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Abstract Jeans instability within the framework of post-
Newtonian Boltzmann and Poisson equations are analyzed.
The components of the energy–momentum tensor are cal-
culated from a post-Newtonian Maxwell-Jüttner distribution
function. The perturbations of the distribution function and
gravitational potentials from their background states with the
representation of the perturbations as plane waves lead to
a dispersion relation with post-Newtonian corrections. The
influence of the post-Newtonian approximation on the Jeans
mass is determined and it was shown that the mass neces-
sary for an overdensity to begin the gravitational collapse
in the post-Newtonian theory is smaller than the one in the
Newtonian theory.

1 Introduction

The first attempt to describe instabilities of self-gravitating
fluids from the hydrodynamic equations coupled with the
Newtonian Poisson equation was due to Jeans [1]. He deter-
mined from a dispersion relation a wavelength cutoff, nowa-
days known as Jeans wavelength, such that for small wave-
lengths than the Jeans wavelength the perturbations propa-
gate as harmonic waves in time but for large wavelengths the
perturbations will grow or decay with time. The gravitational
collapse of self-gravitating interstellar gas clouds associated
with the mass density perturbations which grow exponen-
tially with time is known as Jeans instability [2–4]. Physi-
cally the collapse of a mass density inhomogeneity occurs
whenever the inwards gravitational force is bigger than the
outwards pressure force.

Another method to analyse the Jeans instability is to con-
sider the collisionless Boltzmann equation coupled with the
Newtonian Poisson equation (see e.g. [5–12]).

Recently the Jeans instability was examined within the
framework of the first post-Newtonian theory by considering
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the hydrodynamic equations and the Poisson equations which
follow from this theory [13].

The aim of the present work is to analyse the Jeans instabil-
ity from the post-Newtonian collisionless Boltzmann equa-
tion coupled with the post-Newtonian Poisson equations.
Apart from the Newtonian gravitational potential in the first
post-Newtonian theory appear two more gravitational poten-
tials which are associated with two new Poisson equations.
One of the gravitational potentials is a scalar while the other
is a vector [2,14].

Here the components of the energy–momentum tensor,
which appear in the post-Newtonian Poisson equations, are
functions of the one-particle distribution function, so that the
Poisson equations together with the post-Newtonian Boltz-
mann equation become a closed system of algebraic equa-
tions for the perturbed gravitational potentials. From the solu-
tion of the system of algebraic equations a dispersion relation
emerges that is used to determine the influence of the post-
Newtonian approximation in the Jeans mass, which is related
with the minimum mass necessary for an overdensity to ini-
tiate the gravitational collapse.

The paper is structured as follows. In Sect. 2 the first
post-Newtonian expressions for the Boltzmann and Poisson
equations and the equilibrium Maxwell-Jüttner distribution
function are introduced. The Jeans instability is analyzed in
Sect. 3 where perturbations in the background states of the
distribution function and gravitational potentials are consid-
ered. The representation of the perturbations as plane waves
results into a dispersion relation where the post-Newtonian
influence in the Jeans mass is analyzed. In Sect. 4 a summary
of the results is discussed.

2 Boltzmann equation

The space-time evolution of the one-particle distribution
function f (x,p, t) in the phase space spanned by the spatial
coordinates x and momentum p of the particles is governed
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by the Boltzmann equation (see e.g. [15]). For collisionless
systems the first post-Newtonian approximation of the Boltz-
mann equation was derived in the papers [16,17], while its
second post-Newtonian approximation was determined in the
paper [18].

In the first post-Newtonian approximation the components
of the metric tensor gμν reads [14]

g00 = 1 − 2U

c2 + 2

c4

(
U 2 − 2Φ

)
, g0i = Πi

c3 , (1)

gi j = −
(

1 + 2U

c2

)
δi j , (2)

where the gravitational potentials U , Φ and Πi are given by
the Poisson equations

∇2U = −4πG

c2

0

T 00, ∇2Φ = −2πG

(
2

T 00 +
2

T ii
)

,

(3)

∇2Π i = −16πG

c

1

T 0i + ∂2U

∂t∂xi
. (4)

In the above equations the energy–momentum tensor is split

in orders of 1/cn denoted by
n
Tμν .

