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Abstract In this work, we investigate the quasinormal
modes for a massive scalar field with a nonminimal coupling
with gravity in the spacetime of a loop quantum black hole,
known as the self-dual black hole. In this way, we have calcu-
lated the characteristic frequencies using the 3rd order WKB
approach, where we can verify a strong dependence with
the mass of scalar field, the parameter of nonminimal cou-
pling with gravity, and parameters of the loop quantum grav-
ity. From our results, we can check that the self-dual black
hole is stable under the scalar perturbations when assuming
small values for the parameters. Also, such results tell us that
the quasinormal modes assume different values for the cases
where the mass of field is null and the nonminimal coupling
assumes ξ = 0 and ξ = 1/6, i.e., a possible breaking of
the conformal invariance can be seen in the context of loop
quantum black holes.

1 Introduction

General relativity (GR) [1] is accepted as the best description
of gravitation physics. One of the most striking predictions of
Einstein’s theory is the prediction of the black holes (BHs),
which are objects from which nothing (even light signals) can
escape after crossing the event horizon. The interest in BHs
goes beyond astrophysics because they have been pointed out
as possible objects that can help us to understand one of the
most intriguing problems in theoretical physics nowadays:
the conciliation of quantum physics and gravitation through
a quantum gravity theory (QG). Because it is expected that in
the presence of a very strong gravitational field, the quantum
nature of spacetime becomes revealed.
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One of the main candidates for a theory of quantum grav-
ity is the loop quantum gravity (LQG) [2], which competes
with string theory [3]. In the context of LQG, it is possible to
get interesting theoretical models that provide an insight into
the quantum characteristics of spacetimes revealed by BHs.
An important scenario corresponds to the quantum version
of the Schwarzschild black hole (SchBH), which is called
self-dual black hole (SDBH) [4]. The SDBH solution has a
very interesting property, self-duality. Wherefrom such prop-
erty, the physical singularity of BHs can be replaced by an
asymptotically flat region, which is an expected effect in a
regime of QG.

In the last years, it has increased the interest in BHs
physics because of gravitational waves (GWs) observations,
originated from a binary BHs merging and neutron stars.
This class of events has been observed with great precision
through the LIGO and Virgo collaborations [5]. These GWs
are due to the perturbations of BHs, once we cannot find BHs
completely isolated in the Universe. Thus, the BHs are always
in perturbed states due to the interaction with other compact
objects in their neighborhood, for instance, other BHs or neu-
tron stars. Also, the perturbations are characterized by a set
of complex eigenvalues (frequencies) of the wave equations,
called quasinormal modes (QNMs), and, therefore, they can
be observed through experiments with gravitational interfer-
ometers.

As aforementioned the QNMs are complex values, where
the real parts give the oscillation frequencies, while the imag-
inary parts determine the damping rates. The QNMs of BHs
depend only on BHs parameters and not on how they were
perturbed. Thus, the QNMs are known, as the “fingerprint”
of a BH. The studies of the QNMs are of great interest and
importance in different contexts [6,7].

In recent years, it has been suggested that the QNMs can
play a very important role in understanding quantum aspects
of gravity theories. Especially, in the LQG context, it has been
also suggested that the QNMs can be used to fix the value of
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the Immirzi parameter, a parameter measuring the quantum
of the spacetime [8], a fundamental issue that remains open
in this field. In this context, the QNMs have been analyzed for
the SDBH solution in [9], where the authors have considered
the perturbations of the massless scalar field. Also, consider-
ing gravitational perturbations the analyses have been made
in [10,11], where the results showed for the first time in the
context of BHs in LQG, a breaking of the isospectrality. Still,
in the context of LQG, it is made an analysis of the QNMs
for a rotating black hole solution in [12].

