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Abstract We generate a new generalized regular charged
anisotropic exact model that admits conformal symmetry
in static spherically symmetric spacetime. Our model was
examined for physical acceptability as realistic stellar mod-
els. The regularity is not violated, the energy conditions
are satisfied, the physical forces balanced at equilibrium,
the stability is satisfied via adiabatic index, and the sur-
face red shift and mass–radius ratio are within the required
bounds. Our conformal charged anisotropic exact solution
contains models generated by Finch–Skea, Vaidya–Tikekar
and Schwarzschild. Also, some recent charged or neutral and
anisotropic or isotropic conformally symmetric models are
found as special cases of our exact model. Our approach
using a conformal symmetry provides a generalized geomet-
ric framework for studying compact objects.

1 Introduction

It is important to investigate solutions to the Einstein–
Maxwell field equations in order to describe physical proper-
ties and behaviour of different physical systems in relativistic
astrophysics. The Einstein theory of general relativity which
extends the Newtonian gravity theory is useful in describing
compact stellar objects which have very strong gravitational
fields and high densities. The first exact solution to the Ein-
stein field equations was given by Schwarzschild [1] in 1916,
describing a compact stellar object with constant density in
hydrostatic equilibrium. Even though the solution was not
realistic, it paved the way for other researchers to search for
physically realistic solutions to these equations. A number
of approaches have been used by researchers in searching
for exact solutions to the Einstein–Maxwell field equations.
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Some of these approaches include finding an equation of state
that relates the pressure and the matter density as indicated in
Sunzu et al. [2,3], Brassel et al. [4], Nillson and Uggla [5,6],
Varela et al. [7], and Mafa Takisa and Maharaj [8], choosing
one form of the gravitational potential on physical grounds
that can predict the behaviour of the other metric function
and the matter variables as adopted in Thirukkanesh et al.
[9], Komathiraj et al. [10], Hansraj [11], and Mafa Takisa
et al. [12], utilizing embedding of dimensions on the space-
time manifold as adopted in Singh et al. [13], Maurya and
Maharaj [14], and Maurya and Govender [15], utilizing the
group theoretic approach discussed in Abebe et al. [16,17],
Govinder and Govender [18], Mohanlal et al. [19,20], and
the existence of symmetries on the spacetime manifold as
adopted in Rahaman et al. [21,22], Singh et al. [23], Ojako
et al. [24], Hansraj et al. [25], Esculpi and Aloma [26], Mau-
rya et al. [27], Kileba Matondo et al. [28], and Manjonjo et
al. [29].

Pressure anisotropy is an important quantity which
includes the difference in pressures that exist within rela-
tivistic bodies. Several situations happening in stellar bod-
ies can cause pressure anisotropy. In development of neu-
tron stars, the existence of variation in magnetic field inten-
sity produces pressure anisotropy [30]. It has been found
by Sawyer [31] and Sokolov [32] that pion condensation and
phase transitions can cause anisotropic pressure as well. Usov
[33] suggested that pressure anisotropy can be caused by the
existence of electric fields in stellar bodies. The presence of
pressure anisotropy has significant effects on the properties
and behaviour of stellar objects. Dev and Gleiser [34], and
Bowers and Liang [35] identified the variations in mass, sur-
face red shift and mass–radius ratio with respect to different
values of pressure anisotropy. Ruderman [36] observed that
stellar bodies with pressure anisotropy may have higher den-
sity values (> 1015 g/cm3). Herrera and Santos [37] provided
a detailed physical analysis on the effects that anisotropic
pressure has on properties of stellar objects. It was found
that the stability of stellar objects is influenced by the pres-
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ence of anisotropic pressure. Recent models that include the
effect of anisotropic pressure on matter variables are found in
Bhar et al. [38], Maurya et al. [27], Thirukkanesh and Ragel
[39], Manjonjo et al. [29], and Sunzu et al. [40].

