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Abstract We investigate a slowly rotating black hole solu-
tion in a novel Einstein–Maxwell-scalar theory, which is
prompted by the classification of general Einstein–Maxwell-
scalar theory. The gyromagnetic ratio of this black hole is
calculated, and it increases as the second free parameter
β increases, but decreases with the increasing parameter
γ ≡ 2α2

1+α2 . In the Einstein–Maxwell-dilaton (EMD) theory,
the parameter β vanishes but the free parameter α govern-
ing the strength of the coupling between the dilaton and the
Maxwell field remains. The gyromagnetic ratio is always
less than 2, the well-known value for a Kerr–Newman (KN)
black hole as well as for a Dirac electron. Scalar hairs reduce
the magnetic dipole moment in dilaton theory, resulting in
a drop in the gyromagnetic ratio. However, we find that the
gyromagnetic ratio of two can be realized in this Einstein–
Maxwell-scalar theory by increasing β and the charge-to-
mass ratio Q/M simultaneously (recall that the gyromag-
netic ratio of KN black holes is independent of Q/M). The
same situation also applies to the angular velocity of a locally
non-rotating observer. Moreover, we analyze the period cor-
rection for circular orbits in terms of charge-to-mass ratio,
as well as the correction of the radius of the innermost stable
circular orbits. It is found the correction increases with β but
decreases with Q/M . Finally, the total radiative efficiency is
investigated, and it can vanish once the effect of rotation is
considered.

1 Introduction

Despite the great success of Einstein’s general gravity (GR)
in continued consistency with observations, there are com-
pelling reasons to investigate theories of gravity beyond GR,
ranging from the attempts at quantum theories of gravity [1],

a e-mail: jhqiu@nao.cas.cn (corresponding author)

to the explanation of phenomena such as inflation [2,3], dark
matter [4] and dark energy [5,6].

The Brans–Dicke gravity theory is one of the earliest sug-
gested theories in the literature. It is expressed in the Jordan
frame, where the scalar–tensor theory was initially devel-
oped according to [7]. Brans–Dicke’s theory describes grav-
ity by the metric tensor and a scalar field non-minimally
coupled to gravity, which O’Hanlon [8], Acharia and Hogan
[9] identified as the dilaton field. Based on the concept from
particle physics, the dilaton field which manifests itself as
the Nambu–Goldstone boson with broken scale -invariance,
may mediate a limited range gravity [10]. Indeed, by using
the conformal transformations, one may extract the action of
the Einstein-dilaton gravity theory from scalar–tensor theory
in Jordan’s frame. For a thorough understanding of scalar–
tensor gravity and its relation to the dilaton field, we refer the
readers to the monograph by Fujii and Maeda [11].

In the low-energy limit of several underlying quantum
theories of gravity, the dilaton field, in conjunction with the
axion field, which is deduced from string theory’s low-energy
limit, has produced intriguing results in inflationary cosmol-
ogy and, more recently, in the acceleration of the universe
[12]. Exact static dilaton black hole solutions of Einstein–
Maxwell-dilaton (EMD) gravity have been constructed by
many authors [13–16]. However, exact rotating dilaton black
hole solutions have been obtained only for some limited
values of the dilaton coupling constant [17–20], the most
notable of which is the charged rotating Kerr–Sen solution,
which takes into account both the dilaton and axion fields.
In turn, the Kerr–Sen solution may be used to conduct an
indirect test of string theory. Although the Kerr–Sen met-
ric bears a strong resemblance to the Kerr–Newman metric,
the inherent geometry of the two black holes varies signif-
icantly. The distinguished properties of the two spacetimes
have been extensively studied in [21–24]. For general dila-
ton coupling constants, the characteristics of charged rotat-
ing dilaton black holes have been explored exclusively in the

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09890-3&domain=pdf
http://orcid.org/0000-0002-6081-006X
mailto:jhqiu@nao.cas.cn


1094 Page 2 of 13 Eur. Phys. J. C (2021) 81 :1094

situation of infinitesimal tiny charge [25] or angular momen-
tum [26–28]. The slowly rotating black hole solutions in
Einstein–Maxwell-Scalar theories in asymptotically flat or
AdS spacetime have been widely researched (for references,
see [29–31]).

Recently, the EMS models have attracted attentions once
again owing to the studies on black hole spontaneous scalar-
ization [32,33], which arises from the earlier established
spontaneous scalarization of neutron stars in the setting of
scalar tensor theories. This kind of EMS model admits both
a Reissner–Nordström (RN) solution and a scalar solution.
For a sufficiently large charge-to-mass ratio, however, the
RN BH becomes unstable to scalar perturbations and dynam-
ically evolves with a scalar field profile, making scalarization
energetically advantageous. Astefanesei et al. [34] proposed
a classification of the BH solutions in EMS models, based on
the behavior of the coupling function. They considered the
action

S = 1

16π

∫
d4x

√−g
(
R − 2∂μφ∂μφ − K (φ)FμνF

μν
)
.

(1)

EMS models are categorized into two categories based on
whether or not the field equations admit the RN BH solution

(φ(r) = 0, alternatively, K,φ(0) ≡ dK (φ)
dφ

∣∣∣
φ=0

= 0). When

RN BHs solve the field equations, the type is termed the
scalarised-type; otherwise, the dilatonic-type. For example,
the case of K (φ) = e2φ , i.e. the EMD theory, where RN BHs
don’t solve the field equations, presents a specific instance
of the dilatonic-type.

