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Abstract The electromagnetic theory is considered in the
framework of the generally covariant approach, that is
applied to the analysis of electromagnetism in noninertial
coordinate and frame systems. The special-relativistic for-
mulation of Maxwell’s electrodynamics arises in the flat
Minkowski spacetime when the general coordinate transfor-
mations are restricted to a class of transformations preserving
the Minkowski line element. The particular attention is paid
to the analysis of the electromagnetism in the noninertial
rotating reference system. For the latter case, the general sta-
tionary solution of the Maxwell equations in the absence of
the electric current is constructed in terms of the two scalar
functions satisfying the Poisson and the biharmonic equa-
tions with an arbitrary charge density as a matter source. The
classic problem of Schiff is critically revisited.

1 Introduction

Quite paradoxically, being the oldest field theory with deep
theoretical and experimental developments and with the
widest technological applications, the classical electrody-
namics seems to be subject to the numerous controver-
sies in the presence of the gravitational and inertial forces.
Analysing the origins of such an unsatisfactory situation, one
can notice that most of issues in fact grow from the too much
stress put on the special relativity theory which is too often
considered as an unseparable companion of the theory of
electromagnetism. By taking the special relativity as a “basis”
of the electrodynamics, one then faces a problem of “gener-
alizing” the Maxwell theory from the flat Minkowski space-
time to a curved manifold, and this unfortunately leads to the
puzzling inconsistencies in the zoo of “generalizations” and
incompatibilities of their physical predictions. Here a com-
pletely different approach is pursued. Namely, we consider
the generally covariant formulation of the classical electro-
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dynamics [1], dismissing the role of special relativity to just
a historic oddity.

In the previous literature, [2–12], considerable attention
was attracted to the study of electrodynamics in the noniner-
tial reference systems, and, in particular, to the effects of rota-
tion. In order to highlight the level of complexity of the corre-
sponding discussions, it is worthwhile to quote from the clas-
sic textbooks by Synge [13], who opted to “make no attempt
here to discuss the far more difficult problem of electromag-
netism in a body in accelerated motion, e.g. in rotation”, and
by Sommerfeld [14] who described some apparently con-
tradictory consequences of Maxwell’s equations, pointing,
however, that this “is no objection to Minkowski’s theory of
moving media, which is based on the Lorentz transforma-
tion of uniform translation, but merely an indication that it
is not directly applicable to problems involving rotation.” In
one of the most well known papers [2], Schiff went quite far
to propose a certain generalization of Maxwell’s field equa-
tions by introducing fictitious charge and current densities,
and according to [5], he “regarded as the chief value of his
work, the warning it should give anyone to avoid the use of
rotating coordinate axes unless he could be sure that the only
field equations involved in his problem were the two homo-
geneous ones, that carry over to these coordinates without
any change of form.”

The main aim of our paper is to demonstrate that no
difficulties arise if we consistently treat the classical elec-
trodynamics as a generally covariant theory. This formula-
tion is based on the fundamental metric-free (or premetric)
approach developed [1] along the lines proposed by Kot-
tler, Cartan and van Dantzig [15–17]. The crucial advantage
of this approach is the general covariance (inherent in the
exterior calculus) of the field equations that have the same
form independently of the choice of the local coordinates
or frames. There is no need to “generalize” Maxwell’s equa-
tions, or to use “fictitious” charges, or to guess a “reasonable”
constitutive relation in a non-inertial reference system or in
the presence of gravity.
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Another aim of this paper is to clarify the definition of the
electric and magnetic fields and excitations. The fundamen-
tal objects are the Maxwell 2-form of the electromagnetic
field strength F and the 2-form of the electromagnetic exci-
tation H . With an account of the (1 + 3) decomposition of
the spacetime manifold M , we introduce the local coordi-
nates xi , i = 0, 1, 2, 3, which makes it possible to split F
into the electric and magnetic fields E, B, and similarly, to
split H into the electric and magnetic excitations D, H . The
terminology goes back to Mie [19] and Sommerfeld [14].
It is important to stress, however, that the local coordinates
are mathematical parameters which label the points of the
spacetime manifold M , and therefore E, B and D, H do not
have a direct physical meaning. In order to make measure-
ments, an observer brings in an additional structure on M
by introducing the orthonormal coframe field ϑα together
with the dual frame field eα . This gives rise to the split of
Maxwell’s 2-form F into the physical electric and magnetic
fields E,B and to the similar split of the 2-form H into
the physical electric and magnetic excitations D,H. In the
flat spacetime and inertial reference system, an observer can
choose the Cartesian holonomic coframe, and then the coor-
dinate field coincides with the physical one: E = E, etc.
However, in a non-inertial reference system and in the pres-
ence of gravity one should carefully distinguish coordinate
and physical fields.