The approach of imposing conformal symmetry on the
spacetime manifold is useful in finding exact solutions to
the non-linear Einstein–Maxwell field equations. The con-
formal Killing vector preserves the metric of spacetime and
it generates constants of the motion. The gravitational poten-
tials are restricted if the conformal Killing vector is present.
This helps in simplification of the field equations. Studies
on spacetime geometry with conformal motions have useful
applications in astrophysics and cosmology. Several authors
have studied static spherically symmetric spacetimes with
conformal motions. Early models that include the effect of
conformal Killing vector in finding exact solutions to the
Einstein field equations were generated in [41–44]. However
many of these models have singularities at the stellar centre.
Later on, Maartens and Maharaj [45] generated a conformal
model for anisotropic spheres which was free from central
singularities. Recently, spherical models that admit confor-
mal Killing vector in static spacetime were generated by sev-
eral researchers. Manjonjo et al. [29,46,47] found the rela-
tionship which exists between two gravitational potentials
when a conformal Killing vector is present. Singh et al. [48],
and Shee et al. [49] generated anisotropic exact solutions
describing the interior of compact stars for spherically sym-
metric spacetimes that admit non-static conformal motion.
Usman et al. [50], and Bhar [51] used the conformal Killing
vector to generate exact models for charged gravastars. Other
spherical models admitting conformal Killing vector are
found in Mafa Takisa et al. [12,52], Kileba Matondo et al.
[28,53], and Moopanar and Maharaj [54].

Here we utilize the existence of a conformal symmetry
on the manifold to generate a stellar model. It is important
to note that other approaches exist in stellar modelling that
may be followed in studying stars. Stars composed entirely
of dark matter have been analysed recently [55,56]. Nonlin-
ear equations of state may be used to model stellar interiors
[57–59]. The approach of minimal geometric coupling has
been a fruitful avenue in finding new models of anisotropic
stars [60,61]. Stellar models have been investigated in grav-
ity theories other than general relativity. Some of these stud-
ies include R2 gravity [62], f (R, T ) gravity [63,64], scale-
dependent gravity [65], Rastall gravitational models [66],
and also Lovelock gravity [67]. The approach followed in
these papers may be treated as a complement to the symme-
try approach.

In this article, we follow the formalism of Manjonjo et al.
[29]. We use the conformal Killing vector to restrict the grav-
itational potentials for the purpose of solving the Einstein–
Maxwell field equations. We generate generalized regular
conformal models for charged anisotropic stellar objects in

spherically symmetric spacetime. The results found by Man-
jonjo et al. [29] are contained in our generalized solution. In
the next section, we provide mathematical equations describ-
ing the Einstein–Maxwell field equations and the mass func-
tion. In Sect. 3, we give the connection between the con-
formal symmetry and the gravitational potentials. The trans-
formed field equations are given in Sect. 4. A new generalized
charged anisotropic exact solution is found in Sect. 5. Sec-
tion 6 provides some well known solutions contained in our
generalized exact solution. The physical features and analy-
sis for the generated model are given in Sect. 7. Concluding
remarks are outlined in Sect. 8.

2 Field equations

The interior line element describing the relativistic model
in Schwarzschild coordinates for the matter distribution in
static and spherically symmetric spacetimes takes the form

ds2 = −e2νdt2 + e2λdr2 + r2(dθ2 + sin2 θdφ2), (1)

where ν = ν(r) and λ = λ(r) are functions defining the
gravitational potentials. This spherical geometry is treated in
the presence of charge and anisotropic pressure. The charged
Reissner-Nordstrom line element for the exterior spacetime
for gravitating objects is given by

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 + 1(

1 − 2M
r + Q2

r2

)dr2

+r2(dθ2 + sin2 θdφ2), (2)

where M stands for the total mass of the stellar object and Q
is the electric charge. For the strong gravity regime and in the
presence of charge, the highly non-linear Einstein–Maxwell
field equations need to be discussed. These equations are con-
sidered for charged matter content with a comoving fluid four
velocity vector ua = 1

ev δa0 . We describe the energy momen-
tum tensor for the charged anisotropic stellar object in the
form

Tαβ = (ρ + pt ) uαuβ + pt gαβ + (pt − pr ) vαvβ + Eαβ,

(3)

where Eαβ is the electromagnetic field tensor. The physi-
cal quantities ρ, pr , and pt define the energy density, radial
pressure, and the tangential pressure respectively.