Scalarised-type is further divided into two subclasses
according to whether or not the scalar field profile is continu-
ously connected with RN black holes (scalarised-connected-
type or scalarised-disconnected type) by examining the lin-
earization of the field equations for small φ,

(
� − μ2

eff

)
φ = 0, where μ2

eff = FμνFμν

4

d2 f (φ)

dφ2

∣∣∣∣
φ=0

.

(2)

If the condition of μ2
eff < 0 holds, then the scalarized BHs

bifurcate from the RN BHs due to tachyonic instability, a
process known as spontaneous scalarization. The scalarized
BH reduces to the RN BH when φ satisfies φ = 0, and
then this type is termed as the scalarised-connected-type. A
particular type, for instance, is K (φ) = e2αφ2

.
After examining the broad categories of EMS models,

namely the dilatonic and scalarised type, one finds that dila-
ton black holes (allowed in dilatonic models) and RN black
holes (allowed in scalarised models) both play critical roles.
Then what will happen if the two mutually incompatible solu-

tions are combined? To this end, we list the line elements of
these two theories in the following. The line element of a
dilaton black hole for K (φ) = e2φ is

ds2 = −
(

1 − 2M

r

)
dt2 + 1(

1 − 2M
r

)dr2 +r2
(

1 − Q2

Mr

)
d	,

(3)

while the line element of a RN BH, i.e. K (φ) = 1, is

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2+ 1

1 − 2M
r + Q2

r2

dr2+r2d	 .

(4)

A natural combination of the two line elements is [35]

ds2 = −
⎛
⎝1 − 2M

r
+ βQ2

r2
(

1 − Q2

Mr

)
⎞
⎠ dt2

+ 1

1 − 2M
r + βQ2

r2
(

1− Q2
Mr

)
dr2 + r2

(
1 − Q2

Mr

)
d	,

(5)

where the angular component stems from that of dilaton BHs,
while the non-angular component combines those of dilaton
BHs and RN BHs. β is the second dimensionless free param-
eter that determines the coupling of the dilaton and Maxwell
field. The corresponding action is then

S1 = 1

16π

∫
dx

√−g

(
R − 2∇uφ∇μφ − 2e2φ

β + 2 + βe4φ
F2

)
, (6)

where Fμν denotes the component of the Maxwell 2-form,
φ a scalar field and R the Ricci scalar. Turimov et al. [36]
have investigated the geodesic of this theory. We extended
it by combining RN BHs and general dilaton BHs [35] and
by considering higher dimensions [37]. The present article
is devoted to the study of the slowly rotating black hole in
four-dimensional and asymptotically flat spacetime. In this
approach, we aim to get a better understanding of this theory.
The article is organized in the following way.

In Sect. 2, we briefly review this theory and derive the
equations of motion for the slowly rotating black holes. Sec-
tion 3 presents the numerical solution to black holes. In
Sect. 4, we make a research on the properties of the slowly
rotating black holes in two subsections, 4.1 and 4.2. In Sect.
4.1, we study the angular momentum, the angular velocity
of the event horizon, and the gyromagnetic ratio of the black
holes. In Sect. 4.2, we compute the correction to geodesics
due to the rotating effect. Finally, in Sect. 5, we make a dis-
cussion and summarize our results.
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2 Action and the equations of motion

The scalar field φ and the vector potential Aμ from action S1

are [35]

φ = −1

2
ln

(
1 − Q2

Mr

)
, (7)

and

Aμ = (
At , Ar , Aθ , Aϕ

)

=
(
Q

r
+ βQ

2r
+ βMQ

2(Mr − Q2)
, 0, 0, 0

)
, (8)

respectively. To understand the role of coupling constant β,
we display the evolution of K (φ) against φ for various β in
Fig. 1 [35].

It is shown that with the increase of β, the effect of the
Maxwell invariant diminishes and gravity takes over the elec-
tromagnetic interaction, allowing the electromagnetic field
to be safely ignored. Apart from the situation of β = 0
(i.e. EMD theory), the potential K (φ) exhibits an extreme

at φ0 = 1
4 ln

(
2+β
β

)
. Thus, if we make a transformation of

φ → φ + 1
2 ln(φ0) on the coupling function K (φ) such that

K (φ) ∝ 1
cosh(2φ)

, we get a maximum for K (φ) at φ = 0.
At the maximum, we have dK/dφ|φ=0 = 0, implying that
RN spacetime is the solution to actionS1. However, as can be
shown, solution (5) is not identical to the RN solution, and the
scalar field (7) isn’t trivial. We’ll show they constitute the sec-
ond set of black hole solutions – the scalarised counterparts
of the RN black holes according to the two Bekenstein-type
identities in [34].

Fig. 1 The evolution of the coupling function K (φ). K (φ) is
regular in the entire field space. The plots correspond to β =
0, 0.1, 0.3, 0.5, 0.9, respectively, from top to bottom

The first identity is given by

∫ √−gd4x

(
Kφφ∇μφ∇μφ + K 2

φ

4
F2

)
= 0. (9)

For a purely electric field, one has F2 < 0, which suggests

K,φφ > 0 (10)

should be satisfied in some region of r outside the event
horizon. Otherwise, the two terms of the integrand would
always have the same sign, implying that the identity holds
if and only if φ = 0.

The second identity is given by

∫ √−gd4x

(
∇μφ∇μφ + φK,φ

4
F2

)
= 0. (11)

This reveals that for a pure electric field, the potential should
satisfy the condition

φK,φ > 0 (12)

in some region of r outside the event horizon.
The graphs of K,φφ and φK,φ with K = 2e2φ

β+2+βe4φ and

Q2 = 0.5, M = 1, β = 0.2 are shown in Fig. 2. It is appar-
ent that in some range outside the event horizon (which is
denoted by the zeros of metric component g11), we always
have K,φφ > 0 and φK,φ > 0. Then, we conclude that the
theory has the scalarised black hole solution.