The first post-Newtonian approximation of the Boltzmann
equation written in terms of the Chandrasekhar gravitational
potentials U , Φ and Πi reads

[
∂ f

∂t
+ vi

∂ f

∂xi
+ ∂ f

∂vi

∂U

∂xi

][
1 + 1

c2

(
v2

2
+U

)]

+ 1

c2
∂ f

∂vi

{
v j

(
∂Πi

∂x j
− ∂Π j

∂xi

)
− 2vi

∂U

∂t
− 2

∂
(
U2 − Φ

)

∂xi

+∂Πi

∂t
− 2viv j

∂U

∂x j
+ v2 ∂U

∂xi
− vi

[
∂U

∂t
+ 2v j

∂U

∂x j

]}
= 0.

(5)

In kinetic theory of gases the energy–momentum tensor is
defined in terms of the one-particle distribution function by
[15]

Tμν = m4c
∫

uμuν f

√−g d3u

u0
. (6)

Here uμ is the particle four-velocity whose components in
the first post-Newtonian approximation are

u0 = c

[
1 + 1

c2

(
v2

2
+U

)]
, ui = u0vi

c
. (7)

The one-particle distribution function at equilibrium for a
relativistic gas is given by the Maxwell-Jüttner distribution
function. Its expression in the first post-Newtonian approx-
imation in a stationary equilibrium background where the
hydrodynamic velocity vanishes is [19]

fM J = f0

{
1 − σ 2

c2

[
15

8
+ 3v4

8σ 4 + 2Uv2

σ 4

]}
, (8)

f0 = ρ0

m4(2πσ 2)
3
2

e− v2

2σ2 . (9)

Here f0 denotes the Maxwellian distribution function which
is given in terms of the gas particle velocity v, the mass den-
sity ρ0 and the dispersion velocity σ = √

kT0/m. Further-
more, k denotes the Boltzmann constant, T0 the temperature
and m the rest mass of a gas particle. The mass density ρ0

and the temperature T0 are considered to be constants, since
they refer to a stationary equilibrium background. The factor
1/m4 in the Maxwell-Jüttner distribution function is due to
the fact that it is given in terms of the momentum four-vector
pμ.

The first post-Newtonian approximation of the invariant
integration element of the energy–momentum tensor (6) is
given by [19]
√−g d3u

u0
=

{
1 + 1

c2

[
2v2 + 6U

]} d3v

c
. (10)

An equivalent expression for the first post-Newtonian
Boltzmann equation (5) is obtained from its multiplication
by [1 − (v2/2 + U )/c2] and by considering terms up to the
1/c2 order, yielding

∂ f

∂t
+ vi

∂ f

∂xi
+ ∂U

∂xi
∂ f

∂vi

+ 1

c2

[ (
v2 − 4U

) ∂U

∂xi
− 4viv j

∂U

∂x j

−3vi
∂U

∂t
+ 2

∂Φ

∂xi
+ ∂Πi

∂t

+v j

(
∂Πi

∂x j
− ∂Π j

∂xi

) ]
∂ f

∂vi
= 0. (11)

3 Jeans instability

For the analysis of Jeans instability we shall rely on the Pois-
son equations (3) and (4) coupled with the Boltzmann equa-
tion (11).

We begin by writing the gravitational potentials and the
one-particle distribution function as a sum of background and
perturbed terms. The background terms refer to an equilib-
rium state and are denoted by the subscript zero, while the
perturbed terms by the subscript 1. Hence, we write

f (x, v, t) = fM J (x, v, t) + ε f1(x, v, t), (12)

U (x, v, t) = U0(x) + εU1(x, v, t), (13)

Φ(x, v, t) = Φ0(x) + εΦ1(x, v, t), (14)

Πi (x, v, t) = Π0
i (x) + εΠ1

i (x, v, t). (15)

Above we introduced a small parameter ε which controls
that only linear terms in this parameter should be considered.
Later on this parameter will be set equal to one.
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If we introduce the representations (12) – (15) into the
Boltzmann equation (11) and equate the terms of the same
ε-order we obtain the following hierarchy of equations

∂U0

∂xi
∂ f 0

MJ

∂vi
− 2v2 f0

σ 2c2 vi
∂U0

∂xi
+ 1

c2

[(
v2 − 4U0

) ∂U0

∂xi

− 4viv j
∂U0

∂x j
+ 2

∂Φ0

∂xi
+ v j

(
∂Π0

i

∂x j
− ∂Π0

j

∂xi

)]
∂ f0
∂vi

= 0,

(16)