The structure of the paper is as follows. In Sect. 2, the gen-
erally covariant formulation of the classical electrodynamics
is given, and we demonstrate in Sect. 3 how the special rel-
ativistic formulation is recovered in flat spacetime for iner-
tial reference frames. Electromagnetism on arbitrary curved
manifolds is discussed in Sect. 4, with the main focus on the
clarification of the constitutive relations. The general formal-
ism is then applied in Sect. 5 to Maxwell’s electrodynamics
in the noninertial rotating reference system. In the absence
of the electric current, the general stationary solution of the
Maxwell equations is described in terms of the two scalar
functions satisfying the Poisson and the biharmonic equa-
tions with an arbitrary charge density as a matter source.
The two particular charge distributions of the rotating uni-
formly charged spherical shell and the pair of rotating con-
centric charged spheres (spherical capacitor) are studied in
full detail, revisiting the classic problem of Schiff [2]. Techni-
cal details of using the Green function method are presented
in Appendix A. Finally, the results obtained are summarized
in Sect. 6.

Our basic conventions and notations are the same as in
Refs. [1,18]. In particular, the world indices are labeled
by Latin letters i, j, k, . . . = 0, 1, 2, 3 (for example, the
local spacetime coordinates xi and the holonomic coframe
dxi ), whereas we reserve Greek letters for tetrad indices,
α, β, . . . = 0, 1, 2, 3 (e.g., the anholonomic coframe ϑα).
In order to distinguish separate tetrad indices we put hats

over them. Finally, spatial indices are denoted by Latin
letters from the beginning of the alphabet, a, b, c, . . . =
1, 2, 3. The metric of the Minkowski spacetime reads gαβ =
diag(c2,−1,−1,−1), and the totally antisymmetric Levi-
Civita tensor ηαβμν has the only nontrivial component
η0̂1̂2̂3̂ = c, so that η0̂abc = cεabc with the three-dimensional
Levi-Civita tensor εabc. The spatial components of the tensor
objects are raised and lowered with the help of the Euclidean
3-dimensional metric δab. We use the standard symbols ∧
and ∗ for the exterior product and the Hodge duality opera-
tor, respectively.

2 Maxwell electrodynamics: general framework

The generally covariant formulation of the classical electro-
dynamics, which is valid on an arbitrary manifold M for all
coordinates and reference frames, is summarised in the sys-
tem [1]:

dF = 0, (1)

dH = J, (2)

H = H(F), (3)

which encompasses the homogeneous (1) and inhomoge-
neous (2) Maxwell equations and the constitutive relation
(3) between the electromagnetic field strength 2-form F and
the 2-form H of the electromagnetic excitation. The current
3-form J describes the distribution of the electric charges
and currents which are the sources of the electromagnetic
field. The current is obviously conserved, d J = 0.

2.1 Electric and magnetic fields, and homogeneous
Maxwell equation

Introducing the local spacetime coordinates xi = (t, xa) on
M , one can decompose the electromagnetic field strength
2-form F = 1

2 Fi j dx
i ∧ dx j into the electric and magnetic

fields

E and B. (4)

The components Ea and Ba are constructed from the
Maxwell tensor Fi j as

Ea = Fa0, B1 = F23, B2 = F31, B3 = F12, (5)

and so the electromagnetic field strength 2-form reads

F = − dt ∧ Eadx
a + B1 dx2 ∧ dx3

+ B2 dx3 ∧ dx1 + B3 dx1 ∧ dx2. (6)

It is important to note that the local spacetime coordinates
xi = (t, xa) are absolutely arbitrary – not necessarily the
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Cartesian ones. If we change the local coordinates

xi −→ xi = xi (x ′ j )
{
t = t (t ′, x ′a)
xa = xa(t ′, x ′b)

, (7)

the electric and magnetic fields transform into

E ′
a = Lb

a Eb − PabB
b, (8)

B ′a = − QabEb + Ma
bB

b, (9)

where the transformation matrices read

Lb
a = ∂xb

∂x ′a
∂t

∂t ′
− ∂xb

∂t ′
∂t

∂x ′a , Pab = εbcd
∂xc

∂t ′
∂xd

∂x ′a , (10)

Qab = εacd
∂t

∂x ′c
∂xb

∂x ′d , Ma
b =

(
det

∂xc

∂x ′d

)
∂x ′a

∂xb
. (11)

As we see, for a general coordinate transformation (7), the
components of electric and magnetic fields are mixed up. In
a special case of a pure spatial transformation,

t = t ′, xa = xa(x ′b), (12)

the above formulas reduce to

E ′
a = ∂xb

∂x ′a Eb, (13)

B ′a =
(

det
∂xc

∂x ′d

)
∂x ′a

∂xb
Bb. (14)

In other words, the electric and magnetic fields transform
contragradiently, and from the 3-dimensional point of view,
E is a 3-covector, whereas B is a 3-vector. This explains the
different position of indices Ea vs. Ba . Moreover, according
to (14), the magnetic field is a vector density and not a true
vector.

It is straightforward to recast the homogeneous Maxwell
equation into an equivalent form for 3-component variables.
Substituting (6) into (1), we get

∇ × E + Ḃ = 0, ∇ · B = 0. (15)

Here the dot denotes the time derivative, ˙= ∂t , and the dif-
ferential nabla operator has the usual form ∇ = {∂a}. Notice,
however, that the curl operator “∇×” maps a 3-covector into
a 3-vector density:

(∇ × E)1 = ∂2E3 − ∂3E2,

(∇ × E)2 = ∂3E1 − ∂1E3,

(∇ × E)3 = ∂1E2 − ∂2E1.

