 (43)

E2 = 60A

Ar2 − 5Br12 (44)

σ 2 = 120A
(
A + 20Br10

)2

r4
(
A − 5Br10

)3 (45)

A major defect of this model is that the relationship E2 =
−2ρ arises which is unacceptable as a negative energy den-
sity is implied. Moreover note that the energy density may
not vanish for a suitable radius suggesting the absence of
any bounding hypersurface. Accordingly this case does not
deserve any further attention.

6.2 Einstein universe ansatz

Einstein assumed a constant temporal potential y in order to
solve his system of equations in the standard theory. The con-
sequence is an unphysical cosmological model with constant
energy density and pressure in the uncharged case. Setting
y = a constant in (28) generates the potential

Z = 1 + Kx−5 (46)

where K is an integration constant. Inserting (46) into (26)
gives the density as

ρ = −15βK 2

x12 + 15K

x6 (47)

and the electric field intensity as
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E2 = −6K

x6 (48)

which immediately suggests that K < 0. But this now forces
ρ < 0 from (47) since β is positive. This contradiction
demonstrates that no realistic configuration of charged dust
can exist with the Einstein universe prescription of a constant
temporal potential in the EGB framework. Observe that the
special case of the standard charged five dimensional Ein-
stein universe may be considered by putting β = 0 above.
In this case ρ = 15K

x6 and E2 = −6K
x6 . Again it is clear that

no K value exists such that both density and E2 are positive.
Hence a charged dust Einstein universe in the standard theory
also fails to be a realistic proposition.

6.3 The Schwarzschild ansatz Z = 1 + x

Consider the metric potential Z = 1 + x which yields the
Schwarzschild metric in Lovelock theory (Dadhich [46]).
The general solution to Eq. (28) with p = 0 is given in
terms of hypergeometric functions as

y = A 2F1

(
11

√
β − 1 − √

121β − 73√
β − 1

,

11
√

β − 1 + √
121β − 73√

β − 1
,

[
1

2

]
, 1 + x

)

+Bv 2F1

(
13

√
β − 1 + √

121β − 73√
β − 1

,

13
√

β − 1 − √
121β − 73√

β − 1
,

[
3

2

]
, 1 + x

)
(49)

where A and B are constants of integration and the symbol

2F1 has its usual meaning. In addition we have put v =√
1 + x .
It is desirable to isolate values of β that admit closed form

solutions in order for us to generate a complete model. Some
nontrivial values for β exists for which the hypergeometric
function reduces to elementary functions:

• β = 1
2

The numerical value β = 1
2 reduces the solution (49) to

closed form

y = 5A(7x + 8) + 14B
(
x3 − 4x2 + 24x + 64

)
v

35x5
(50)

where A and B are integration constants.
• β = 1

3

y = A
√
x + 1

x5
+ 2B

(
5x4 − 8x3 + 16x2 − 64x − 128

)
35x5

(51)

The presence of a persistent singularity at the stellar centre
in these models is not of concern. Given that Coulombic
repulsion is present it is not expected that the stellar centre is
reachable. In this case, the models may be considered to be an
atmosphere of charged dust surrounding some other matter
configuration with a regular centre. We note that for each of
the solutions mentioned above, the undesirable behaviour of
a negative density or electric field intensity is present. Hence
we do not display the complete models. In summary it may
be noted that no physically viable charged dust model has
been found in the 5 dimensional EGB case.