It is straightforward to demonstrate that μ2
eff > 0 for the

electrical case. Therefore, it does not suffer the tachyonic
instability problem. In other words, the RN solution is stable
to the scalar perturbations. According to [34], this model is
classified into scalarised-disconnected-type. It seems that the

Fig. 2 The plots of K,φφ and φK,φ with respect to r , respectively. In
some region outside the event horizon, one has K,φφ > 0 and φK,φ > 0.
Therefore, the theory has a scalarised black hole solution with a pure
electric field
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asymptotic value of scalar field in (7) is set to zero, rather
than arbitrary, making the black hole solutions unnecessarily
specific. Indeed, if we rescale φ → φ + 1

2 ln(φ0) and Aμ →(
β2 + 2β

) 1
4 Aμ, where φ2

0 satisfies φ2
0 = 2+β

β
to make the

new K (φ) achieve extreme at φ = 0, which is different from
Fig. 1, then the coupling constant β disappears and the action
becomes

S2 = 1

4π

∫
d4x

√−g

(
R

4
− 1

4 cosh 2φ
FμνF

μν − 1

2
∂μφ∂μφ

)
.

(13)

The corresponding solution is

ds2 = −
⎛
⎝1 − 2M

r
+ β Q̃2

r2
(

1 − Q̃2

Mr

)
⎞
⎠

dt2 + 1

1 − 2M
r + β Q̃2

r2
(

1− Q̃2
Mr

)
dr2 + r2

(
1 − Q̃2

Mr

)
d	,

φ = −1

2
ln

(
φ0

(
1 − Q̃2

Mr

))
,

A0 =
(
β2 + 2β

)− 1
4

(
Q̃

r
+ β Q̃

2r
+ βMQ̃

2(Mr − Q̃2)

)
,

β + 2

β
= φ2

0 ,

(14)

where the physical electric charge of the black hole is given

by Q = 1
4π

∮
K (φ)∗Fd	 = (

β2 + 2β
) 1

4 Q̃. Then, the
asymptotic value of φ is not vanishing any more, and has
an effect on the metric through the relationship between β

and φ0.
The coupling between the scalar field and the Maxwell

field in S2 is 1
cosh2φ

whereas in the dilaton theory is e2φ . This
connection can be explained by Herdeiro and Oliveira’s [38]
broader notion of electromagnetic duality: by some trans-
formations, two different models are related by a non-trivial
duality map. Let’s begin from the Einstein–Maxwell-scalar
class of model, whose action is given by

S0 = 1

4π

∫
d4x

√−g

×
(
R

4
− f (φ)

4
FμνF

μν + g(φ)

4
Fμν F̃

μν − 1

2
∂μφ∂μφ

)
,

(15)

where F̃μν denotes the Hodge dual of Maxwell 2-form and
f (φ), g(φ) denote two unspecified coupling functions. The
solution is described by

[g,A, φ; f (φ), g(φ)] . (16)

One can then establish an electromagnetic duality transfor-
mation defined by an angle θ . Dθ maps any solution (16) of
a certain EMS model S0 to a different solution of a different
(dual) model, within the same family as follows

[g,A, φ; f (φ), g(φ)] Dθ−→ [g,A′, φ; fθ (φ), gθ (φ)] . (17)

In the case of

f (φ) = e2φ , g(φ) = 0 , (18)

which is first discussed by Gibbon and Maeda [13] and later
by Garfinkle et al. [14], after the value of θ = π/4 is taken,
the model along the duality orbit has fθ = 1/ cosh 2φ, gθ =
tanh 2φ and its action is

S ′
π
4

= 1

4π

∫
d4x

√−g

(
R

4
− 1

4 cosh 2φ
F ′

μνF
′μν

+ tanh 2φ

4
F ′

μν F̃
′μν − 1

2
∂μφ∂μφ

)
. (19)

Then, using Eqs. (13) and (19), we find that S2 differs from
S ′

π
4

only in the axion term.

The generalization of S1 is represented by the action

S3 =
∫

d4x
√
g

(
R − 2∇μφ∇μφ − K (φ)F2

)
,

K (φ) = e− 2φ
α

(
α2 + 1

)
(
α2 + β + 1

)
e− 2φ(α2+1)

α + βα2

,

(20)

after considering the general Einstein–Maxwell-dilaton solu-
tion [26]. The corresponding static solutions are described by
the line element ds2 = −Udt2 + 1

U dr2 + f 2d	, where

U =
(

1 − b

r

) (
1 − a

r

)1−γ + βQ2

f 2 , (21)

f = r
(

1 − a

r

) γ
2

, (22)

and two other fields

φ = − α

1 + α2 ln
(

1 − a

r

)
,

At = Q

r
+ 1

1 + α2

βQ

r
+ α2

1 + α2

βQ

r − a
.