(16)

The homogeneous system (1) is solved identically by rep-
resenting the electromagnetic field strength F = d A in terms
of the electromagnetic potential 1-form

A = −
dt + Aadx
a, (17)

so that we have explicitly for the electric and magnetic fields

E = −∇
 − Ȧ, B = ∇ × A. (18)

2.2 Electric and magnetic excitations, and inhomogeneous
Maxwell equation

In a similar way, we decompose the 2-form H = 1
2 Hi jdxi ∧

dx j and construct the electric and magnetic excitations,

D and H, (19)

from the components of the excitation tensor Hi j :

Ha = H0a, D1 = H23, D2 = H31, D3 = H12. (20)

The excitation 2-form then reads

H = dt ∧ Hadx
a + D1 dx2 ∧ dx3

+ D2 dx3 ∧ dx1 + D3 dx1 ∧ dx2. (21)

Under the change of the spacetime coordinates (7), we find
the transformation law

H ′
a = Lb

aHb + PabD
b, (22)

D′a = QabHb + Ma
bD

b. (23)

Accordingly, we conclude that H is a 3-covector, whereas D
is a 3-vector density with respect to the spatial transforma-
tions (12).

Finally, we introduce the electric current density J and
electric charge density ρ by identifying the components of
the current 3-form J = 1

6 Ji jkdx
i ∧ dx j ∧ dxk :

J 1 = − J023, J 2 = − J031, J 3 = − J012, ρ = J123,

(24)

thereby recasting the current 3-form into

J = ρ dx1 ∧ dx2 ∧ dx3 − dt ∧ (J 1dx2 ∧ dx3

+ J 2dx3 ∧ dx1 + J 3dx1 ∧ dx2). (25)

It is straightforward to derive the corresponding transforma-
tion law

ρ′ =
(

det
∂xi

∂x ′ j

) [
∂t ′

∂t
ρ + ∂t ′

∂xb
Jb

]
, (26)

J ′a =
(

det
∂xi

∂x ′ j

) [
∂x ′a

∂t
ρ + ∂x ′a

∂xb
Jb

]
. (27)

Note that here we have the determinant of the 4 × 4 Jacobi
matrix ∂xi

∂x ′ j of the spacetime coordinate transformation,
whereas in (11) and (14) we have the determinant of the
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3 × 3 Jacobi matrix ∂xc

∂x ′d of the spatial transformation. Under
the pure spatial transformation (12) we find

ρ′ =
(

det
∂xc

∂x ′d

)
ρ, (28)

J ′a =
(

det
∂xc

∂x ′d

)
∂x ′a

∂xb
Jb, (29)

which shows that ρ is a 3-scalar density, whereas J is a 3-
vector density.

Substituting (21) and (25) into (2), we recast the inhomo-
geneous Maxwell equation into

∇ × H − Ḋ = J, ∇ · D = ρ. (30)

2.3 Constitutive relation

To make the theory predictive, the system (1)-(2) should be
supplemented by the constitutive relation (3) between the
excitation H and the field strength F .

The constitutive relation depends on the dynamical con-
tents of the theory, and, in general, it can be nonlinear and
even nonlocal. In the Maxwell-Lorentz electrodynamics, the
constitutive relation in vacuum (i.e., in the absence of polar-
izable and magnetizable matter) is linear and local:

H = λ0
∗F, λ0 =

√
ε0

μ0
. (31)

Here ε0 and μ0 are the electric and magnetic constants of the
vacuum, and the star ∗ denotes the Hodge duality operator
determined by the spacetime metric.

Maxwell equations (15) and (30) are generally covariant
and are valid always in all coordinates and reference systems.
Moreover, the spacetime geometry and the metric is not spec-
ified. The geometrical structure of spacetime enters only the
constitutive law that relates the field strength F and the exci-
tation H . We will give an explicit form of the relation (31)
in the next Sect. 4, where an arbitrary metric is described.

2.4 Physical fields

On an arbitrary curved spacetime manifold M , the local coor-
dinates xi do not have any physical meaning, and accord-
ingly, the electric and magnetic fields E, B and excita-
tions D, H are not directly observable variables. In order
to make electromagnetic measurements, one needs a physi-
cal observer who is in general moving in an arbitrary, mostly
non-inertial, way. Leaving the details aside (an interested
reader can learn the subject from [1,20], and the references
therein), for our current study it is sufficient to know that an
observer brings into the generally covariant electromagnetic
theory an additional geometrical structure: the coframe (or

tetrad) ϑα = eα
i dx

i together with the dual frame eα = eiα∂i
field. Here eiα is an inverse 4 × 4 matrix to eα

i .
To deal with the physical fields, one should now expand

the electromagnetic field strength and the excitation 2-forms
F = 1

2 Fαβϑα ∧ ϑβ and H = 1
2 Hαβϑα ∧ ϑβ with respect to

the anholonomic frame. Explicitly, we have

Fαβ = eiαe
j
βFi j , Hαβ = eiαe

j
βHi j . (32)

Following (5) and (20), we introduce the decomposition of
F and H into the electric and magnetic fields E, B and
excitations D, H by means of identifications:

Ea = F̂a0̂, B1 = F̂2̂3, B2 = F̂3̂1, B3 = F̂1̂2, (33)

Ha = Ĥ0̂a, D1 = Ĥ2̂3, D2 = Ĥ3̂1, D3 = Ĥ1̂2. (34)

The hats over indices denote the anholonomic (frame) com-
ponents.