Considering the line elements (1) and (2) together with
equation (3), the Einstein–Maxwell field equations for the
charged anisotropic matter distribution are given by

1

e2λ

(
2λ′

r
− 1

r2

)
+ 1

r2 = 8πρ + E2

2
, (4a)

1

e2λ

(
2ν′

r
+ 1

r2

)
− 1

r2 = 8πpr − E2

2
, (4b)
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1

e2λ

(
ν′′ + ν′2 − ν′λ′ + ν′ − λ′

r

)
= 8πpt + E2

2
, (4c)

(
Er2

)′
4πr2eλ

= σ. (4d)

The quantities E and σ represent the electric field intensity
and the proper charge density respectively. The primes (′)
stand for differentiation with respect to radial coordinate r .
For perfect fluids, the matter distribution becomes uncharged
(E = 0) and isotropic in nature (Δ = pt − pr = 0). We are
using geometrized units in which the speed of light is taken
as unity (8πG = c = 1).

The mass contained within a sphere of radius r for charged
matter distribution as given by Mak and Harko [68] is defined
to be

M(r) = 4π

∫ R

0

(
ρ(r) + E2

)
r2dr. (5)

3 The conformal symmetry

In general, the Einstein–Maxwell field equations (4) are dif-
ficult to integrate. The symmetry approach of using a con-
formal Killing vector helps to simplify these equations to
obtain exact solutions. This approach restricts the gravita-
tional potentials and preserves the metric of spacetime by a
conformal factor. We define the conformal Killing equation
by

LXgab = 2Φgab, (6)

where gab is the metric tensor and LX is the Lie derivative
operator applied to the metric. The quantity Φ is the con-
formal factor. The conformal Killing vector X can be static
or non-static with static or non-static conformal factor Φ. In
this work, we consider the case in which both the conformal
Killing vector and conformal factor are non-static (that is,
they are functions of time). Using the spherical symmetry
assumption, the conformal Killing vector X has the form

X = α (t, r)
∂

∂t
+ β (t, r)

∂

∂r
, (7a)

Φ = Φ(t, r). (7b)

To solve Eq. (6) with conformal Killing vector (7a) and con-
formal factor (7b), we introduce the associated Weyl tensor
integrability condition

LXC
a
bcd = 0, (8)

where Ca
bcd represents the Weyl tensor. Using integrability

condition (8), Eq. (6) yields

ν′′ + (ν′)2 − ν′λ′ − ν′ − λ′

r
+ r−2 = (1 + k)

r2e−2λ
, (9)

k being a constant. The highly non-linear Eq. (9) has been
integrated in general [47,69,70]. The solution is given by

eν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ar exp
(√

1 + k
∫ eλ

r dr
)

+Br exp
(
−√

1 + k
∫ eλ

r dr
)

, 1 + k > 0,

Ar
∫ eλ

r dr + Br, 1 + k = 0,

Ar exp
(√− (1 + k)

∫ eλ

r dr
)

+Br exp
(
−√− (1 + k)

∫ eλ

r dr
)

, 1 + k < 0,

(10)

for constants A and B. When k = 0, the spacetime is con-
formally flat, otherwise k �= 0.

4 Transformed field equations

For convenience, to simplify the field equations (4), we intro-
duce new transformation variables similar to those adopted
by Durgapal and Bannerji [71], given by

x = r2, Z(x) = e−2λ(r), y2(x) = e2ν(r). (11)

Using transformations (11), the system of field equations in
(4) is transformed to

1 − Z

x
− 2Ż = 8πρ + E2

2
, (12a)

4Z

(
ẏ

y

)
− 1 − Z

x
= 8πpr − E2

2
, (12b)

4x Z

(
ÿ

y

)
+ (

4Z + 2x Ż
) ( ẏ

y

)
+ Ż = 8πpt + E2

2
,

(12c)
Z

4π2x

(
x Ė + E

)2 = σ 2, (12d)

where dots denote differentiation with respect to x . From
(12b) and (12c), the pressure anisotropy Δ is given by

Δ = 1

8π

[
4x Z

(
ÿ

y

)
+ 2x Ż

(
ẏ

y

)
+ Ż − Z − 1

x
− E2

]
.

(13)

Using (11), the mass function of the star in (5) is transformed
to

M(x) = 2π

∫ x

0

(
ρ(ξ) + E2

)√
ξdξ, (14)

for the new radial coordinate x .
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5 New exact solution

Using transformations (11) with k = 2(n − 1) (Manjonjo et
al. [29]), solution (10) becomes

y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
√
x exp

(
1
2

√
2n − 1

∫ dx
x
√
Z

)
+B

√
x exp

(
− 1

2

√
2n − 1

∫ dx
x
√
Z

)
, n > 1

2 ,

A
2

√
x
∫ dx

x
√
Z

+ B
√
x, n = 1

2 ,

A
√
x exp

(
1
2

√−(2n − 1)
∫ dx

x
√
Z

)
+B

√
x exp

(
− 1

2

√−(2n − 1)
∫ dx

x
√
Z

)
, n < 1

2 .