The present work has the main goal to perform an analy-
sis of the QNMs spectrum for the metric of SDBH. Thus, we
will consider the perturbations through a massive scalar field
coupled nonminimally with gravity [13,14]. Some efforts in
that sense were considered [15–19]. For instance, in [17]
it was analyzed the long-lived quasinormal modes and the
instability in a Reissner–Nordström spacetime. The motiva-
tions for considering the nonminimal coupling with grav-
ity can be found in different contexts: cosmology [20–24],
general relativity [25–27], superstring theory [28], induced
gravity [29] and loop quantum gravity [30]. To compute the
QNMs we will use the WKB (Wentzel–Kramers–Brillouin)
approach, which has been introduced by Schutz and Will
[31], and after improved by Iyer and Will [32] and more
recently by Konoplya [33,34], Matyjasek and Opala [35]
and Hatsuda [36]. In this context, we will study the influ-
ence of the parameters of LQG, the mass of the scalar
field, and the nonminimal coupling with gravity in the
QNMs, and consequently in the stability of the SDBH solu-
tion.

The paper is organized as follows. In Sect. 2, we briefly
review the SDBH solution and discuss their self-duality prop-
erty. In Sect. 3, we derive a Schrödinger-like equation, where
is considered a massive scalar field nonminimally coupled
with gravity. In Sect. 4, we calculate the QNMs through the
WKB method, and finally, we summarize our results and
draw concluding remarks in Sect. 5. Throughout this work,
we use natural units h̄ = c = G = 1 and metric signature
(−,+,+,+).

2 Self-dual black hole

In this section, we will briefly introduce the SDBH solution
that arises from a simplified model of LQG. This solution is
consisting of an asymmetry-reduced model corresponding to
homogeneous spacetimes, and for a more detailed study of
the model, see Ref. [4].

The structure of SDBH corresponds to a quantum version
of the SchBH and is described by the metric

ds2 = − (r − r+)(r − r−)(r + r∗)2

r4 + a2
0

dt2

+ dr2

(r−r+)(r−r−)r4

(r+r∗)2(r4+a2
0 )

+
(
r2 + a2

0

r2

)(
dθ2+sin2θdφ2

)
.

(2.1)

In the Eq. (2.1), we have the presence of an external hori-
zon localized in r+ = 2m, an intermediate in r∗ = √

r+r−
and a Cauchy horizon localized at r− = 2mP2. Here, the
polymeric function P is given by

P =
√

1 + ε2 − 1√
1 + ε2 + 1

, (2.2)

where ε = γ δb, γ is the Barbero-Immirzi parameter, and
δb is polymeric parameter used for the quantization in LQG.
Also, in the Eq. (2.1) appears the parameter a0 defined by

a0 = Amin

8π
, (2.3)

with Amin being the minimal area in the context of LQG.
It is important to notice, that the Eq. (2.1) is written in

terms of the SDBH mass m that is associated with the ADM
mass as follows

M = m(1 + P)2. (2.4)

Also, using the multiplicative factor of the angular part of
Eq. (2.1), we can define a new radial coordinate

R =
√
r2 + a2

0

r2 . (2.5)

Here, R measures the circumference distance and is equal to
the r coordinate only in the asymptotic limit. Furthermore,
from the Eq. (2.5), we can see an important characteristic of
the internal structure of the SDBH. When r decreases from
infinity to zero, the R coordinate decreases from infinity to
R = √

2a0 in r = √
a0, and then increases again to infinity.

Considering the Eq. (2.5) in the external event horizon, i.e.,
in r = r+, we get

R+ =
√

(2m)2 +
( a0

2m

)2
. (2.6)

A very interesting characteristic of this scenario is the self-
duality of the metric in Eq. (2.1). The self-duality means that,
if we introduce new coordinates, r̃ = a0/r and t̃ = tr2∗/a0,
the form of metric is preserved. The dual radial coordinate
is given by r̃ = √

a0 and corresponds to a minimal element
of surface. Furthermore, the Eq. (2.5) can be written in the
form R = √

r2 + r̃2 that clearly shows an asymptotically flat
space, that is, a Schwarzschild region in the place of singu-
larity in the limit as r tends to zero. This region corresponds
to a wormhole with the size of the order of the Planck length.
The Carter–Penrose diagram for the SDBH is shown in Fig.
1.
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Fig. 1 Carter–Penrose diagram of the SDBH metric. The diagram has
two asymptotic regions, being one at infinity and the other near the
origin, where none observer can reach considering a finite time

3 Scalar perturbations and effective potential

In this section, we will study a simple way to introduce the
black holes perturbations, called scalar perturbations. Here,
we shall consider a massive scalar field coupled to the Ricci
scalar that is associated with background geometry.