The relation (32) between the physical fields (anholo-
nomic objects) and the coordinate fields (holonomic objects)
in the explicit 3-dimensional form then reads

Ea = Lb
a Eb − PabB

b, Ba = −QabEb + Ma
bB

b, (35)

Ha = Lb
aHb + PabD

b, Da = QabHb + Ma
bD

b, (36)

where we have the transformation matrices

Lb
a = e0

0̂
ebâ − e0

âe
b
0̂
, Pab = ec

0̂
edâ εbcd , (37)

Qab = e0
ĉ e

b
d̂
εacd , Ma

b = 1

2
εacdεbe f e

e
ĉe

f
d̂

. (38)

3 Flat space and inertial frames: back to Lorentz

When the spacetime M is a flat manifold equipped with the
Minkowski metric gαβ = diag(c2,−1,−1,−1), the consti-
tutive relation (31) reduces to the well known

D = ε0E, H = 1

μ0
B, (39)

and the Maxwell equations (15) and (30) are then recast into

∇ × E + Ḃ = 0, ∇ · B = 0, (40)

∇ × B − 1

c2 Ė = μ0 J, ∇ · E = ρ

ε0
. (41)

Although the whole formalism is, of course, still invariant
under the general coordinate transformations (7), it is natural
to specialize to a restricted class of coordinate transforma-
tions which preserve the form of the Minkowski line element

c2dt2 − δabdx
adxb = c2dt ′2 − δabdx

′adx ′b. (42)

These are, by definition, the Lorentz transformations.
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In particular, let us consider a special case of coordinate
transformations (7):

t = γ t ′ + γ va x ′a
c2 ,

xa = x ′a + (γ − 1)
vavbx ′b

v2 + γ vat ′.

}
(43)

Here the spatial indices are raised and lowered with the help
of the Euclidean 3-metric δab, and hence v2 = δabv

avb. The
transformation (43) is commonly known as a Lorentz boost
determined by the three constant parameters v = {va} which
are physically interpreted as components of the relative 3-
velocity of the two inertial systems. The Lorentz factor is
defined as usual by

γ = 1√
1 − v2

c2

. (44)

One can check that (43) is indeed the Lorentz transformation
which leaves the Minkowski line element (42) invariant.

Substituting (43) into (10) and (11), we derive

Lb
a = Mb

a = γ δba − γ 2vbva

(γ + 1) c2 , (45)

Pab = γ εabc vc, Qab = − γ εabc vc/c
2, (46)

and therefore the general coordinate transformation (8)-(9)
reduces to

E′ = γ (E + v × B) − γ 2v (v · E)

(γ + 1) c2 , (47)

B′ = γ
(
B − v × E

c2

)
− γ 2v (v · B)

(γ + 1) c2 . (48)

This is the usual Lorentz transformation of the electromag-
netic field.

Summarising, the special relativity is indeed recovered
in the flat spacetime for inertial frames. However, this also
shows that it makes no sense to view the special relativity
as a starting point for the discussion of the gravitational and
inertial effects in electrodynamics.

4 Electrodynamics on a curved spacetime

As we already stressed, the Maxwell equations on curved
manifolds always have the same form (15) and (30), irrespec-
tively how strong the gravitational and inertial fields are.

The influence of the gravity and inertia is encoded in the
spacetime metric that enters the Maxwell-Lorentz constitu-
tive law (31). In order to clarify the structure of the latter,
we need a convenient parametrization of the metric. Given
the local coordinates xi = (t, xa) on the four-dimensional

curved manifold M , we write down the spacetime interval

ds2 = V 2c2dt2 − gab (dxa − Kacdt) (dxb − Kbcdt). (49)

This is the well-known Arnowitt-Deser-Misner (ADM)
parametrization of the metric [21]. Here we assume that
ten functions V = V (xi ), Ka = Ka(xi ), and gab(xi ) may
depend arbitrarily on the local coordinates t, xa .

Therefore, the metric (49) describes an arbitrary geome-
try, and substituting (49) into (31) we recast the constitutive
law into the set of explicit relations between the components
of the electric and magnetic fields E, B and the electric and
magnetic excitations D, H :

Da = ε0w

V
gabEb − λ0

w

V
gadεbcd K

c Bb, (50)

Ha = 1

μ0wV

{
(V 2 − K 2)gab + KaKb

}
Bb

− λ0
w

V
εadcK

c gdbEb. (51)

Here Ka = gabKb, so that K 2 = KaKa = gabKaKb, gab

is the inverse spatial metric, and w =
√

det gab.