∂ f1
∂t

+ vi
∂ f1
∂xi

+ ∂U1

∂xi
∂ f 0

MJ

∂vi
− 2v2 f0

σ 2c2

(
∂U1

∂t
+ vi

∂U1

∂xi

)

+∂U0

∂xi
∂ f1
∂vi

− 4viU1

c2σ 2
∂U0

∂xi
+ 1

c2

[ (
v2 − 4U0

) ∂U0

∂xi
+ 2

∂Φ0

∂xi

− 4viv j
∂U0

∂x j
+ v j

(
∂Π0

i

∂x j
−

∂Π0
j

∂xi

)]
∂ f1
∂vi

+ 1

c2

[
2
∂Φ1

∂xi

+∂Π1
i

∂t
+

(
v2 − 4U0

) ∂U1

∂xi
− 4viv j

∂U1

∂x j
− 4U1

∂U0

∂xi

−3vi
∂U1

∂t
+ v j

(
∂Π1

i

∂x j
−

∂Π1
j

∂xi

)]
∂ f0
∂vi

= 0. (17)

In the above equations we have written the Maxwell-Jüttner
distribution function as

fM J = f0

{
1 − σ 2

c2

[
15

8
+ 3v4

8σ 4 + 2
U0v

2

σ 4

]}
− 2 f0ε

U1v
2

c2σ 2

= f 0
MJ − 2 f0ε

U1v
2

c2σ 2 , (18)

where the background Maxwell-Jüttner distribution function
was denoted by f 0

MJ .
We note that the background terms are related with a sta-

tionary equilibrium state so that the background equation (16)
becomes an identity when the gradients of the gravitational
potential backgrounds vanish, i.e., ∇U0 = 0, ∇Φ0 = 0 and
∇Π0

i = 0. By considering that the gravitational potential
backgrounds are constants the perturbed Boltzmann equa-
tion (17) reduces to

∂ f1
∂t

+ vi
∂ f1
∂xi

+ ∂U1

∂xi
∂ f 0

MJ

∂vi
− 2v2 f0

σ 2c2

(
∂U1

∂t
+ vi

∂U1

∂xi

)

+ 1

c2

[ (
v2 − 4U0

) ∂U1

∂xi
+ 2

∂Φ1

∂xi
+ ∂Π1

i

∂t
− 3vi

∂U1

∂t

− 4viv j
∂U1

∂x j
+ v j

(
∂Π1

i

∂x j
− ∂Π1

j

∂xi

)]
∂ f0
∂vi

= 0. (19)

One can observe from the Poisson equations (3) and (4)
that they are not satisfied by the conditions of vanishing
background potential gravitational gradients, since the right-
hand sides of (3) and (4) are given in terms of the energy–
momentum tensor which does not vanish at equilibrium. At

this point we assume “Jeans swindle” (see e.g. [4]) to remove
this inconsistency and consider that the Poisson equations are
valid only for the perturbed distribution function and gravi-
tational potentials.

We note from the perturbed Boltzmann equation (19) that
it is a function of the background value of the Newtonian
gravitational potentialU0 which is a constant. In the analysis
of the Jeans instability based on the post-Newtonian hydro-
dynamic equations [13] it was supposed vanishing values for
the background gravitational potentials as a part of the “Jeans
swindle”. Here we shall not adopt this statement and will
show that the background Newtonian gravitational potential
U0 has a prominent role in the determination of Jeans mass.

For the determination of the energy–momentum tensor
components (6) we have to write the the four-velocity com-
ponents (7) and the invariant integration element (10) by tak-
ing into account the representation of the Newtonian gravi-
tational potential (13), yielding

u0 = c

[
1 + 1

c2

(
v2

2
+U0 + εU1

)]
, ui = u0vi

c
,

(20)√−g d3u

u0
=

{
1 + 1

c2

[
2v2 + 6U0 + 6εU1

]} d3v

c
. (21)

We multiply the one-particle distribution function (12)
together with (18) with the invariant element (21) and get

f

√−g d3u

u0
=

{
1 − σ 2

c2

[
15

8
+ 3v4

8σ 4 + 2
U0v

2

σ 4 − 2
v2

σ 2

− 6
U0

σ 2

]}
f0
d3v

c
−ε

U1

c2

(
2v2

σ 2 −6

)
f0
d3v

c

+ε

{
1 + 1

c2

[
2v2 + 6U0

]}
f1
d3v

c
. (22)