The scalar field dynamics is described by the modified
Klein–Gordon equation, given by

[
1√−g

∂μ

(
gμν√−g∂ν

) − μ2 − ξR
]

�(t, r, θ, φ) = 0.

(3.1)

Here, μ is the mass of the scalar field � and R is the Ricci
scalar. The nonminimal coupling, ξ , have a similar form to the
models used in cosmological context [37–40]. A conformal
or Weyl transformation is the rescaling of the metric and the
scalar field given by

g̃μν(x) = �(x)2gμν(x) and �̃(x) = �(x)−1�(x),

(3.2)

where �(x) is a real, continuous, finite and non-vanishing
function. In special, two values of ξ are interesting: the ξ =
0 called the minimally coupled case, and the conformally
coupled case, ξ = 1/6. It is possible to show that, if μ = 0
and ξ = 1/6 the field equation given by Eq. (3.1) is invariant
under conformal transformations (conformal symmetry) of
Eq. (3.2) [41]. Also, in the Schwarzschild limit (P = 0 and
a0 = 0) the Ricci scalar vanishes, and, consequently, we
have the minimally coupled scalar field propagating in the
Schwarzschild background.

So, we will start by developing the Eq. (3.1) considering
the background metric given by Eq. (2.1). After performing
some calculations, we get

− a2
0 + r4

(r − r−)(r − r+)(r + r∗)2

∂2�

∂t2

+ r4(
a2

0 + r4
)
(r + r∗)2

∂

∂r

[
(r − r−)(r − r+)

∂�

∂r

]

+ r2

a2
0 + r4

1

sinθ

∂

∂θ

(
sinθ

∂�

∂θ

)

+ r2

a2
0 + r4

1

sin2θ

∂2�

∂φ2 =
(
μ2 + ξR

)
�, (3.3)

where Ricci scalar, is given by

R = gμνRμν

= 2r2(
a2

0 + r4
)3

(r + r∗)4

[
− r2∗

(
2a2

0r
4
(

3r2 + 3r(r− + r+)

−4r−r+) + a4
0

(
6r2 − r−r+

)
+r8

(
4r2 + 2r(r− + r+) − 3r−r+

))
−rr∗

(
2a2

0r
4
(
−4r2 + 7r(r− + r+) − 8r−r+

)
+a4

0(3r(r− + r+) − 4r−r+) + r8(3r(r− + r+) − 4r−r+)
)

+2a2
0r

2
(
a2

0 + 3r4
)

(r − r−)

×(r − r+) + r4−
(

−
(
a2

0 + r4
)2

)
− 4rr3∗

(
a2

0 + r4
)2

]
.

(3.4)

Now, we should introduce the scalar field through standard
Ansatz in the following form:

�(t, r, θ, ϕ) = ψ(t, r)Ym
l (θ, ϕ), (3.5)

such that, substituting in Eq. (3.3), we find

−∂2ψ

∂t2
+ r4(r − r−)(r − r+)(

a2
0 + r4

)2
∂

∂r

[
(r − r−)(r − r+)

∂ψ

∂r

]

−r2(r − r−)(r − r+)(r + r∗)2l(l + 1)(
a2

0 + r4
)2 ψ
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= (r − r−)(r − r+)(r + r∗)2

a2
0 + r4

(μ2 + ξR)ψ. (3.6)

Here, the Ym
l (θ, φ) denotes the spherical harmonics func-

tions [42] that satisfy the relation:

1

sinθ

∂

∂θ

(
sinθ

∂Ym
l

∂θ

)
+ 1

sin2θ

∂2Ym
l

∂φ2 = −l(l + 1)Ym
l . (3.7)

In this point, we can redefine the function ψ as:

ψ = r√
a2

0 + r4
�(r)e−iωt ,

(3.8)

where the ω parameter denotes the quasinormal modes. Also,
we should introduce the tortoise coordinate, x , through the
relation:

d

dx
= r2(r − r−)(r − r+)

a2
0 + r4

d

dr
, (3.9)

that performing the integration of Eq. (3.9), we get

x = r − a2
0

rr−r+
+ a2

0 (r− + r+) log(r)

r2−r2+

+
(
a2

0 + r4−
)

log(r − r−)

r2−(r− − r+)

−
(
a2

0 + r4+
)

log(r − r+)

r2+(r− − r+)
.