From the point of view of physics, gravity and inertia affect
the electromagnetic field as an anisotropic inhomogeneous
medium [22–25] in which the effective permittivity and per-
meability tensors are determined by V and gab, whereas
Ka gives rise to the effective magnetoelectric effects. Cross-
check: When V = 1, gab = δab (hence, w = 1) and Ka = 0,
the constitutive relation (50) and (51) reduces to (39).

Turning to the anholonomic formulation, we describe the
coframe ϑα = eα

i dx
i in the Schwinger gauge e 0̂

a = 0 (also
e 0
â = 0), a = 1, 2, 3, by the components

e 0̂
i = V δ 0

i , eâi = Wâ
b

(
δbi − cKbδ 0

i

)
, a = 1, 2, 3, (52)

where the 3×3 matrix Wâ
b is defined as a square root of the

spatial 3-dimensional metric, gab = δ̂cd̂W
ĉ
aW d̂

b. Accord-

ingly, we have w = det Wĉ
d . Substituting (52) into (35)-

(38), we find the explicit relation between the anholonomic
and holonomic fields:

Ea = 1

V
Wb

â(E + cK × B)b , (53)

Ba = 1

w
Wâ

b Bb . (54)

Here the 3 × 3 matrix Wb
â is inverse to Wâ

b, and the vector
product is defined by {A×B}a = εabc AbBc for any 3-vectors
Ab and Bc.

It is important to notice that the constitutive relation (50)
and (51) has a more compact and transparent form when it
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is formulated in terms of the anholonomic fields:

Da = ε0 w Wa
b̂ E

b, (55)

Ha = 1

μ0
VWb̂

a Bb − λ0 w εabc W
b
d̂ E

d K c . (56)

5 Electromagnetism in noninertial frames: effects of
rotation

We now apply the general formalism to the analysis of
Maxwell’s electrodynamics in noninertial reference systems,
focusing on the case of rotating frames. The earlier research
[2–12] will be thereby critically revisited. However, before
discussing specific problems, we answer the question for-
mulated in the title of [5]: “Which electromagnetic equa-
tions apply in rotating coordinates?” – These are the Maxwell
equations (15) and (30), whose form does not depend on the
choice of coordinates.

The construction of the proper reference frames and
local coordinates for a noninertial observer moving in the
Minkowski spacetime with nontrivial acceleration a and
angular velocity ω was thoroughly discussed by Hehl and
Ni [26]. In the absence of acceleration, a = 0, the spacetime
geometry in a rotating reference system with the local coor-
dinates (t, r) is specified by the metric (49) and the coframe
(52), where

V = 1, Wâ
b = δab , K = − ω × r

c
. (57)

Then the constitutive relations (55) and (56) are reduced to

D = ε0 E, H = 1

μ0
B − λ0 E × K , (58)

whereas the relations (53) and (54) are simplified to

E = E + cK × B, B = B . (59)

Let us assume that there is no electric current J = 0,
and specialize to the case of stationary fields, so that all the
partial derivatives with respect to the time t vanish: Ḃ = 0
and Ḋ = 0, etc. In other words, the matter source is described
only by the stationary charge density ρ(r).

Under these assumptions, we can solve the inhomoge-
neous Maxwell equations (30) by introducing the magnetic
ψ and electric ϕ potentials for the magnetic and electric exci-
tations:

H = λ0 ∇ψ, D = −∇ϕ. (60)

The constant factor λ0 is introduced for convenience from
the dimensional reasons. With the help of the ansatz (60),
the first equation (30) is trivially satisfied ∇ × H = 0, while
the second Maxwell equation (30) reduces to the Poisson

equation for the electric potential

�ϕ = − ρ. (61)

By combining (60) and (58), we derive the physical electric
and magnetic fields

E = − 1

ε0
∇ϕ, (62)

B = 1

c
(∇ψ + E × K ) . (63)

Since from (59) we have B = B, then by taking a divergence
of (63), and using the Maxwell equation (15), ∇ · B = 0,
and noticing that ∇ × E = 0 in view of (62), we derive

�ψ − E · (∇ × K ) = 0. (64)

By making use (57), we find ∇ × K = − 2ω/c, and thus
finally (64) is recast into a Poisson equation for the magnetic
potential

�ψ = − 2E · ω

c
. (65)

The solution is straightforwardly constructed with the help
of an ansatz

ψ = 2

ε0c
ω · ∇�, (66)

where the new potential � satisfies the biharmonic equation

�2� = − ρ. (67)

We thus have a complete set of Eqs. (61)–(67), that deter-
mines the physical fields: For any distribution of the charges
ρ(r) we just need to solve the inhomogeneous Eqs. (61) and
(67). The most convenient way is to use Green’s function
method [27,28] which yields the general result (assuming
that fields are vanishing at a spatial infinity):

ϕ(r) =
∫

d3r ′ G�(r, r ′) ρ(r ′), (68)

�(r) =
∫

d3r ′ G�2(r, r ′) ρ(r ′), (69)

where the Green functions read explicitly

G�(r, r ′) = 1

4π |r − r ′| , G�2(r, r ′) = 1

8π
|r − r ′|. (70)

Whereas the Green function of the usual Poisson equation
(61) is standard, it seems worthwhile to point readers to the
reference [29] for the further discussion of the lesser known
Green function for the biharmonic equation (67).
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5.1 Rotating charged spherical shell

After reaching a complete understanding of the stationary
case, and establishing the formal general solution (68), (69)
of the problem for an arbitrary distribution of the charges
ρ(r), it is of interest to look more closely into the special
cases. A physically important example is represented by a
thin uniformly charged spherical shell (or a charged con-
ducting solid sphere).