(23)

It should be emphasized that γ is introduced in order to sim-
plify the notation and it is defined by

γ ≡ 2α2

1 + α2 . (24)

123



Eur. Phys. J. C (2021) 81 :1094 Page 5 of 13 1094

Here a and b are related to the mass M and electric charge
Q of the black hole by

M = 1

2

[
b + (1 − γ )a

]
, Q2 =

(
1 − γ

2

)
ab. (25)

Observing the expressions of U and f in Eqs. (21) and
(22), we see the metric combines the dilaton part

(
1 − b

r

)
(
1 − a

r

)1−γ and RN part βQ2

f 2 together.
When β = 0, the actionS3 reduces to the model of gravity

coupled to a Maxwell field and a dilaton field by Horne and
Horowitz [26]. When α = 1, the actionS3 reduces toS1. One
can again use a similar transformation like that from action
S1 to action S2 and deduce the following action from S3

S4 = 1

16π

∫
d4x

√
g

(
R − 2∇μφ∇μφ − 2

e−2αφ + e
2φ
α

F2

)
.

(26)

It’s obvious that the analysis above on the case of α = 1
can be extended to any α (see the analysis concerning S1 and
S2). It should be stressed once again, that in the solution of
action S2 and S4, β does not act as a free parameter but act
as a third hair representing the scalar field’s non-vanishing
asymptotic value.

The above study fully illustrates the motivations for the
novel Einstein Maxwell-scalar theory S3 [35–37], as well
as the connection between it and the dilaton model. Now,
let us extend our grasp of this theory by considering rota-
tion, starting with the associated static solution of S3, and
concentrating on the search for a slowly rotating black hole
solution in asymptotically flat spacetime. Varying the action
S3 with respect to the metric, Maxwell and the scalar field,
respectively, yields

Rμν = 2∇μφ∇νφ + 2K FμαFα
ν − K

2 F2gμν, (27)

∂μ

(√−gK Fμν
) = 0, (28)

∇μ∇μφ − 1
4

∂K
∂φ

F2 = 0. (29)

We can solve Eqs. (27)–(29) to first order of the angular
parameter ε. We further assume, in accordance with [26],
that the unique term in the metric that changes to the order of
O(ε) is gtφ , that the scalar field does not change to the order
of O(ε), and that Aϕ is the only component of the vector
potential that changes to the order of O(ε). As a result, we
suppose the metric has the following form

ds2 = −Udt2 + 1

U
dr2 − 2εk(r)sin2θdtdϕ + f 2d	,

(30)

and the vector potential

Aμ = (At , 0, 0,−εQB(r)sin(θ)2), (31)

with At in Eq. (23). Inserting the metric, the Maxwell fields
and the scalar field into the field equations leads to the per-
turbation equations

−k(r)

f (r)2 + k(r) f ′(r)U ′(r)
f (r)

+ U (r)k′′(r)
2

= − K (φ)k(r)A′2
t − 2K (φ)QU (r)A′

t (r)B
′(r),

(32)

and

∂r
(− (

k(r)A′
t (r) + QU (r)B ′(r)

)
K (φ)

)+2QB(r)K (φ)

f (r)2 = 0,

(33)

where the prime denotes the derivative with respect to r .
Combing the equations of Rθθ and electromagnetic field

1 −U f ′2 −U ′ f f ′ −U f f ′′ = K A′2
t f 2, (34)

K (φ) = − Q

f 2A′
t ′
, (35)

we find Eqs. (32) and (33) can be reduced to

k′′ f 2

2
= k f ′2 + k f f ′′ + 2Q2B ′, (36)

and

d
(

k
f 2

)

dr
− d

(
UB ′K (φ)

)
dr

+ 2BK (φ)

f 2 = 0, (37)

respectively. Integrate equation (36), and then we achieve

f 2k′ −
(
f 2

)′
k = 4Q2B + const . (38)

Inserting it into Eq. (37), we obtain

4Q2B + const

f 4 − d
(
UB ′K (φ)

)
dr

+ 2BK (φ)

f 2 = 0. (39)

We have now obtained two main Eqs. (38) and (39). Before
we solve the two equations, we must first consider the bound-
ary conditions, as seen in the next section.
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3 Methodology for solving the equation

Observing Eqs. (38) and(39), one finds the value of the const
hasn’t been determined, and we’ll see later that the angular
momentum of spacetime is proportional to const. As usual,
we require the solutions have the behavior of k(r) → O(1/r)
and B(r) → 1/r when r → ∞. Solving Eq. (38), we obtain

k = f 2
∫

4Q2B + const

f 4 + c1 f
2. (40)

Given that k(r) → O(1/r) at infinity, the asymptotic behav-
ior requires that c1 must vanish.

Now we focus on the equation of B(r), i.e. Eq. (39). First,
we search for the Frobenius series solution of B(r) at infinity.
Using the reciprocal substitution r ≡ 1/y, we transform
Eq. (39) into

4Q2B + const

f 4 + y2
∂

(
−Uy2 ∂B

∂y K (φ)
)

∂y
+ 2BK (φ)

f 2 = 0.

(41)

For the sake of calculation of the coefficients in the series, we
multiply equation (41) by f 4/K (φ)2, and then the equation
is transformed into

4Q2B + const

K (φ)2 − y4 f 4U

K (φ)

d2B

dy2

− d
(
Uy2K (φ)

)
dy

f 4

K (φ)2 y
2 dB

dy
+ 2B f 2

K (φ)
= 0. (42)

By expanding the coefficients of d2B
dy2 , dB

dy and B at y = 0,

one finds they are in the order of O(1), O(1/y) and O(1/y2),
respectively. This demonstrates y = 0 is a regular singular
point of the equation. Two roots of the indicial equation of the
homogeneous equation are −2 and 1, respectively. Therefore,
we will omit the exponent of −2 since B(y) = O(y) is
required when y → 0 . As a result, we substitute

B(y) = y
∞∑
n=0

cn y
n, (43)

into Eq. (42) and the coefficient of y0 term gives

β2const + (((−γ + 3) a + 3 b) c0 − 4 c1 + 2 const)

β + ((−2 γ + 3) a + 3 b) c0 − 4 c1 + const = 0. (44)

As in customary, we need c0 = 1(required by B(r) → 1/r ),
but there are still two variables to be determined, namely
const and c1. The equations of higher orders will introduce

c2, c3, and so on, indicating that the equations of coefficients
are not closed.