6.4 Specifying the temporal potential

An alternative approach in seeking exact solutions for
charged dust in 5 dimensional EGB theory is to utilise Eq.
(30) and to propose a suitable function y which is the tem-
poral potential. The prescription y = 1

x4 has the advantage
of generating the exact solution pair

Z = 4β + 3x ± √
16β2 − 24βK + 144βx + 9x2

12β
(52)

where K is an integration constant. At this point both
branches of solutions are potentially useful, however through
empirical testing with the help of plots the negative branch
generated more pleasing physically appropriate behavior.
The energy density, electric field intensity and proper charge
density are given respectively, by

ρ

C
= (8β + v + 9x)

(−9x (3v − 136β) − 32β (−4β + v + 6k) + 81x2
)

48βx2v
(53)

E2

C
= 27x2 − 9x (16β + v) + 8β (4β − v + 6k)

6βx2 (54)

σ 2

C
= 9 (4β − v + 3x)

(
x (112β − 3v) + 4β (10β + 2v − 3k) + 9x2

)2

2β2xv2
(−9x (16β + v) + 8β (4β − v + 6k) + 27x2

) (55)

where we have put v = √
8β(2β − 3k) + 9x2 + 144βx to

shorten the expressions. Since the quantities above are com-
plicated and not conducive to an analytic treatment, we con-
struct graphical plots for the EGB case with β = 1

2 and using
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the constant value K = −100 which was determined through
fine-tuning until physically reasonable profiles emerged and
C = 1.

Analyzing the plots in Fig. 4. it may be noted that the
presence of higher curvature EGB terms reduce the radius of
the charged dust sphere for the same density values. Alterna-
tively we may say that the EGB spheres have a lower energy
density for the same radial values. This differential appears to
decrease as the radius increases. In other words the EGB and
GR spheres become indistinguishable for very large radii.
The same conclusions are valid for the electrostatic field
intensity E . With regards to the proper charge density σ the
plots indicate that they are roughly the same throughout the
distribution with only minor variations.

7 The six dimensional case

In six dimensions more higher curvature terms are active
and can influence the dynamics. Hence it is expected that
the undesirable features found in the 5D case may be absent
here. Setting p = 0 and d = 6 in (18)–(20) the system

4 (x + β(1 − Z))
(
2Z ẏ − Ż y

)
xy

= ρ

C
(56)

−8x (x + β(1 − Z)) Z ẏ + (1 − Z)(6x + β(1 − Z))y

x2y
= E2

2C
(57)

4x2Z (x + 3β(1 − Z)) ÿ + 2x
(
x2 Ż + 8x Z + 3β (6Z(1 − Z)

+Ż x(1 − 3Z)
))

ẏ

+3
(
(β(1 − Z) + x)(Ż x + Z − 1) − 2x(1 − Z)

)
y = 0 (58)

4Z

x

(
x Ė + E

)2 = σ 2

C2 (59)

governing the dynamics of six dimensional charged dust
emerges. In order to obtain the exterior metric for static 6D
charged stars in EGB, we set Z = y2. This generates the
potentials

y2 = Z = 1 + x

3β

(
1 +

√
1 + 8βC1

x3 − 3βC2

x
5
2

)
(60)

which is equivalent to the Wiltshire solution [39] in 6D. Note
that in comparison with Wiltshire we assign the interpreta-
tion 8βC1 as the charge contribution and 3βC2 as the active
gravitational mass of the hypersphere. Observe that expand-
ing (60) in powers of β and taking β → 0 gives the 6 dimen-
sional Reissner–Nordstrom solution. As was done with the
5D case we first investigate what metric potentials are admis-
sible for physically realistic charged dust models.

7.1 Existence of physically reasonable solutions

Bounds on the potential function Z may be established in the
same way as for the 5 dimensional case and so we omit the
detailed calculations. It turns out that for the case Z < 1+ x

β

the applicable constraint is

1 + x

β

⎛
⎝1 −

√
1 + β2C1

x5/2

⎞
⎠ ≤ Z ≤ 1 + x

β
(61)

where the rightmost term is the negative branch of the
Boulware–Deser [9] potential for 6 dimensional spacetime.
In the case Z > 1 + x

β
we obtain the condition

1 + x

β
≤ Z ≤ 1 + x

β

⎛
⎝1 +

√
1 + β2C1

x5/2

⎞
⎠ (62)

constraining Z . Again it is noted that the positive and nega-
tive branches of the Boulware–Deser [9] metric act as upper
and lower bounds for all acceptable spatial metric potentials.
We do not display typical plots of feasible regions since the
profiles follow the same structure as that for the five dimen-
sional case.