Now we can evaluate the energy–momentum tensor com-
ponents that appear in the right-hand sides of the Poisson
equations (3) and (4), by inserting the expressions (20) and
(22) into the definition of the energy–momentum tensor (6),
resulting

0

T 00 +
2

T 00 = m4c
∫

u0u0 f

√−g d3u

u0

= m4c2
∫

f0

[
1 − σ 2

c2

(
15

8
+ 3v4

8σ 4 + 2U0v
2

σ 4 − 3v2

σ 2

−8U0

σ 2

)]
d3v + ε m4c2

∫ {
f1

[
1 + 3v2

c2 + 8U0

c2

]

−
(

2v2

σ 2 − 8

)
f0U1

c2

}
d3v, (23)

2

T i j = m4c
∫

ui u j f

√−g d3u

u0

= m4
∫

viv j ( f0 + ε f1)d
3v, (24)
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1

T 0i = m4c
∫

u0ui f

√−g d3u

u0

= m4c
∫

vi ( f0 + ε f1)d
3v. (25)

By taking into account the expressions (23)–(25) for the
energy–momentum tensor components we get that the per-
turbed Poisson equations (3) and (4) become

∇2U1 = −4πG

c2 [
0

T 00]1 = −4πGm4
∫

f1d
3v, (26)

∇2Π i
1 = −16πG

c
[

1

T 0i ]1 + ∂2U1

∂t∂xi

= −16πGm4
∫

vi f1d
3v + ∂2U1

∂t∂xi
, (27)

∇2Φ1 = −2πG

(
[

2

T 00]1 + [
2

T ii ]1

)

= −2πGm4
∫ [ (

4v2 + 8U0

)
f1 −

(
2v2

σ 2 − 8

)
U1 f0

]
d3v.

(28)

In the above equations the energy–momentum tensor com-
ponents calculated with the perturbed distribution function

f1 were denoted by [
0

T 00]1, [
1

T 0i ]1 and so one.
As usual for the search of the instabilities the perturbations

are represented as plane waves of frequency ω and wave
number vector k, namely

f1(x, v, t) = f 1e
i(k·x−ωt),

U1(x, v, t) = U1e
i(k·x−ωt), (29)

Φ1(x, v, t) = Φ1e
i(k·x−ωt),

Π i
1(x, v, t) = Π1

i e
i(k·x−ωt), (30)

where f 1,U 1, Φ1 and Π i
1 represent small amplitudes of the

perturbations.
If we insert the plane wave representations (29) and (30)

into the perturbed Boltzmann equation (19) we get

(v · k − ω) f 1 − f0
σ 2

{
(v · k)U 1

[
1 − σ 2

c2

(
15

8
+ 3v4

8σ 4 − v2

2σ 2

+2v2U0

σ 4

)]
+ 1

c2

[
v2ωU 1 + 2(v · k)Φ1 − ωviΠ

1
i

] }
= 0,

(31)

by taking into account the expression (18) for the determina-
tion of the term ∂ fM J /∂vi .

The Poisson equations (26)–(28) with the plane wave rep-
resentations (29) and (30) become

κ2U 1 = 4πGm4
∫

f 1d
3v, (32)

κ2Π1
i = 16πGm4

∫
vi f 1d

3v − kiωU 1, (33)

κ2Φ1 = 8πGm4
∫

(v2 + 2U0) f 1d
3v + 4πGρ0U 1. (34)

We have to evaluate the integrals in (32)–(34) and for that
end we choose, without loss of generality, the wave number
vector in the x-direction, i.e., k = (κ, 0, 0). We begin with
the substitution of f 1 from (31) into (33) and get

κ2Π1
i = 16πGρ0

(2πσ 2)
3
2

∫
vi (vxκ + ω)e

− v2

2σ2 d3v

σ 2[(vxκ)2 − ω2]

×
{
vxκ

[
1 − σ 2

c2

(
15

8
+ 3v4

8σ 4 − v2

2σ 2 + 2U0v2

σ 4

)]
U1

+ 1

c2

[
v2ωU1 + 2vxκΦ1 − ωv jΠ

1
j

]}
− kiωU1.

(35)

Here the numerator and denominator of the integrand were
multiplied by (vxκ + ω).

For the components i = y, z the integration of (35) in the
ranges −∞ < (vx , vy, vz) < ∞ leads to

κ2Π1
i = −8πGρ0

ω2

κ2σ 2c2 I0Π
1
i , i = y, z, (36)

where I0 is an integral which is given in terms of the In
integrals defined by

In(κ, ω) = 2√
π

∫ ∞

0

xne−x2

x2 − (ω/
√

2σκ)2
dx, x = vx√

2σ
.