(15)

Then, using (15) and (13) for all values of n, we obtain

Ż − Z

x
+ n

x
= 1

2
(8πΔ + E2). (16)

Integrating (16), we get

Z = x
∫

8πΔ + E2

2x
dx + mx + n, (17)

where m is a constant of integration. We can obtain the solu-
tion of (17) by specifying Δ and E on physical grounds.
When n = 1, we describe the conformally flat geometry.

Suppose m = 0 with n = 1, and we choose new forms for
the measure of anisotropy Δ and electric field intensity E as

Δ = dx

4π(b + cx)3 , (18)

E2 = 2acx

(b + cx)2 . (19)

The anisotropy Δ increases, reaches a maximum, and is then
a decreasing function; it will have small values close to the
stellar boundary. The charge E2 is finite at the centre, a con-
tinuous function, and remains bounded in the interior. These
are desirable physical features for a stellar model. Similar
choices for Δ and E2 have been made in the treatments [72–
76] leading to physically acceptable models. We observe that
E = 0 and Δ = 0 at the centre of the stellar object (x = 0)
which is physical. This indicates that our choice for the mea-
sure of anisotropy Δ and the electric field intensity E can
represent realistic stars. We note that when d = 0 and a
or c = 0, the model becomes neutral and isotropic. When
d �= 0, and a or c = 0 generates a neutral anisotropic model.
The case d �= 0, and a, c �= 0 generates charged anisotropic
models. Other particular choices for the electric field E were
adopted by Manjonjo et al. [29] and Mafa Takisa et al. [12] in
their conformal symmetry models. Our choice for the mea-
sure of anisotropy Δ has not been adopted before. These
choices are made on physical grounds to ensure that all met-
ric functions are regular at the centre. With these choices, the
potential in (17) takes the form

Z = 1 − x( dc + 2a(b + cx))

2(b + cx)2 + xa1, (20)

where a1 is the constant of integration.
Suppose a1 = 0, and using (20), Eq. (15) after integration

reduces to

y = Ax

√
a2(F1 + F2)P

(F3 + F4)
+ B

√
(F3 + F4)√

a2(F1 + F2)P
, (21)

where a2 is an integration constant. For simplicity in writing
this equation, we have set

F1 = 4bc2 − d + 4c3x − 2ac (b + 2cx)

+2
√

2bc3/2√−a + cF0,

F2 = 2
√

2c5/2x
√−a + cF0,

F3 = −√
2dx + 4b2c

(√
2 + F0

)
,

F4 = 2bcx
[
−√

2a + 2c
(√

2 + F0

)]
,

P =
√

c

−a + c
,

with F0 given by

F0 =
(

2b2c + 2bcx (−a + 2c) − x
(
d + 2 (a − c) c2x

)) 1
2

×
(
c (b + cx)2

)− 1
2
.

The metric functions (20) and (21) together with the system
(12) can provide a realistic stellar model with astrophysical
significance.

Using (20) and (21), the matter variables become

ρ = d (3b − cx) + 6abc (b + cx)

16πc (b + cx)3 , (22a)

σ 2 = −a (3b + cx)2

16π2 (b + cx)6

(
−2b2c + 2b (a − 2c) cx

+x
(
d + 2 (a − c) c2x

))
, (22b)

pr = 1

8π

⎡
⎣P0 +

⎛
⎝P1

⎛
⎝A

√
a2(F1 + F2)P

(F3 + F4)

−
(
B

(
−
((

a2 (F1 + F2)
P (F5 + F6 + F7)

)
(F3 + F4)2

)

+
(
a2P(F1 + F2)

P2(F8 + F9 + F10)
)

(F3 + F4)

))

×
⎛
⎝2

(
a2(F1 + F2)

P

(F3 + F4)

) 3
2
⎞
⎠

−1

+ (Ax (− ((a2(F1

+F2)
P (F5 + F6 + F7)

)
(F3 + F4)

−2
)

+
(
a2P(F1 + F2)

P2(F8 + F9 + F10)
)
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× (F3 + F4)
−1
))⎛⎝2