8 Some exact charged dust hyperspheres in 6D

8.1 Constant spatial potential (Z = K )

The simplest physically interesting choice of Z is Z = K
a constant. The solution in this case may be expressed as
hypergeometric functions of x in terms of parameters β and
K . We were unable to determine suitable parameters that
yielded closed form solutions.

The solution in terms of hypergeometric functions is given
by

y = 2F1

(
1

2
+ v − v̄,

1

2
− v − v̄, 1 − v̄,

x

3β(K − 1)

)
Ax−1−v̄

+2F1

(
1

2
+ v + v̄,

1

2
− v + v̄, 1 + v̄,

x

3β(K − 1)

)
Bx−1+v̄

(63)

where we have relabeled v = 3
2
√
K

and v̄ =
√

3K+1
K and

A and B are constants of integration. For the special case
Z = 1, the solution takes on the simple form

y = B − A

3x3 (64)

however it turns out that this solution is not physically viable
for the same reasons the 5D case failed. The density and
electric field cannot both be positive.
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Fig. 4 Energy density ρ, electrostatic field intensity E and proper charge density σ versus radius x for the 5D EGB case (β = 1
2 ) and the 5D GR

case (β = 0)

8.2 Einstein ansatz in 6D

In contrast with the 5D case, the 6D situation offers richer
physical behavior. Setting y = a constant in (58) generates
the potential

Z = 1 + x

β

⎛
⎝1 +

√
β2H

x4 + 1

⎞
⎠ (65)

where H is an integration constant. Curiously the interior
solution (65) is equivalent to the 9 dimensional uncharged
Boulware–Deser vacuum solution (25). Correspondingly the
density, electric field intensity and charge density have the
forms

ρ =
4

(
3
√

β2H
r8 + 1 + 2

) (
r8

(√
β2H
r8 + 1 + 1

)
− β2H

)

βr10
√

β2H
r8 + 1

(66)

E2 = 3βH

r8 (67)

σ 2 = 24H

r10

⎛
⎝r2

⎛
⎝

√
β2H

r8 + 1 + 1

⎞
⎠ + β

⎞
⎠ (68)

respectively in the canonical variable r . Note that in 6D the
constant temporal potential does not yield a defective model

as in the Einstein universe of the standard theory and the
5D Gauss–Bonnet gravity. The density vanishes for at least

one real valued positive radius r = 4√b 8√H
8√3

which may be

taken as identifying a hypersurface acting as the boundary of
the charged distribution. So a 6D charged dust model with
constant temporal potential yields a bounded compact hyper-
sphere.

8.3 The Schwarzschild ansatz Z = 1 + x

Next we proceed to set Z = 1 + x which corresponds to the
Schwarzschild ansatz. The field Eq. (58) reduces to the form

2x(1 + x)ÿ + (9x + 8)ẏ + 3β

3β − 1
y = 0. (69)

The general solution is expressible in terms of hypergeomet-
ric functions in the form

y = 2F1

(
7
√

3β − 1 + √
123β − 1

4
√

3β − 1
,

7
√

3β − 1 − √
123β − 1

4
√

3β − 1
,

[
1

2

]
, 1 + x

)
A

+√
1 + x 2F1

(
9
√

3β − 1 + √
123β − 1

4
√

3β − 1
,

9
√

3β − 1 − √
123β − 1

4
√

3β − 1
,

[
3

2

]
, 1 + x

)
B (70)

where A and B are integration constants.As previously, we
endeavor to locate exact solutions for suitable values of the
parameters.

• The special case β = 1
2 that is αC = 1

8
In this case the gravitational potential has the form

y = 3B
(
x3 tanh−1 v (945x + 840) − v

(
945x3 − 210x2 + 56x − 16

))
128x3 + A

(
x + 8

9

)
(71)

It is easy to calculate the density, electric field intensity
and charge density however following rigorous testing
of the model with a large number of choices for the con-
stants, no physically viable model emerged. Accordingly
we omit displaying the expressions for the electrodynam-
ical quantities.