When β = 0 (i.e. EMD theory), Sheykhi et al. provided a
particular solution, B(r) = 1/r in [29]. However, since find-
ing an exact solution to B(r) for an arbitrary value of β is
difficult, we must resort to numerical approaches, where one
should set the boundary condition first. In [39], Barausse et
al. made a study on slowly rotating black holes in Einstein–
aether theory where they impose the condition that the solu-
tions are regular everywhere, except for their center (sin-
gularity of the black hole). Equation (42) exhibits apparent
singularities on the horizon of the black holes as defined by
U = 0, i.e.

(rh − a)(rh − b) + βQ2 = 0. (45)

If the solution is to be regular there, B ′(r) and B(r) should
satisfy the following equation on the horizon yh (or equiva-
lently, 1/rh),

[
4Q2B + const

K (φ)2 − d
(
Uy2K (φ)

)
dy

f 4

K (φ)2 y
2 dB

dy
+ 2B f 2

K (φ)

]

y=yh

= 0.

(46)

Combining this condition and the asymptotic behavior of
B(r) at infinity, we can specify the exact value of const.
However, it should be noticed that there is not one but two
horizons in the general case from the quadratic equation (45).
Actually, there will be two horizons (rh > a) as long as

0 < βQ2 <
(b−a)2

4 . In general, when two horizons exist,
one would anticipate that two singularities would appear in
the equation. As mentioned before, to preserve the regularity
on the horizon, we must implement the local regularity con-
dition. Thus, one has to impose two local conditions in the
presence of two horizons. However, by applying one regular
condition alone, the solution is already specified without any
tuning of other parameters in order to impose further regular-
ity conditions. Therefore, it is sufficient to impose the regular
requirement on just the outermost horizon although the solu-
tions with many horizons will display several singularities
on the horizons. This is acceptable because the outermost
horizon can be rendered regular by using the usual regular-
ity condition while the remaining singularities are hidden in
the outermost horizon. Therefore, the subscript yh in (46)
represents the reciprocal radius of the outermost horizon.

In order to solve the equations numerically, we first
set const = 1 by rescaling B(r), and then impose the
boundary condition (46) and B(0) = 0 where yh =(
a/2 + b/2 + 1/2

√
2 abβ γ − 4 abβ+a2−2 ab+b2

)−1
.

Once the numerical solution is obtained, we can extract B ′(0)
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from it. Then we get the exact value of const = 1/B ′(0) since
we require B(y) ∼ y at y = 0.

4 Properties of the slowly rotating black holes

In this section, we investigate the case of β ≥ 0, where
the sign of K (φ) is always positive in the whole spacetime.
Otherwise, there would exist regions where K (φ) < 0, in
which the Maxwell field would become a phantom field and
won’t be considered in this article.

4.1 Angular momentum, gyromagnetic ratio, and angular
velocity

Now, let us consider the influence of β on const . We fix
a = 1, b = 3 and set β = 0, 0.2, 0.4, 0.6, 0.8 each time, and
then conduct research on the relationship between const and
γ , which is displayed in Fig. 3. (As for the physical meaning
of a and b, keep in mind that they are connected with the
mass M and electric charge Q through Eq. (25).)

The figure shows that several curves cannot be extended

into γ = 0 since we require 0 < βQ2 <
(b−a)2

4 ; otherwise,
there will be naked singularity which violates the cosmic
censorship conjecture. Considering that γ ≡ 2α2

α2+1
, one will

find the range of γ is [0, 2). Once the numerical value of
const is obtained, we may get a truncated series solution for
B(y). As a final check, our numerical solution is compared
with the series solution to B(y) in Fig. 4.

Next, we calculate the angular momentum of the slowly
rotating black hole. It can be calculated using the method
provided by Brown and York [40]. Conserved charges such as
angular momentum are defined using the surface stress tensor
and Killing vector fields on the boundary of spacetime, to be
exact, the spacetime region M is topologically the product of
a three-space 
 and a real interval. The boundary of 
 is B

Fig. 3 The relation between const and γ . The parameters are a = 1,
b = 3

with the metric σi j , and the product of B with segments of
timelike world lines orthogonal to 
 at B is denoted as 3B.
The surface stress energy tensor is then defined by

τ ab = 1

8π

(
�ab − �γ ab

)
, (47)

which is derived from the variation of the action with respect
to the metric γ ab. We decompose the boundary metric γ ab

into the standard ADM form,

γabdx
adxb = −N 2dt2+σi j

(
dϕi + V idt

) (
dϕ j + V jdt

)
,

(48)

where we have chosen the two-surface as a two-sphere, and
the coordinates ϕi are the angular variables parameterizing
the hypersurface of constant r around the origin. σ is the
determinant of σi j . N and V i are the lapse and shift functions,
respectively.