√
a2(F1 + F2)P

(F3 + F4)

⎞
⎠

−1
⎞
⎟⎠
⎞
⎟⎠

×
⎛
⎜⎝B

⎛
⎝
√
a2(F1 + F2)P

(F3 + F4)

⎞
⎠

−1

+Ax

√
a2(F1 + F2)P

(F3 + F4)

⎞
⎠

−1
⎤
⎥⎦ , (22c)

pt = Δ + pr , (22d)

where

P0 = acx

(b + cx)2 −
d
c + 2a (b + cx)

2 (b + cx)2 ,

P1 = 4

(
1 − x

( d
c + 2a (b + cx)

)
2 (b + cx)2

)
,

P2 = −1 +
√

c

−a + c
,

F5 = −√
2d + 2b2c (P3 − P4)

F0
,

F6 = 2bc2x (P3 − P4)

F0
,

F7 = F4

x
,

F8 = −4ac2 + 4c3 + 2
√

2c5/2√−a + cF0,

F9 =
√

2bc3/2√−a + c (P3 − P4)

F0
,

F10 =
√

2c5/2x
√−a + c (P3 − P4)

F0
,

with P3 and P4 given by

P3 = 2bc (−a + 2c) − d − 4 (a − c) c2x

c (b + cx)2 ,

P4 = 4
(
b2c + bc (−a + 2c) x

)
(b + cx)3 − 2x

(
d + 2 (a − c) c2x

)
(b + cx)3 .

Using (19) and (22a), the mass equation (14) becomes

M(x) =
√
x (ab + acx) (48πb + 32πcx − 3b)

4c (b + cx)2

−
(

3a
√
b(16π − 1) arctan

(√
cx/b

)
4c

√
c

)

+
√
xdx

4c (b + cx)2 . (23)

6 Some well known solutions

It is important to generate stellar models that reduce to well
known solutions found in the literature. Our generalized
conformal symmetry class of exact solution contains com-
pact star models with astrophysical significance. The Finch–
Skea, Vaidya–Tikekar and interior Schwarzschild models are
regained as special cases. We also observe from (20) that
when a = 0, d = 0 and a1 = 0, our metric reduces to
Minkowski spacetime with Z = 1. The class of exact solu-
tion found in this work generalizes several spherical confor-
mal models generated by other researchers as indicated in
Tables 1, 2 and 3.

6.1 Finch–Skea model form

The case a = b = c = 1 and a1 = d = 0 generates the
Finch–Skea [77] model with the form Z = 1

1+x . For this
case, the gravitational potential y becomes

y = A
(√

x + 1 − 1
)
e
√
x+1

+B
(√

x + 1 + 1
)
e−√

x+1. (24)

We observe from (18) that, Δ = 0 when d = 0, which
means isotropic pressure. From (19), the electric field equa-
tion reduces to E2 = 2x

(1+x)2 . This special case was generated

by Manjonjo et al. [29].

6.2 Schwarzschild metric

When a = d = 0 and a1 = 1, our gravitational potential
in Eq. (20) reduces to the interior Schwarzschild potential
Z = 1+ x . For these settings, we observe from (18) and (19)
that the pressure anisotropy Δ and electric field E vanish, and
the model becomes isotropic and neutral. The gravitational
potential y for this case takes the form

y = A

√√√√ xc1
(
1 − √

1 + x
)

(
1 + √

1 + x
) + B

√√√√ x
(
1 + √

1 + x
)

c1
(
1 − √

1 + x
) , (25)

where c1 is the constant of integration. The solution of
Schwarzschild metric in Einstein gravity is important, and
also in other gravity theories including the Lovelock gravity
[78].

6.3 Vaidya–Tikekar case

The case a = −1, b = c = 1 and a1 = d = 0 reduces the
potential in equation (20) to Z = 1+2x

1+x . This case was inves-
tigated by Vaidya–Tikekar [79] in their study on uncharged
perfect fluid configuration. In our case, the metric function y
takes the form
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Table 1 Exact charged
isotropic conformal symmetry
solutions contained in our model

Parameters Potential y Potential Z Constants Model

n = 1 Ax
1
2 exp

(
1
2

∫ dx

x Z
1
2

)

+Bx
1
2 exp

(
− 1

2

∫ dx

x Z
1
2

)
1

1+x A, B Manjonjo et al. [29]