(37)

We conclude from (36) that Π1
y = Π1

z = 0.
For the component i = x the integration of (35) in the

ranges −∞ < (vx , vy, vz) < ∞, yields

κ2Π1
x = 16πGρ0ω

κσ 2

{[
I2 − 3σ 2

2c2

(
I6 + 5

4
I2

)

−4U0

c2 (I2 + I4)

]
U1 + I2

c2

[
2Φ1 − ω

κ
Π1

x

]}
− κωU1.

(38)

Now we follow the same methodology and substitute f 1
from (31) into (32) and (34). The subsequent integration of
the resulting equations in the ranges −∞ < (vx , vy, vz) <

∞ lead to

κ2U1 = 4πGρ0

σ 2

{[
I2 + (I0 + I2)

ω2

c2κ2

−3σ 2

2c2

(
I6 + 4

3
I4 + 31

12
I2

)
− 4U0

c2 (I2 + I4)

]
U 1

+ I2
c2

[
2Φ1 − ω

κ
Π1

x

]}
, (39)

κ2Φ1 = 4πGρ0U 1 + 16πGρ0

{
2

(
I0 + I2 + I4

2

)
ω2

κ2c2

+I2 + I4 − 3σ 2

2c2

(
I8 + 7

3
I6 + 71

12
I4 + 71

12
I2

)

+U0

σ 2

[
I2 − σ 2

c2

(
11

2
I6 + 10I4 + 95

8
I2

)
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−4U0

c2 (I2 + I4) + ω2

c2κ2 (I0 + I2)

]}
U 1

+16πGρ0

c2

(
I2 + I4 + I2

U0

σ 2

)[
2Φ1 − ω

κ
Π1

x

]
.

(40)

By inspecting Eqs. (38)–(40) we conclude that they repre-
sent an algebraic system of equations for the amplitudes Π1

x ,
U 1 and Φ1. This system of equations admits a solution if the
determinant of the coefficients of Π1

x , U 1 and Φ1 vanishes.
Hence we get the following dispersion relation

κ4∗ − κ2∗

[
I2 + σ 2

c2

(
33

8
I2 + 6I4 − 3

2
I6 + 4(I2 − I4)

U0

σ 2

)]

−σ 2

c2

[
2I2 + (I0 − 2I2) ω2∗

]
= 0. (41)

The above dispersion relation is an algebraic equation which
relates the dimensionless wave number κ∗ with the dimen-
sionless frequency ω∗. They are defined by

κ∗ = κ

κJ
, ω∗ = ω√

4πGρ0
, (42)

where κJ = √
4πGρ0/σ denotes the Jeans wave number.

Note that in the dispersion relation (41) we have not con-
sidered the terms that have order higher than 1/c2, due to the
fact that we are considering only the first post-Newtonian
approximation.

The perturbations will propagate as harmonic waves in
time if the frequency ω has real values, while for pure imag-
inary values of the frequency the perturbation will grow or
decay in time. The one which grows with time is associated
with the Jeans instability. Hence, the corresponding solu-
tions to the Jeans instability are those where ω∗ = iωI , i.e.,
�(ω∗) = 0 and ωI = �(ω∗) > 0. The integrals (37) in this
case can be evaluated, yielding

I0 = κ∗
ωI

√
2π exp

(
ω2
I

2κ2∗

)
erfc

(
ωI√
2κ∗

)
, (43)

I2 = 1 − ω2
I

2κ2∗
I0, I4 = 1

2
− ω2

I

2κ2∗
I2,

I6 = 3

4
− ω2

I

2κ2∗
I4. (44)

Here erfc(x) is the complementary error function

erfc(x) = 2√
π

∫ ∞

x
e−x2

dx. (45)

The contour plots which follow from the dispersion rela-
tion (41) are shown in Fig. 1 for two different values of the
ratio between the dispersion velocity and the light speed,
namely σ/c = 0 which corresponds to the Newtonian the-
ory and σ/c = 0.07 to the post-Newtonian theory. For the
evaluation of (41) it was assumed that U0 ≈ σ 2, which can

Fig. 1 Dimensionless frequency as function of the dimensionless wave
number vector modulus for the post-Newtonian (σ/c = 0.07) and New-
tonian (σ/c = 0) theories

be justified by the virial theorem where the square of the
dispersion velocity can be approximated with the Newtonian
gravitational potential. We observe from this figure that the
limit of instability in the post-Newtonian theory differs from
the one of the Newtonian theory. Indeed, the modulus of the
wave number vector for a given frequency in the Newtonian
theory is smaller than that of the post-Newtonian theory. As a
consequence, the mass limit of interstellar gas clouds neces-
sary to start the gravitational collapse in the post-Newtonian
theory is smaller than the one in the Newtonian theory.