Suppose 3B possesses an isometry concerned with Killing
vector field ξ . then, the corresponding conserved charge is
defined by

∫
B
d2ϕ

√
στabn

aξb, (49)

where na is the normal vector of B and is tangent to 3B.
The conserved charge associated with the rotational Killing
vector field ∂

∂ϕ
is the angular momentum,

J =
∫
B
d2ϕ

√
στabn

a
(

∂

∂ϕ

)b

. (50)

Fig. 4 The numerical and the series solution for the relation B and y.
The parameters are a = 1, b = 3, γ = 1, β = 1/4. The truncated series
solution is y + 0.12056y2 + 0.12404y3 + 0.12748y4
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Expanding τabna
(

∂
∂ϕ

)b
and collecting the terms of order

O(ε), we obtain

τabn
a
(

∂

∂ϕ

)b

= sin2 θ

(−2k f ′(r) + f (r)k′(r)
)
ε

16π f (r)
. (51)

Perform the integration and now the angular momentum
equals to

J = lim
r→∞ −1

6

(
Q2B + const

)
ε. (52)

Taking account of B(r) = O(1/r) at infinity, the angular
momentum equals to −ε const

6 . Angular momentum can also
be calculated using the Komar angular momentum and the
same result obtained (for details see [41]). When β = 0, we
have const = (2γ − 3)a − 3b and the angular momentum is

J = ε

2

(
b + 3 − α2

3
(
1 + α2

)a
)

, (53)

which is the same as the value in [29].
Once we get the numerical value of const , we can cal-

culate the gyromagnetic ratio of the black hole. One of the
remarkable facts about a Kerr–Newman black hole is that it
has the same gyromagnetic ratio as an electron in the Dirac
theory, g = 2. Scalar fields, such as the dilaton field, modify
the value of gyromagnetic ratio of the black hole, as a result,
it doesn’t possess the gyromagnetic ratio of g = 2 in [26].
We will now examine the effect of β on the gyromagnetic
ratio g. The magnetic dipole moment for this asymptotically
flat, slowly rotating black hole can be defined as

μ = Qε = g
QJ

2M
. (54)

Substituting M = 1
2 (b + (1 − γ )a) (25) and J = − ε

6const

into above equation, we obtain g = −6 (b+(1−γ )a)
const .

In the case of β = 0, i.e. the four dimensional dilaton black
hole, we have const = (2γ −3)a−3b, and the gyromagnetic
ratio is

g = 2 − 4α2a

(3b − a) α2 + 3a + 3b
. (55)

For a dilaton black hole, r = a denotes a curvature singularity
and r = b represents an event horizon. Thus, a < b is
ensured by cosmic censorship. When the denominator of the
fraction of (55) is examined, it’s found to be always positive,
indicating that the gyromagnetic ratio has an upper limit of
2, the well-known gyromagnetic ratio of the Kerr–Newman
black hole. By including scalar hair, the gyromagnetic ratio

Fig. 5 The gyromagnetic ratio with respect to γ . The parameters are
a = 1, b = 3

is suppressed. This has been shown in [42], which extends
the Kerr–Newman black hole to include scalar hair.

Turning to the behavior of the gyromagnetic ratio of the
slowly rotating black hole corresponding to S3, we plot the
gyromagnetic ratio g versus γ (recall that γ ≡ 2α2

1+α2 ) in
Fig. 5. From this figure, we find that the gyromagnetic ratio
decreases with γ or α when the value of β is fixed. In the case
of β = 0 (black line) [29], the gyromagnetic ratio decreases
starting from 2, the value for the Kerr–Newman black hole.
However, as seen in the figure, when β �= 0, the gyromag-
netic ratio can surpass 2. Taking γ = 0 as an example,
we have B(r) = 1/r and in this case const = − (3a+3b)

β+1 ,
implying that gyromagnetic ratio is 2(β + 1). This is a spe-
cific example that the non-vanishing positive β increases the
gyromagnetic ratio. Based on the analysis above, the Kerr–
Newman black hole’s gyromagnetic ratio may be obtained in
the Einstein–Maxwell-scalar black hole by simultaneously
raising the values of β and γ .

For the sake of simplicity, we shall restrict ourselves to the
case of γ = 1, i.e, α = 1. Then the corresponding action is
S1. Expanding the expression of K (φ) = 2e2φ

β+2+βe4φ in terms
of β

K (φ) = 2e2φ

β + 2 + βe4φ

= e2φ −
(
e4φ + 1

)
e2φβ

2
+ e2φ

(
e4φ + 1

)2
β2

4
+ · · · ,

(56)

one finds that K (φ) is actually the combination of infinite
distinct dilaton couplings. In Fig. 6, we show the gyromag-
netic ratio of the slowly rotating black hole in relation to Q

M
for various values of β . The black line denotes the usual
dilaton field K (φ) = e2φ , whereas the other lines represent
the situations where β �= 0. We find the upper limit for Q

M
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Fig. 6 The gyromagnetic ratio with respect to Q
M for various values of

β

with fixed β is

√
(2β + 2) − 2

√
β(β + 2), (57)

in order to ensure that the singularity r = a of the black
hole is not naked. It indicates that the gyromagnetic ratio
increases with increasing β but decreases with increasing Q

M ,
which means we can achieve the same ratio as Kerr–Newman
black holes by simultaneously increasing β and charge-to-
mass ratio.

Next, we will investigate the angular velocity of the black
hole horizon. The coordinate angular velocity of a locally
non-rotating observer is defined by 	 = − gtr

grr
= ε

k(r)
f (r)2 . It

is known that one of the important quantities is the angular
velocity on the horizon 	h = 	(r = rh), which affects
the region where the super-radiation occurs in the black hole
background [43–45].