A = 0, n = 1
2 Bx

1
2 φ̃0x φ̃0, B Usmani et al. [50]

A = 0, n = 1
2 Bx

1
2 1−B̃x

3 B, B̃ Mak and Harko [80]

Table 2 Exact charged anisotropic conformal symmetry solutions contained in our model

Parameters Potential y Potential Z Constants Model

A = 0, n = k̃2+1
2 Bx

1
2 exp

(
− k̃

2

∫ dx

x Z
1
2

) (
1 + x

R2

)−4
R, B Singh et al. [48]

A = 0, n = 1
2 Bx

1
2 1+ñ

2(1+2ñ−C)

(
1 + ñ − C+1

3R2 x
)

ñ,C, B Esculpi and Aloma [26]

(1st case)

A = 0, n = 1
2 Bx

1
2 1+ñ

3ñ+1 − (1+ñ)Q2
0

(3ñ+2α−1)R2α x
α−1

−
(

2
3(3ñ+1)R2 + 2Q2

0(α−2)

3(3ñ+2α−1)R4

)
α, ñ, R Esculpi and Aloma [26]

(2nd case)

Table 3 Exact neutral anisotropic conformal symmetry solutions contained in our model

Parameters Potential y Potential Z Constants Model

A = 0, n = 1
2 Bx

1
2 (1 − a) − bx + C

C2
3 x

1
2

a, b, C , C3, B Rahaman et al. [83]

A = 0, n = 1
2 Bx

1
2 C

3C−1 + 1
C2

3

(
x

1
2 B̃
)3C−1

C , C3, B, B̃ Rahaman et al. [21]

(1st case)

A = 0, n = 1
2 Bx

1
2

2K1x−(1+c1)+c2xlnx
2C2

3
B, c1, c2, C3, K1 Rahaman et al. [21]

(2nd case)

A = 0, n = k̃2+1
2 Bx

1
2 exp

(
− k̃

2

∫ dx

x Z
1
2

)
d

x
1
2

+ (1 − a) − bx a, b, d, B Shee et al. [49]

A = B̃
2 , B = B̃

2 , n > 1
2 Bx

1
2 cosh

(√
2n−1
2

∫ dx

x Z
1
2

) (√
2n − 1 − bx

)2
b, B Mafa Takisa et al. [52]

y = Ax

⎛
⎝c2

(
3 + 4x + 2

√
2 (1 + x)

√
1 + 2x

) 1√
2(

2 + 3x + 2
√

1 + x
√

1 + 2x
)

⎞
⎠

1
2

+B
(

2 + 3x + 2
√

1 + x
√

1 + 2x
) 1

2

×
(
c2

(
3 + 4x + 2

√
2 (1 + x)

√
1 + 2x

) 1√
2

)− 1
2

,

(26)

where c2 is the constant of integration.

7 Physical conditions

We present a detailed physical analysis on the behaviour and
properties of the gravitational potentials and the matter vari-
ables. Analysis on the realistic physical conditions such as
regularity, stability, equilibrium, limits on the surface red
shift and the compactness factor, and the energy conditions
is given in detail for physical acceptability. The graphical
representations of the gravitational potentials and the matter
variables for the generated model were obtained using the
Python Programming Language. The following values were
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chosen for the constants: a = ±0.525, a2 = 0.0000088,
b = 20, c = 40, d = 285, A = 2.05, and B = 1.15. In
sketching the graph for the behaviour of the physical forces,
the value of a2 was changed to 0.088. [The various math-
ematical equations were checked using the Mathematica
software.]

7.1 Matching conditions

It is important to match the interior exact solution found
with that of the exterior at the boundary of the stellar object.
This is done by utilizing the first and second fundamental
forms. Matching the line elements given by (1) and (2) at the
boundary r = R with x = R2 gives

e2ν(R) = y2(R2) =
(

1 − 2M

R
+ Q2

R2

)
, (27a)

e2λ(R) = Z−1(R2) =
(

1 − 2M

R
+ Q2

R2

)−1

. (27b)

Also we have the requirement that the radial pressure of the
star at the surface must vanish (pr (r = R) = 0). This condi-
tion is satisfied which is clearly seen from Fig. 1. The quantity
Q2/R2 = E2R2. Using the mass function (23), the poten-
tials in (20) and (21) together with the electric field equation
(19), the matching conditions in (27) become