(3.10)

Finally, substituting the Eqs. (3.4), (3.8) and (3.9) into Eq.
(3.6), we obtain a Schrödinger-like wave equation for the
scalar perturbation of SDBH spacetime in the following
form:

d2�

dx2 +
[
ω2 − Veff(r)

]
� = 0, (3.11)

where the effective potential is given by:

Veff(r) = (r − r−)(r − r+)(
a2

0 + r4
)4

(r + r∗)2

[
l(l + 1)r2

(
a2

0 + r4
)2

(r + r∗)4

+a2
0r

6
(

4ξ
(
−r2∗

(
3r2 + 3r × (r− + r+) − 4r−r+

)
+rr∗

(
4r2 − 7r(r− + r+) + 8r−r+

)
+3r2(r − r−)(r − r+) − 4rr3∗
−r4∗

)
+ 3μ2r2(r + r∗)4

)
+a4

0r
2
(

2ξ
(
r2∗

(
r−r+ − 6r2

)
+ 2r2(r − r−)(r − r+)

+rr∗(4r−r+ − 3r(r− + r+)) − 4rr3∗ − r4∗
)

+3μ2r2(r + r∗)4
)

+ r3(r + r∗)2
(

10a2
0r

3

×(r − r−)(r − r+) + a4
0(−2r + r− + r+)

+r7(r(r− + r+) − 2r−r+)
)

+ a6
0μ2(r + r∗)4

−2ξr10r∗
(
r2(3(r− + r+) + 4r∗) + 2r(r−(r∗ − 2r+)

Fig. 2 Graph of the effective potential. This plot show the behavior
of Veff(r) for different values of mass of scalar field: μ = 0.0, 0.1 and
0.2. Here, we assume the constant values m = 1, ξ = 0.1, a0 = √

3/2,
l = 0 and P = 0.1

+r∗(r+ + 2r∗)) − 3r−r+r∗ + r3∗
)

+μ2r12(r + r∗)4
]
. (3.12)

For easy visualization of the behavior of effective potential
of Eq. (3.12), we have plotted the graphs shown in Figs. 2
and 3. So, we can see from Fig. 2 that in the asymptotic limit,
i.e. r −→ ∞, the effective potential exhibits the following
behavior Veff(r) ∼ μ2. Also, it is observed that for small
masses of the scalar field, the effective potential still has the
form of barrier potential. However, by increasing values of μ,
the form of the effective potential is turned a potential barrier
into a step potential. In Fig. 3, we can observe that for large
couplings values (orange curve) we have an instability phase,
where the effective potential is negative. Also, the limit case
when ξ −→ 0 denoted by the black curve, is nearly coin-
cident with the conformal gravity value (ξ = 1/6). Due to
these facts, we should consider parameters with small val-
ues so we can apply the WKB approximation correctly for
calculation of QNMs.

4 Quasinormal modes

In this section, we will focus on the computation of the
QNMs for the quantum black hole described through metric
of the Eq. (2.1). As we saw in the last section, after con-
sidering the scalar perturbations to SDBH spacetime we can
find a Schrödinger-like equation given by Eq. (3.11) with an
effective potential given by Eq. (3.12). Also, considering the
effective potential depending on tortoise coordinate of Eq.
(3.10), the Veff(x) assumes constant values near event hori-
zon (x = −∞) and at infinity (x = ∞) and has a maximum
value at some intermediate point (x = x0). This behavior is
shown in Figs. 4 and 5, where we can see an increase of peak
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Fig. 3 Graph of the effective potential. This plot shows the behav-
ior of Veff(r) for different values of the nonminimal coupling: ξ =
0.0, 1/6, 1.0 and 3.0. Here, we assume the constant values m = 1,
μ = 0.1, a0 = √

3/2, l = 0 and P = 0.1

Fig. 4 Graph of the effective potential depending on tortoise coordi-
nate. This plot shows the behavior of Veff(x) for different values of
the multipole quantum number: l = 0, 1 and 2. Here, we assume the
constant values m = 1, μ = 0.1, ξ = 0.1, a0 = √

3/2 and P = 0.1

of the effective potential with the l values, and a decrease
with P values.