Because the angular velocity of the horizon is equal to
ε 1
r2
h

for a slowly rotating charged Kerr black hole, we can

make the angular velocity dimensionless as follows 	̃h =
	h/(

ε

r2
h
) = ε

k(rh)
f (rh)2 /( ε

r2
h
) = k(rh)r2

h
f (rh)2 . In Fig. 7, we exhibit

the dimensionless angular velocity 	̃h as the function of the
charge-to-mass ratio.

As can be seen, the dimensionless angular velocity on the
horizon increases with increasing charge-to-mass ratio for
fixed β. However, since the angular velocity decreases with
β when Q

M is fixed, one may obtain the same angular veloc-
ity 	̃h as the Kerr–Newman black holes by simultaneously
increasing the value of β and Q

M .

4.2 The innermost stable circular orbit, the radiation
efficiency and their corrections

In this section, we will focus on the circular orbits in the equa-
torial plane in order to investigate the geometry of the space-
time above. In the stationary and axially symmetric space-
time, one can find the equations of motion for geodesics in

Fig. 7 The dimensionless angular velocity on the horizon with respect
to charge-to-mass ratio for different values of β

the form [46]

ṫ = −Egφφ−Lzgtφ
−g2

tφ+gtt gφφ
,

φ̇ = −Egtφ−Lzgtt
g2
tφ−gtt gφφ

,

grr ṙ2 + gθθ θ̇
2 = Vef f (r, θ; E, Lz) ,

(58)

with the effective potential given by

Veff(r) = E2gφφ + 2ELzgtφ + L2
z gtt

g2
tφ − gtt gφφ

− 1, (59)

where the overhead dot stands for the derivative with respect
to the affine parameter, and the constants E and Lz corre-
spond to the conserved energy and the (z-component of)
orbital angular momentum of the particle, respectively.

For simplicity, we put the orbits on the equatorial plane.
With the constraint that θ = π

2 , one finds the effective poten-
tial Veff(r) must satisfy

Veff(r) = 0,
dVeff(r)

dr
= 0, (60)

in order that the circular orbit in the equatorial plane is stable.
Solving the above equations, one obtains

E = −gtt−gtφX√−gtt−2gtφX−gφφ X2
,

Lz = gtφ+gφφ X√−gtt−2gtφX−gφφ X2
,

X = dφ
dt = −gtφ,r+

√
(gtφ,r)

2−gtt,r gφφ,r

gφφ,r
.

(61)
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Fig. 8 The corrected period with respect to Q
M for different values of

β. The radius of circular orbit is set to 10M and ε = 1

Then the corrections to energy, angular momentum, and
period up to the first order of ε are given by

E2 = U2
(
f 2

)′

U
(
f 2

)′ − f 2U ′ + ε ·
2U

√
U ′ ( f 2

)′
f 2

(
k′U − kU ′)

(
−U ′ f 2 +U

(
f 2

)′)2 ,

(62)

L2 = f 4U ′

U
(
f 2

)′ −U ′ f 2

+ ε ·
−2 f 2U

√
U ′ ( f 2

)′ (−k′ f 2 + (
f 2

)′
k
)

(
−U ′ f 2 +U

(
f 2

)′)2 , (63)

and

T 2 = T 2
0 + εT 2

1 = 4π2
(
f 2

)′

U ′ − 4π2ε · 2
(
f 2

)′
k′

√
U ′ ( f 2

)′
U ′

.

(64)

We don’t bother showing the detailed formula for energy,
angular momentum, and the orbital period since they are
rather lengthy. The relative correction of the period is

�T 2 = T 2
1

T 2
0

= − 2k′√
U ′ ( f 2

)′ , (65)

which is shown in Fig. 8.
As can be shown, for fixed values of radius for circu-

lar orbits and fixed β, the relative correction of the period
increases with increasing Q

M . The correction becomes smaller
and smaller with the increase of β.

The innermost stable circular orbit (ISCO) of the particle
around the black hole is given by the equation Veff,rr = 0,

i.e.

E2g′′
φφ + 2ELzg

′′
tφ + L2

z g
′′
t t = (g2

tφ)′′ − (gtt gφφ)′′. (66)

Substituting the expressions of E , Lz , gtt , gtφ and gφφ into
Eq. (66), we obtain the equation denoted by P(R, ε) = 0,
where R denotes the radius of ISCO of the rotating black hole.
Assuming R0 is the radius of ISCO in the corresponding static
spacetime, i.e. P(R0, 0) = 0, the correction to the radius of
ISCO up to the first order of ε is then R0 + εR1. Here, we
have R1 = − P2(R0,0)

P1(R0,0)
. P1(R0, 0) and P2(R0, 0) denote the

derivatives of F with respect to the first and second variables,
respectively.

Again, we don’t bother giving the expression for R0 since
it is the root of a quartic equation. We only display the radius
of the innermost stable circular orbits concerning Q

M for var-

ious β in Fig. 9a. The relative correction, denoted by R1
R0

is
shown in Fig. 9b.

The graphic shows that when the perturbation parameter
ε > 0, the relative corrections to the radius of the innermost
stable circular orbits are always negative, and the absolute
value increases as the charge-to-mass ratio increases. On the
other hand, with the increase of β, the relative corrections
become smaller and smaller.