0 = R5

(
2ac(

b + cR2
)2 − A2a2 (F1 + F2)

P

(F3 + F4)

− 16πac(
b + cR2

)2
)

− R3

(
− 3ab

2
(
b + cR2

)2

+ 40πab(
b + cR2

)2 + d

2c
(
b + cR2

)2 + 2AB

)

+R

(
3ab2

2c
(
b + cR2

)2 − 24πab2

c
(
b + cR2

)2
− B2 (F3 + F4)

a2 (F1 + F2)
P

+ 1

)

+3a
√
b (16π − 1) arctan

(
R
√
c/b
)

2c
√
c

, (28a)

0 = R4

(
16πac(

b + cR2
)2 − 3ac(

b + cR2
)2
)

+R2

(
40πab(

b + cR2
)2 − 5ab

2
(
b + cR2

)2
)

−3a
√
b (16π − 1) arctan

(
R
√
c/b
)

2cR
√
c

+ab2 (48π − 3)

(b + cR2)2 , (28b)

0 = pr (r = R) . (28c)

Fig. 1 Radial pressure pr against radial distance r

Fig. 2 Pressure anisotropy Δ against radial distance r

The system of equations in (28) provides the matching con-
ditions for our generated exact solution given in system (22).
This has been done explicitly by expressing the matching
conditions in (28) in terms of the constants a, a2, b, c, d, R,
A, and B. We observe that there are sufficient free parameters
to satisfy the matching conditions (28).

7.2 Pressure anisotropy, electric field and proper charge
density

In our generalized charged anisotropic conformal model, we
observe that the pressure anisotropy Δ and the electric field E
are zero at the stellar centre. These quantities increase sharply
near the centre to the maximum and then start to decrease
towards the boundary (Figs. 2, 3). The proper charge density
is positive, maximum at the centre and decreasing towards
the surface (Fig. 4). These behaviours represent realistic rel-
ativistic bodies.
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Fig. 3 Electric field E2 against radial distance r

Fig. 4 Proper charge density σ 2 against radial distance r

7.3 Regularity conditions

We observe from Figs. 5 and 6 that the metric functions
e2λ = 1, and e2ν is positive at the stellar centre (r = 0) and
monotonically increasing towards the boundary. This indi-
cates that these potentials are free from a central singularity.

It is also required that the matter density (ρ) be positive
and maximum at the stellar centre while decreasing towards
the boundary. This is also satisfied as indicated in Fig. 7.

The regularity condition also requires the radial (pr ) and
tangential (pt ) pressures to be equal, maximum at the stellar
centre and decreasing towards the surface of the sphere as
shown from Figs. 1 and 8. Importantly, the radial pressure
vanishes at the stellar boundary (r = R).

7.4 Energy conditions

For an admissible charged fluid solution, the energy momen-
tum tensor should satisfy the null energy condition (N.E.C),

Fig. 5 Potential e2λ against radial distance r

Fig. 6 Potential e2ν against radial distance r

the weak energy condition (W.E.C), the weak dominant
energy condition (W.D.E.C) and the strong energy condition
(S.E.C) inside the sphere. These conditions are described by
the following inequalities:

N .E .C : ρ ≥ 0, (29a)

W.E .C : ρ − pr , ρ − pt ≥ 0, (29b)

W.D.E .C : ρ − 3pr , ρ − 3pt ≥ 0, (29c)

S.E .C : ρ − pr − 2pt ≥ 0. (29d)

Our generalized conformal model satisfies all these condi-
tions throughout the stellar interior as required in Figs. 7, 9,
10 and 11 respectively.

7.5 Stability via adiabatic index

The model stability is investigated using the adiabatic index
Γ , describing the ratio between two specific heats. This
value is required to be greater than 4

3 [37,81]. For realistic
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Fig. 7 Energy density ρ against radial distance r

Fig. 8 Tangential pressure pt against radial distance r

Fig. 9 Weak energy condition against radial distance r

Fig. 10 Weak dominant energy condition against radial distance r

Fig. 11 Strong energy condition against radial distance r

anisotropic relativistic spheres the adiabatic index is defined
to be

Γ >
4

3
+
(

4 (pt − pr )

3rp′
r

)
max .