• The case β = 14
41
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Through the process of empirical testing, a further special
case generates an exact solution namely β = 14

41 . The
temporal potential evaluates to

y = c1

19458855

(
19458855x8 + 87814320x7

+166135200x6 + 170881920x5 + 103564800x4

+37416960x3 + 7741440x2 + 819200x + 32768
)√

x + 1
)

+ 498945c2

146028888064x3

(
−6511697713295775x11

−31556688918279525x10

−64522515840212430x9 − 72293575848282360x8

−48213595767308400x7

−19432718772754560x6 − 4576886077121280x5

−570854724940800x4

−29320501155840x3 − 157398958080x2

+334639305
(

19458855x8 + 87814320x7

+166135200x6 + 170881920x5 + 103564800x4

+37416960x3 + 7741440x2

+819200x + 32768)
√
x + 1x3 tanh−1

(√
x + 1

)

+2998075392x − 57933824) (72)

The solution is rather cumbersome and not suitable for
detailed analysis. It does display the familiar defect of
a singularity at the center of the distribution x = 0.
Note that it has been shown elsewhere [38] that a sin-
gularity is an essential feature of spherically symmetric
charged dust in the standard Einstein theory. Higher cur-
vature effects do not appear to remove these singularities
at least in the metric functions. Notwithstanding singu-
larities, thorough testing of the above two exact solutions
using a variety of parameter space choices did not yield a
model with reasonable physical behaviour. This does not
mean that such does not exist in general since we have
shown rigorously that such models exist.

8.4 Specifying the temporal potential

In order to detect exact solutions, Eq. (58) may be rearranged
as a nonlinear first order differential equation in Z(x) of the
Ricatti type. In this form, specifying the potential y(x) may
lead to an exact solution. Speculating with the form y = xn ,
for n some rational number, a few cases arise with prospects

for an exact solution. It emerges that the choice y = x− 3
2 for

the 6D EGB case generates the potential

Z = 1

4

(
1 ± x

β

√
x

3
2 (8x + 9β) + 16βxC3

)
(73)

where C3 is an integration constant. Relaxing to the GR case
(β = 0) we see that y = xn leads to the general solution
Z = 9

(3+2n)2 + x−(3+2n)C4 where C4 is a constant of inte-

gration. Sadly the choice n = − 3
2 which worked in the 6D

EGB case is ruled out in its Einstein GR counterpart case.
Accordingly a graphical comparison between the EGB and
the GR is not feasible.

9 Conclusion

We have obtained the equations of motion for charged dust
in 5 and 6 dimensional EGB. An important result emanat-
ing from our calculations is that physically viable models of
charged dust may only be constructed subject to the spatial
metric potential having the branches of the Boulware–Deser
metric of uncharged EGB gravity as bounds. In both 5 and
6 dimensions it was possible to find some exact solutions
however it was not possible to check their physical reason-
ableness due to the very complicated forms of the resulting
expressions. A 5 dimensional charged dust model with phys-
ically pleasing profiles was developed and compared to its
general relativity counterpart. It was found that the higher
curvature terms tended to reduce the density and electrostatic
field intensity of the sphere for the same value of the radius in
the general relativity case. The proper charge density expe-
rienced only marginal changes and the EGB and GR cases
were fairly indistinguishable in the scale employed. Inter-
estingly in the case of the 6 dimensional hypersphere with
the Einstein ansatz of a constant temporal potential a closed
compact astrophysical object was possible. In all cases a sin-
gularity at the stellar centre was unavoidable and points to
this being a generic feature of charged dust models. For this
reason, the exact solutions found in this work may be taken
to represent atmospheres of charged dust surrounding other
spherical distributions with regular central behavior.
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