Now we consider the influence of β on the radiative effi-
ciency η in the thin accretion disk model, which is defined
by

η ≡ 1 − E(R). (67)

This quantity indicates the maximal fraction of energy being
radiated when the test particle is accreted by a central black
hole. The radiative efficiencies of the Schwarzschild black
holes and extreme Kerr black holes are 0.057 and 0.42,
respectively. From Eq. (61), we know the that energy of ISCO
is

E(R) ≈ E(R0 + εR1, ε)

≈ E(R0) + ε(R1E1(R0, 0) + E2(R0, 0)), (68)

where E1 and E2 are the derivatives of E(r, ε) with respect
to the first and second variables, respectively. Since we have

η ≈ 1 − (E(R0) + ε(R1E1(R0, 0) + E2(R0, 0)))

= 1 − E(R0) − ε(R1E1(R0, 0) + E2(R0, 0)), (69)

we can denote 1 − E(R0) and −(R1E1(R0, 0) + E2(R0, 0))

by η0 and η1, respectively.
The Fig. 10a shows that the radiative efficiency η0, starting

from 1 − 2
√

2
3 ≈ 0.057, increases with Q

M for a fixed value

of β. When Q
M is fixed, the radiative efficiency η0 increases

as β increases. Concerning the first order correction η1, to
the radiative efficiency, we see from the Fig. 10b that the
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(a) (b)

Fig. 9 a The dimensionless radius of the innermost stable circular orbit with respect to Q
M for different values of β. b The relative correction to

the dimensionless radius of the innermost stable circular orbits R1/R0 with respect to Q
M for various β = 0, 0.5, 1, respectively

(a) (b)

Fig. 10 a The radiation efficiency η0 with respect to Q
M for various β in static spacetime. b The first order corrections η1 to radiation efficiency

with respect to Q
M for various β

correction increases with regard to Q
M when β is fixed. For

a fixed Q
M , the radiative efficiency η1 decreases with the rise

of β in general, following the same trend as the correction to
R0.

Taking into account the zeroth order efficiency, η0 and the
first order efficiency, η1, we obtain the total efficiency up to
the first order in Fig. 11. It’s found that for small values of
β and ε < 0, the efficiency will vanish for some value of
Q
M . In this case, the black hole’s capacity to capture parti-
cles becomes so weak that the accreted matter around it is
greatly diluted. This leads to the failure of accretion disk to
create radiation due to the insufficient amount of stresses and
dynamical frictions.

Fig. 11 The evolution of total efficiency η up to first order with respect
to Q

M for different value of β. The solid and dashed lines correspond to
ε = 0.2 and ε = −0.2, respectively
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5 Summary

In this paper, inspired by the categorization of EMS mod-
els, we investigate the Einstein–Maxwell-scalar theories S1

andS3 that admit both RN and dilaton solutions. The theories
can also be obtained from EMD theory by an electromagnetic
duality after omitting the axion term. They are classified as
the scalarised-disconnected-type according to [34]. We con-
duct study on the slowly rotating black holes and summarize
the key findings as follows.

1. The requirement of asymptotic flatness is not enough in
order to determine the solution of the slowly rotating
black hole. Therefore, to specify the constant of inte-
gration for any value of β, the regular condition on the
outermost event horizon must be imposed.

2. We constrain the range of β by demanding that the black
hole singularity is not naked and the coupling between
the scalar field and the Maxwell field K (φ) is normal (not
phantom). Then, we find the range of γ cannot be [0, 2)

for several values of β. What really intrigues us is the
gyromagnetic ratio of the rotating black hole. We know
the rotating charged black hole, i.e. the Kerr–Newman
black hole, is noteworthy for having the same gyromag-
netic ratio of 2 as the Dirac electron. Additionally, it is
well established that the dilaton black hole always has
a gyromagnetic ratio smaller than 2, implying that the
gyromagnetic ratio is suppressed in the presence of scalar
hair. The model we investigate combines these two the-
ories naturally and we are interested in its gyromagnetic
ratio too. It’s found that, when b/a and β are fixed, the
gyromagnetic ratio decrease with the increase of γ . For
fixed b/a and γ , the gyromagnetic ratio also increases
with increasing β. Thus, by simultaneously raising β and
γ , the gyromagnetic ratio of the four-dimensional Kerr–
Newman black hole can be obtained. Due to the presence
of the second free parameter β, the suppressing of gyro-
magnetic ratio by the scalar hair may be overcome.

3. We have investigated the case of α = 1 as a spe-
cific example. The evolution of gyromagnetic ratio with
respect to the charge-to-mass ratio is studied. We find
that the gyromagnetic ratio increases with the increase of
β, and decreases with increasing Q

M . In view of this point,
the gyromagnetic ratio may be restored by concurrently
raising β and Q

M . The dimensionless angular velocity
of a locally non-rotating observer on the event horizon
is also studied since it is related to the phenomenon of
super-radiation. We find that the same value of the angu-
lar velocity as in the Kerr–Newman black hole can be
obtained by increasing Q

M and β.
4. Finally, the corrections to the period of circular orbits

and the radius of the innermost stable circular orbits are

studied. It is found the relative correction decreases with
increasing β and increases with increasing Q

M . We also
studied the radiative efficiency and the related correction
in the thin accretion disk model. It’s found that the black
hole’s capacity to capture particles becomes so weak that
the accreted matter becomes very dilute provided that β

is very tiny and the perturbation parameter ε is negative.
As a result, radiation cannot be created owing to the lack
of sufficient stresses and dynamical frictions.

In all, the novel Einstein–Maxwell-scalar theory combines
the well-known RN and dilaton black hole solutions. Addi-
tionally, the study on the slowly rotating black hole indicates
it can mimic the properties of Kerr or Kerr–Newman black
holes by adjusting the free parameter β. It is worth mention-
ing that a limitation of our work is that we don’t analyze the
stability of the slowly rotating black hole and this should be
included in future work.
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