For this case, when the sphere of a radius r0 has the total
charge Q, the source in the Poisson equation (61) and in the
biharmonic equation (67) is described by the charge density

ρ(r) = Q

4πr2
0

δ(r − r0). (71)

Substituting this into (68), for the electric potential ϕ we find
(A.2). Or, explicitly,

ϕ = Q

4π
×

⎧⎨
⎩

1
r , r > r0,

1
r0

, r < r0.
(72)

This yields the electric excitation D = −∇ϕ, and hence the
physical electric field (62):

E = 1

4πε0
×

⎧⎨
⎩

Q r
r3 , r > r0,

0, r < r0.

(73)

Analogously, substituting the charge density (71) into
(69), for the magnetic potential � we derive (A.3), or explic-
itly

� = Q

8π
×

⎧⎪⎨
⎪⎩
r + r2

0
3r , r > r0,

r0 + r2

3r0
, r < r0.

(74)

Then by a direct differentiation we find the magnetic potential
(66)

ψ = Q ω · r
4πε0 c

×
{

1
r − r2

0
3r3 , r > r0,

2
3r0

, r < r0.
(75)

One can check that (75) solves the Poisson equation (65) for
the right-hand side with the electric field (73).

Then, by plugging (75) and (73) into (63), we obtain the
physical magnetic field:

B = μ0

4π
×

{
3 (m·r) r

r5 − m
r3 , r > r0,

2m
r3

0
, r < r0.

(76)

The final result encompasses the equations (73) and (76)
which give the physical electric and magnetic fields of a rotat-
ing charged sphere in the noninertial reference frame. While
the electric field configuration has the same Coulomb form
as for the nonrotating sphere, the magnetic field is described

by the dipole configuration created by the rotation-induced
magnetic moment

m = Q r2
0 ω

3
. (77)

It is instructive to compare this result with the magnetic field
of a non-rotating uniformly magnetized solid sphere [30],
and with the analysis of a rotating charged spherical shell as
seen in the non-rotating inertial laboratory frame [31].

One can make some elementary estimates. Let us con-
sider, for example, a charged sphere which is characterized
by the parameters of a physical particle, namely, by elec-
tron’s charge and mass: Q = e and me. Then we can natu-
rally assume that the radius is equal to the Compton length,
r0 = λ̄ = h̄/mec, and the angular velocity ω = mec2/h̄.
This yields a reasonable estimate m = 2

3μB for the magni-
tude of the magnetic dipole moment (77) which turns out to
be comparable to Bohr’s magneton μB = eh̄/2me.

On the other hand, one may wonder whether such a mech-
anism could be relevant to the geomagnetic field, at least on
the qualitative level. The modern estimates for the magnetic
moment of the Earth give the value 7.72×1022 A m2. Making
use of (77), with an account of ω⊕ = 7.29 × 10−5 s−1 and
R⊕ = 6.378×106 m, we find the charge Q ≈ 2.6×1013 C ≈
1032 e. In view of the huge charge needed, this is clearly not
physically feasible.

To complete the discussion, let us find the corresponding
scalar and vector potentials (
, A) for the coordinate electric
and magnetic fields (18). As a preliminary step, we notice that
in the outside region, r > r0, a direct computation yields for
the vector product

c K × B = Q r2
0

4πε0 c2 ∇
[
(ω · r)2 − ω2 r2

3r3

]
, (78)

whereas in a similar way we find for r < r0:

c K × B = Q r2
0

4πε0 c2 ∇
[

(ω · r)2 − ω2 r2

3r3
0

]
. (79)

Then substituting this into (59) and making use of (72), we
find the scalar potential:


 = Q

4πε0
×

⎧⎪⎪⎨
⎪⎪⎩

1
r

(
1 − [ω×r]2r2

0
3 c2 r2

)
, r > r0,

1
r0

(
1 − [ω×r]2

3 c2

)
, r < r0.

(80)

This demonstrates that the rotational motion “distorts” the
usual Coulomb scalar potential in a peculiar way. At the same
time, directly from (76) we derive the vector potential
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A = μ0

4π
×

⎧⎨
⎩

m×r
r3 , r > r0,

m×r
r3

0
, r < r0,

(81)

which shows that the rotation creates the magnetic field just
like the ordinary magnetic moment. As usual, of course, both
potentials (
, A) are determined only up to a gauge trans-
formation.