As earlier mentioned, the QNMs are complex frequencies
and can be expressed in the following form:

ω = ωR + iωI , (4.1)

where the real part (ωR) determines the normal frequency of
the oscillations, while the imaginary part (ωI ) represents the
damping time of vibration modes. Also, we can get informa-
tion about the stability of BHs from the analysis of QNMs.
The BHs are unstable when ωI > 0 and stable when ωI < 0.

Due to behavior of Veff(x) showed in Fig. 4, we can make
a direct analogy with the problem of scattering near the peak
of the barrier potential of quantum mechanics, where ω2 in
Eq. (3.11) plays the role of the energy. Several methods to
compute the QNMs have been developed [7,43–45]. How-
ever, we chose to apply an approximated method, which is
the well-known WKB approach introduced by Schutz and
Will [31]. This treatment was later improved to the 3rd order

Fig. 5 Graph of the effective potential depending on tortoise coordi-
nate. This plot shows the behavior of Veff(x) for different values of the
polymeric parameter: P = 0.1, 0.3, 0.5, 0.7 and 0.9. Here, we assume
the constant values m = 1, μ = 0.1, ξ = 0.1, a0 = √

3/2 and l = 0

by Iyer and Will [32], and is applied in our calculus. Thus,
the QNMs (ω = ωn) that appear in Eq. (3.11) are determined
by the following equation:

ωn =
√

(V0 + �) − i

(
n + 1

2

) √
−2V ′′

0 (1 + �), (4.2)

where

� = 1

8

(
V (4)

0

V ′′
0

)(
1

4
+ α2

)
− 1

288

(
V ′′′

0

V ′′
0

)2 (
7 + 60α2

)
,

(4.3)

� = − 1

2V ′′
0

{
5

6912

(
V ′′′

0

V ′′
0

)4 (
77 + 188α2

)

− 1

384

⎡
⎣

(
V ′′′

0

)2
(
V (4)

0

)
(
V ′′

0

)3

⎤
⎦(

51 + 100α2
)

+ 1

2304

(
V (4)

0

V ′′
0

)2 (
65 + 68α2

)

+ 1

288

(
V ′′′

0 V (5)
0(

V ′′
0

)2

)(
19 + 28α2

)

− 1

288

(
V (6)

0

V ′′
0

) (
5 + 4α2

)}
. (4.4)

Here, we have α = n + 1/2 and V (n)
0 denotes the n-order

derivative of the effective potential on the maximum point
x0.

The WKB method has a limitation for large numbers n, so
recent developments have extended the WKB method from
3th to 6th order [33], as well as to higher-order [34,35]. How-
ever, these approaches of higher orders should reproduce
results very close to results reproduced in the third order, in
cases of n � l. So, as we have interested in small overtones
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number, n, the 3rd order WKB method has good accuracy to
QNMs.

Thus, using the Eqs. (3.12) and (4.2), we can calculate
the QNMs for the self-dual black hole considering different
values of the parameters. In Table 1, we show the fundamen-
tal QNMs ( i.e., n = 0) for the case l = 0 and considering
different values of the other parameters. We can note that the
QNMs values considering μ = 0, for the case ξ = 0 are
different from the conformal coupling case (ξ = 1/6). Fur-
thermore, for the case when polymeric P and minimal area
a0 parameters tend to zero, the results converge to SchBH
[46,47].

Also, the QNMs for the SDBH considering the first over-
tone numbers (n) are shown in Table 2 for the case with
l = 1. We have adopted some typical values to the other
parameters, for instance, P = 0.1, 0.3 and 0.5. However, for
the case ξ = 0 and μ = 0 the results agree with the values
obtained in [9]. Finally, for better visualization of the effects
due to the new parameters in the QNMs spectrum, we have
shown the behavior by graphs in Figs. 6, 7 and 8, where has
been plotted the real and imaginary parts of ω for the case
l = 2.