(30)

[81,82]. As pointed out before the charged fluid spheres are
anisotropic with unequal pressures in radial and tangential
directions (pt �= pr ). From Fig. 12, we observe that the
adiabatic index values agree with the existing literature.

7.6 Equilibrium condition

The equilibrium condition requires the sum of the physi-
cal forces within the star to balance. For charged matter
configuration, this requirement is described in the Tolman-
Oppenheimer-Volkoff (TOV) equation given by

−Mg (ρ + pr )

r2 eλ−ν − dpr
dr

+ σ
q

r2 e
λ + 2Δ

r
= 0, (31)
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Fig. 12 Adiabatic index Γ against radial distance r

[35,84,85], where Mg = r2v′eν−λ

2 is the effective gravita-
tional mass and q

r2 = E is the electric field intensity. Equa-
tion (31) simplifies to

−ν′ (ρ + pr )

2
− dpr

dr
+ σ Eeλ + 2Δ

r
= 0. (32)

The terms −ν′(ρ+pr )
2 , − dpr

dr , σ Eeλ and 2Δ
r define the gravita-

tional force (Fg), hydrostatic force (Fh), electric force (Fe)
and anisotropic force (Fa) respectively. From (32), the TOV
equation reduces to

Fg + Fh + Fe + Fa = 0. (33)

This condition is satisfied as illustrated in Fig. 13.

7.7 Mass, surface red shift and compactness factor

We observe that the surface red shift increases with increase
in radial coordinate r (Fig. 14). Its maximum value is attained
at zs = 0.5024. For realistic anisotropic charged compact
stars, the surface red shift is required not to exceed 5.211
[86,87]. It is clear that the red shift value in this model satis-
fies this requirement, indicating that our charged anisotropic
model is physical and realistic. It is also observed that the
mass–radius ratio (compactness factor μ) increases with the
increase in radial coordinate (Fig. 15) with maximum value
at μ = 0.5573. This value is within the required limit for
anisotropic matter distribution, that is, 2M

r = μ ≤ 8
9 [86].

The surface red shift and the mass–radius ratio are defined
by

zs = 1√
1 − 2M(r)

r

− 1, (34)

μ(r) = 2M(r)

r
, (35)

Fig. 13 Behaviour of forces against radial distance r

Fig. 14 Surface red shift zs against radial distance r

respectively [35,86,87]. In Fig. 16, the M − R plot is gener-
ated for three values of the parameter a. For these values we
obtain a maximum mass of approximately 1.835M�. This
result is compatible with several observations [12,28,52,55,
88,89]. Other maximum mass values are possible depending
on the value of the parameter chosen.

8 Conclusion

In this work, we incorporated the conformal Killing vec-
tor into the Einstein–Maxwell equations to generate real-
istic generalized exact models with charge and pressure
anisotropy. The conformal Killing vector provided a rela-
tionship between the gravitational potential functions which
resulted in a new generalized solution. The detailed physical
analysis for the new generated class of exact solution was
undertaken to examine its physical acceptability. It has been
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Fig. 15 Mass radius ratio (compactness factor μ) against radial dis-
tance r

Fig. 16 M − R plot

found that the matter variables and the gravitational poten-
tials are regular at the stellar centre, the energy conditions
are satisfied, the stability is obeyed via. adiabatic index, the
physical forces balance at equilibrium, the surface red shift
and the compactness factor describing the mass–radius ratio
are in acceptable ranges for realistic stellar bodies. Our gener-
alized class of exact solution extend the earlier investigations
of Manjonjo et al. [29]. We regained the charged isotropic
exact models generated by Manjonjo et al. [29], Usmani et
al. [50], and Mak and Harko [80] as special cases (Table 1).
The charged anisotropic models regained are those found by
Singh et al. [48], and Esculpi and Aloma [26] as outlined in
Table 2. We also regained neutral anisotropic models gener-
ated by Rahaman et al. [21,83], Shee et al. [49], and Mafa
Takisa et al. [52] as given in Table 3. Our generalized exact
model also reduce to some well known metrics such as inte-
rior Schwarzschild, Vaidya–Tikekar and Finch–Skea. Many
of these solutions have been found in the past using an ad hoc

approach. Here we have shown that they are contained in a
generalized class characterized geometrically by a conformal
symmetry. Other models can be obtained for other different
choices of electric field E and pressure anisotropy Δ made
on physical grounds. This study shows that it is important to
identify such cases when a conformal symmetry is present.
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