5.2 Schiff’s case: rotating spherical capacitor

We are now in a position to revisit the problem which was first
considered by Schiff [2]. Namely, let us analyse the system of
the two concentric spheres with equal and opposite charges
uniformly distributed over their surfaces. The corresponding
electric charge density of such a spherical capacitor is a direct
generalization of (71):

ρ(r) = Q

4πr2
1

δ(r − r1) − Q

4πr2
2

δ(r − r2), (82)

where ±Q is the total charge of each sphere, and r1 < r2 are
their radii.

In view of the linearity of the problem, we can immedi-
ately make use of (A.2) to derive the solution of the Poisson
equation (61) for the electric potential:

ϕ(r) =
∫

d3r ′
4π |r − r ′|

(
Q δ(r ′ − r1)

4πr2
1

− Q δ(r ′ − r2)

4πr2
2

)

= Q

8π

( |r + r1| − |r − r1|
rr1

− |r + r2| − |r − r2|
rr2

)
. (83)

Explicitly, in the exterior, intermediate and interior regions,
we thus have

ϕ = Q

4π
×

⎧⎪⎪⎨
⎪⎪⎩

0, r > r2
1
r − 1

r2
, r1 < r < r2,

1
r1

− 1
r2

, r < r1.

(84)

This yields the electric excitation D = −∇ϕ, and hence the
physical electric field (62):

E = 1

4πε0
×

⎧⎨
⎩

0, r > r2
Q r
r3 , r1 < r < r2,

0, r < r1.

(85)

Analogously, substituting the charge density (82) into
(69), and making use of (A.3), we derive a solution of the
biharmonic equation (67) for the magnetic potential

�(r) =
∫

d3r ′ |r − r ′|
8π

(
Q δ(r ′ − r1)

4πr2
1

− Q δ(r ′ − r2)

4πr2
2

)

= Q

16π

( |r + r1|3 − |r − r1|3
3rr1

− |r + r2|3 − |r − r2|3
3rr2

)
.

(86)

Explicitly, this reads

� = Q

8π
×

⎧⎪⎪⎨
⎪⎪⎩

r2
1 −r2

2
3r , r > r2

r − r2 + r2
1

3r − r2

3r2
, r1 < r < r2,

(r2 − r1)
(

r2

3r1r2
− 1

)
, r < r1,

(87)

and then by a direct differentiation we find the magnetic
potential (66):

ψ = Q ω · r
4πε0 c

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r2
2 −r2

1
3r3 , r > r2

1
r − 2

3r2
− r2

1
3r3 , r1 < r < r2,

2(r2−r1)
3r1r2

, r < r1.

(88)

One can check that (88) solves the Poisson equation (65) for
the right-hand side with the electric field (85).

As a result, plugging (88) and (85) into (63), the physical
magnetic field is obtained:

B = μ0

4π
×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3 (m1+2·r) r
r5 − m1+2

r3 , r > r2,

2m2
r3

2
+ 3 (m1·r) r

r5 − m1
r3 , r1 < r < r2,

2m1
r3

1
+ 2m2

r3
2

, r < r1.

(89)

This obviously describes a field configuration created by the
two magnetic dipole moments

m1 = Q r2
1 ω

3
, m2 = − Q r2

2 ω

3
. (90)

Their sum is denoted m1+2 = m1 + m2.
Finally, by making use of the results of the previous sec-

tion, (78)–(81), we can derive the scalar and vector potentials.
A direct computation yields


 = Q

4πε0
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ω×r]2 (r2
2 −r2

1 )

3 c2 r3 , r > r2

1
r

(
1 − [ω×r]2r2

1
3 c2 r2

)
− 1

r2

(
1 − [ω×r]2

3 c2

)
, r1 < r < r2,

r2−r1
r1r2

(
1 − [ω×r]2

3 c2

)
, r < r1,

(91)

for the scalar potential, whereas for the vector potential we
find

A = μ0

4π
×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1×r
r3 + m2×r

r3 , r > r2,

m1×r
r3 + m2×r

r3
2

, r1 < r < r2,

m1×r
r3

1
+ m2×r

r3
2

, r < r1.

(92)

As we see, Schiff’s results [2] cannot be confirmed by our
findings. Although the physical electric field (85) of a system
of two rotating concentric charged spheres, indeed, vanishes
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outside the capacitor (i.e., in the external r > r2 and internal
r < r1 regions), and inside the capacitor (r1 < r < r2) it
coincides with the nonrotating field configuration, however,
the magnetic field (89) is nontrivial everywhere and it has
a clear dipole structure created by the two rotation-induced
magnetic moments (90).

6 Discussion

We have demonstrated that the electromagnetism in the
presence of the gravitational and inertial fields is consis-
tently described in the framework of the generally covari-
ant approach [1] that grows from the fundamental premetric
formulation of Kottler, Cartan and van Dantzig [15–17]. The
Maxwell field equations (15) and (30) always have the same
form (for any spacetime geometry, and independently of the
choice of the local coordinates or frames) when written in
terms of the electric and magnetic fields E, B and electric
an magnetic excitations D, H , which arise from the (1 + 3)

decomposition of the electromagnetic field strength 2-form
F and the electromagnetic excitation 2-form H , respectively.
Accordingly, there is no need to “generalize” Maxwell’s
equations, or to use “fictitious” charges and currents, or to
guess an “appropriate” constitutive relation in a non-inertial
reference system or in the presence of gravity.