5 Concluding remarks

The gravitational-wave observations have opened a new win-
dow to gravitational physics research. In this framework, the
black holes offer a great scenario to test the predictions of
candidates to quantum gravity theories. So, we have stud-
ied the black hole perturbations and the quasinormal modes
spectrum to a quantized version of the Schwarzschild solu-
tion, which is known as a self-dual black hole [4] and consists
of a loop quantum gravity solution.

In present present work, we have considered massive
scalar perturbations coupled with gravity through Ricci
scalar. So, we can find a Schrödinger-like equation with an
effective potential given by Eq. (3.12). Then, we use the
WKB approach to get the quasinormal modes showed in
the Tables 1 and 2. We consider different parameters values,
so that we can get small corrections of classical solution.
For instance, we consider μ = 0.1, 0.2, ξ = 0.1, 0.2 and
P = 0.1, 0.2, 0.5. Also, we have considered the values to
the angular number being l = 0, 1 and 2. Due to limitations
of the WKB approach, we have considered only small values
to overtone number, n, [31,32,43]. Therefore, for a better
visualization of QNMs behavior, we plotted in Figs. 6, 7 and
8 the behavior of real and imaginary QNMs parts considering
l = 2.

So, analyzing our results, we can verify that the scalar
quasinormal modes depend strongly on the field mass, the
parameter associated with the nonminimal coupling with
gravity, and the loop quantum gravity parameters. Our results

show that as the parameter P grows, the real part of the QNMs
suffers an initial increase and then starts to decrease, while
the magnitude of the imaginary part decreases, considering
the fixed-parameter a0. This behavior is also verified in [9–
11]. This characteristic reveals that the damping of massive
scalar perturbations coupling nonminimally with gravity for
the self-dual black hole is slower and the oscillations are
faster or slower depending on the value of P .

Also, it is very interesting to see a possible relation
between our results and the results of QNMs in the context
of Lorentz violation [48,49]. The breaking of Lorentz sym-
metry is expected by quantum gravity theory [50,51] and,
in recent years, efforts to determine the measurable conse-
quences of a theory of quantum gravity have been consider-
ably intensified. Here, it is possible to see similar behavior
with the loop quantum gravity parameter and the parameter
of Lorentz violation in some scenarios. For instance, we can
see the increasing and decreasing of QNMs with the varia-
tion of corresponding parameters in both Lorentz-violating
and loop quantum gravity theories.

Another new phenomenon found here is that for fixed l,
n, and ξ , the real and imaginary parts of the quasinormal
frequencies increase and decrease, respectively, as the mass
of the scalar field, μ, increases. As we know, the μ has a
maximum value, so the QNMs also have a limited value,
and due to this fact can be easier to detect by experiments.
Also, the introduction of the scalar field mass can help us to
understand different aspects of the self-dual black hole, for
instance, the aspects of thermodynamics [30].

We have verified, that by increasing the value of the non-
minimal coupling with gravity, ξ , the values of QNMs are
modified. Also, for large values of ξ , the number of stable
modes will significantly decrease. An interesting fact is that
for the case when we assume μ = 0 and ξ = 1/6, the
obtained results differ from the case ξ = 0. Therefore, the
conformal symmetry can be broken in the presence of LQG
corrections. Based on these results, we can conclude that the
self-dual black hole has a stable behavior under perturba-
tions provided by a massive scalar field with a nonminimal
coupling with gravity.

So, the present study together with [9–11] can help us
to understand the stability of the self-dual black hole, and
also opens a discussion about the interesting issue of con-
formal symmetry violation in the context of loop quantum
black holes. Further analysis considering charged and rotat-
ing extensions of SDBH, as well as other black hole solutions
in LQG [52–59], must improve our understanding of this
issue. Also, comes up a new question in the self-dual black
hole context; if the correlation of QNMs and photon orbit
and the black hole shadow [60], for this case with nonmini-
mal coupling with gravity still persists. Based on the analy-
sis done in Ref. [61], we can expect that for the cases with
nonminimally coupled gravity, the correspondence between
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Table 1 Fundamental QNMs of SDBH considering the constant values: m = 1, l = 0 and a0 = √
3/2