Let us investigate the limiting value of the frequency
where the instability occurs and which corresponds to the
minimum mass where an overdensity begins the gravitational
collapse. For that end we set ωI = 0 in (41), yielding

κ4∗ −
[

1 + σ 2

c2

(
6 + 2U0

σ 2 + 2

κ2∗

)]
κ2∗ = 0. (46)

The solution of the fourth order algebraic equation (46) is

κ∗ = ±
√

1

2
+ σ 2

c2

[
3 + U0

σ 2 ± Δκ

]
(47)

where

Δκ =
√√√√1

4
+ σ 2

c2

[
5 + U0

σ 2 + σ 2

c2

(
9 + 6U0

σ 2 + U 2
0

σ 4

)]
.

(48)

The real positive value of κ∗ when terms up to the 1/c2

order are considered reads

κ∗ = 1 + σ 2

c2

[
4 + U0

σ 2

]
. (49)

Here we shall call attention to the fact that the post-
Newtonian correction is given in terms of the ratio of the
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dispersion velocity σ and the light speed c. In a phenomeno-
logical theory this correction is given in terms of the adiabatic
sound speed cs and the light speed c. This difference comes
out that the Maxwellian distribution function is written in
terms of the dispersion velocity while in the phenomenolog-
ical theory an adiabatic solution is considered.

In a recent paper Noh and Hwang [20] obtained from a
dispersion relation the post-Newtonian correction which cor-
responds to (49). In our notation the real root of equation (78)
of [20] in the post-Newtonian approximation reads

κ∗ = 1 + c2
s

c2

⎡
⎣

(
Π0 + p0

ρ0

)

c2
s

+ 5

2
+ U0

c2
s

⎤
⎦ . (50)

Here Π0 = (p0/ρ0)/(γ − 1) is the specific internal energy.
By considering the adiabatic sound velocity c2

s = γ p0/ρ0

and γ = 5/3 the above equation reduces to

κ∗ = 1 + c2
s

c2

[
4 + U0

c2
s

]
, (51)

which has the same structure as (49). This result from a phe-
nomenological theory is the same as the one found in [21].

The Jeans mass is related with the minimum amount of
mass for an overdensity to initiate the gravitational collapse
and refers to the mass contained in a sphere of radius equal
to the wavelength of the perturbation. If we denote the mass
corresponding to the post-Newtonian wavelength by MPN

J
and the Newtonian one by MN

J wavelengths, their ratio is
given by

MPN
J

MN
J

= λ3

λ3
J

= κ3
J

κ3∗
≈ 1 − 3

σ 2

c2

[
4 + U0

σ 2

]
. (52)

From the above equation we infer that in the post-Newtonian
framework the mass needed to begin the gravitational col-
lapse is smaller than in the Newtonian one. Furthermore, we
note that the background Newtonian potential has an impor-
tant role, since it implies a smaller mass than the one without
it. As was previously commented one can make use of the
virial theorem to approximateU0 ≈ σ 2, so that (53) becomes

MPN
J

MN
J

= 1 − 15
σ 2

c2 . (53)

4 Summary

In this work the Jeans instability was analysed within the
framework of the Boltzmann and Poisson equations that
follow from the first post-Newtonian theory. The compo-
nents of the energy–momentum tensor in the Poisson equa-
tions were determined from the Maxwell–Jüttner distribu-
tion function. The distribution function and the gravitational
potentials were perturbed from their background states and a

plane wave representation for the perturbations was consid-
ered. The post-Newtonian dispersion relation was obtained
from an algebraic system of equations for the perturbed grav-
itational potentials. It was shown that the mass necessary for
an overdensity to begin the gravitational collapse in the post-
Newtonian theory is smaller than the one in the Newtonian
one. Furthermore, a non-vanishing Newtonian gravitational
potential background implies a smaller Jeans mass than the
one where a vanishing value is considered [13].
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