The covariance of Maxwell’s theory (15) and (30) under
the general coordinate transformations (12) is guaranteed
by the transformation laws of the fields (8), (9), excitations
(22), (23), and currents (26), (27), which are fixed from the
(1 + 3) decomposition of the generally covariant F and H .
The special relativity does not play any fundamental role
in this approach, but the special-relativistic formulation of
Maxwell’s electrodynamics does naturally arise in the flat
Minkowski spacetime when the general coordinate transfor-
mations are restricted to a class of transformations preserving
the Minkowski line element (42), with the Lorentz symmetry
(43) and (47), (48) recovered.

The general formalism is here applied to the special case
of Maxwell’s electrodynamics in the noninertial rotating ref-
erence system. We show that in the absence of the electric
current, the general stationary solution of the Maxwell equa-
tions can be derived in terms of the two scalar functions
–the electric ϕ and magnetic � potentials– which satisfy,
respectively, the Poisson (61) and the biharmonic equations
(67) for an arbitrary charge density ρ(r) as a matter source.
The resulting system is further analysed in detail for the two
particular charge distributions (71) and (82) corresponding
to the rotating uniformly charged spherical shell and to the
pair of rotating concentric charged spheres (spherical capaci-
tor), respectively. The classic problem of Schiff [2] is thereby
revisited, and we demonstrate that an everywhere nontrivial

magnetic field with a dipole structure is created by the two
rotation-induced magnetic moments (90).

It is worthwhile to notice that the structure of the electro-
magnetic vector potential (81) and (92) is qualitatively the
same as the gravitomagnetic vector potential of a rotating
body. In the gravitoelectromagnetic approximation [32,33],
the spacetime metric (49) is described by V = 1 − 
/c2,
gab = δab(1+2
/c2), K = 2A/c2, and for a slowly rotating
massive source one finds the Lense-Thirring metric [34,35]
where the gravitoelectric scalar potential 
 = GM/r and
the gravitomagnetic vector potential A = GJ × r/cr3 are
determined by the total mass M and the angular momentum
J of a source. Following the early studies of Brill and Cohen
[36–39] of the rotating massive shells in Einstein’s general
relativity, one can show [40,41] that the gravitational field
of a slowly rotating spherical shell of the radius r0, the total
mass M and the total angular momentum J is described by
the gravitomagnetic vector potential

A = G ×

⎧⎪⎪⎨
⎪⎪⎩

J × r
r3 , r > r0,

J × r

r3
0

, r < r0,

(93)

which is a complete analog of the electromagnetic case (81)
of a charged rotating spherical shell.

The research is currently in progress of a more general
case when the gravitational effects are taken into considera-
tion along with the inertial ones, thereby extending the recent
results obtained in [11,12], where the solution for the rotat-
ing charged spherical shell was also reported. However, it is
worthwhile to note that in contrast to the Schwinger gauge
(52) for the coframe, the authors of the latter references used
the so called Landau-Lifshitz gauge, ea

0̂
= 0, which unneces-

sarily complicates the derivation of (63) and (65). Moreover,
it should be stressed that the choice of tetrad’s gauge is not
a merely technical issue, and the physical importance of the
Schwinger gauge was demonstrated in [42,43].
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Appendix A: Solving Poisson and biharmonic equations:
Green’s function method

Substituting the charge density (71) into (68), we can evaluate
the volume integral in a spherical system r ′ = (r ′, θ, φ),
where θ is an angle between r and r ′, so that by the cosine
theorem we have

|r − r ′| =
√
r2 + r ′2 − 2rr ′ cos θ. (A.1)

Integration is straightforward:

ϕ(r) =
∫

d3r ′ 1

4π |r − r ′|
Q δ(r ′ − r0)

4πr2
0

= Q

8π r2
0

∫
sin θ dθ

∫
dr ′ r ′2 δ(r ′ − r0)√
r2 + r ′2 − 2rr ′ cos θ

= Q

8π

∫
sin θ dθ√

r2 + r2
0 − 2rr0 cos θ

= Q

8π

|r + r0| − |r − r0|
rr0

= Q

4π

min(r, r0)

rr0
. (A.2)

In a similar way, substituting the charge density (71) into
(69), and making use of (A.1), we compute the resulting vol-
ume integral that gives a solution of the biharmonic equation

�(r) =
∫

d3r ′ |r − r ′|
8π

Q δ(r ′ − r0)

4πr2
0

= Q

16π r2
0

∫
sin θ dθ

×
∫

dr ′ r ′2 √
r2 + r ′2 − 2rr ′ cos θ δ(r ′ − r0)

= Q

16π

∫
dθ sin θ

√
r2 + r2

0 − 2rr0 cos θ

= Q

16π

|r + r0|3 − |r − r0|3
3rr0

= Q

8π

1

3

{
2(r + r0) + (r − r0)

2 min(r, r0)

rr0

}
. (A.3)
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