P μ ξ ω0 P μ ξ ω0

0.1 0.0 0.0 0.083846−0.106928i 0.3 0.0 0.0 0.072469−0.089438i

0.1 0.0 0.1 0.116404−0.138260i 0.3 0.0 0.1 0.067228−0.103055i

0.1 0.0 1/6 0.076978−0.110763i 0.3 0.0 1/6 0.024120−0.094200i

0.1 0.0 0.2 0.098475−0.128178i 0.3 0.0 0.2 0.043868−0.106240i

0.1 0.1 0.0 0.103053−0.111495i 0.3 0.1 0.0 0.090732−0.085852i

0.1 0.1 0.1 0.034850−0.064386i 0.3 0.1 0.1 0.101386−0.111908i

0.1 0.1 0.2 0.091391−0.111355i 0.3 0.1 0.2 0.038487−0.081088i

Table 2 The First QNMs for the SDBH considering the constant parameters: m = 1, a0 = √
3/2 and l = 1

P μ ξ ω0 ω1 ω2

0.1 0.1 0.0 0.308677−0.097383i 0.280706−0.312954i 0.255548−0.542527i

0.1 0.1 0.1 0.305982−0.093379i 0.262207−0.297952i 0.201681−0.520149i

0.1 0.1 0.2 0.306023−0.098157i 0.281336−0.316308i 0.263790−0.548014i

0.1 0.2 0.0 0.321783−0.082089i 0.249314−0.273727i 0.152563−0.505167i

0.1 0.2 0.1 0.319751−0.079161i 0.234081−0.261550i 0.107235−0.494258i

0.1 0.2 0.2 0.319462−0.083113i 0.252371−0.279548i 0.170198−0.512473i

0.3 0.1 0.0 0.334209−0.090020i 0.299191−0.280891i 0.245795−0.485544i

0.3 0.1 0.1 0.329608−0.089689i 0.294418−0.280507i 0.241676−0.485395i

0.3 0.1 0.2 0.324837−0.088824i 0.287367−0.277780i 0.229716−0.481428i

0.3 0.2 0.0 0.351419−0.083136i 0.304862−0.269468i 0.245882−0.482330i

0.3 0.2 0.1 0.348755−0.088806i 0.325524−0.296933i 0.327314−0.530312i

0.3 0.2 0.2 0.344568−0.088241i 0.320773−0.295941i 0.322452−0.529069i

0.5 0.1 0.0 0.348520−0.082800i 0.333270−0.258464i 0.319151−0.445290i

0.5 0.1 0.1 0.341353−0.082096i 0.325010−0.256477i 0.308893−0.442069i

0.5 0.1 0.2 0.334788−0.084140i 0.327065−0.267313i 0.334821−0.464291i

0.5 0.2 0.0 0.365596−0.068507i 0.310780−0.200578i 0.176663−0.346535i

0.5 0.2 0.1 0.360323−0.074073i 0.327514−0.234962i 0.283478−0.415786i

0.5 0.2 0.2 0.353556−0.072158i 0.315734−0.227651i 0.258431−0.403470i

(a) (b)

Fig. 6 Graphs for the behavior of the QNMs considering l = 2 and μ = 0.0, 0.1, 0.2 and 0.3. In plot a is shown the real part, while the imaginary
part is shown in b
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(b)(a)

Fig. 7 Graphs for the behavior of the QNMs considering l = 2 and ξ = 0.0, 0.1, 1/6 and 0.2. In plot a is shown the real part, while the imaginary
part is shown in b

(a) (b)

Fig. 8 Graphs for the behavior of the QNMs considering l = 2 and P = 0.1, 0.2, 0.3 and 0.4. In plot a is shown the real part, while the imaginary
part is shown in b

the QNMs and the frequencies related to the photon circular
orbit is violated. However, it is very important to consider
future analysis by applying the extended WKB method to
higher orders in the context of more recent BHs in LQG, as
well as investigations of quasinormal modes considering the
nonminimal coupling with gravity. Furthermore, the corre-
spondence between the QNMs and the frequencies related
to the photon circular orbit, in the context of SDBH, will be
analyzed in more detail in forthcoming publications.
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