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Abstract It is well known that non-local theories of gravity
have been a flourish arena of studies for many reasons, for
instance, the UV incompleteness of General Relativity (GR).
In this paper we check the consistency of ST-homogeneous
Gödel-type metrics within the non-local gravity framework.
The non-local models considered here are ghost-free but not
necessarily renormalizable since we focus on the classical
solutions of the field equations. Furthermore, the non-locality
is displayed in the action through transcendental entire func-
tions of the d’Alembert operator � that are mathematically
represented by a power series of the � operator. We find two
exact solutions for the field equations correspondent to the
degenerate (ω = 0) and hyperbolic (m2 = 4ω2) classes of
ST-homogeneous Gödel-type metrics.

1 Introduction

Famous observational results of recent years, such as dis-
covery of accelerated expansion of the Universe [1], obser-
vation of gravitational waves [2–4] and of black holes [5–10],
increased strongly the interest to theoretical studies of grav-
ity aimed to solve two main problems – first, explanation of
cosmic acceleration, and second, development of a consistent
perturbative description for gravity. While actually there are
various models explaining the late-time accelerated expan-
sion of the Universe, based on extension of gravity sector or
adding extra fields (for a general review on modified gravity
see [11]), the problem of quantum description of gravity is
much more complicated – the usual Einstein gravity is known
to be non-renormalizable, higher-order curvature countert-
erms must be included in the action in order to improve the
UV perturbative behavior of the theory. In the meantime, it
implies in arising of ghosts, that is, negative-norm states. One
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of the most promising ways to solve the problem of ghosts
is based on the development of a nonlocal generalization for
gravity which could guarantee renormalizability or even UV
finiteness for a corresponding theory. Originally, the non-
locality has been proposed in various contexts. For example,
the first non-local models were studied in the 1950’s [12–
14]. On the other hand, many studies have been made within
the phenomenological context in order to describe finite-size
objects at the quantum level, see f.e. [15,16], and further,
the space-time nonlocality was treated as a very convenient
solution of the problem of UV divergences which are ruled
out due to form factors implying UV finiteness of many the-
ories. Another motivation stems from the string theory con-
text where infinite-derivative operators naturally arise as a
result of α′ (inverse of the string tension) corrections [17–
19]. These aforementioned essential issues have naturally
called attention of the mainstream and, as a result, many
studies of various non-local extensions of gravity, both from
classical and quantum viewpoints, have became increasingly
popular in the literature. An interesting discussion of quan-
tum aspects of nonlocal gravity is presented in [20,21] (for
a general review on nonlocal gravity, see also [22]). At the
same time, in this paper we intend to consider only classical
issues.

The paradigmatic example of the nonlocal gravity model
is the theory proposed in [23]. In this paper, the sim-
plest nonlocal extension of gravity with the action S =
M2

p
2

∫
d4x

√−g[R − 1
6 R( e

−�/M2 −1
� )R] representing itself as

a nonlocal generalization of known R2-gravity has been
introduced, and cosmological solutions in this theory were
obtained.

As it is known, one of the main tasks within classical stud-
ies of various modified gravity models is the testing of consis-
tency of known solutions of GR in these theories. Within the
nonlocal gravity, absolute majority of studies performed up
to now only treated various aspects of cosmological solutions
(among the most important papers devoted to this issue, we
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can indicate [24], where cosmological solutions in a nonlocal
model involving a function of �−1R were found, [25], where
bouncing and inflating solutions were discussed, and [26]
where a very unusual nonlocal square-root gravity was pro-
posed and proved to result in a hyper-exponential expansion).
Some of the few papers dealing with other metrics within the
nonlocal context are [27,28] where also various solutions
with a constant and vanishing scalar curvature, namely, the
(anti)de Sitter, the simple Gödel one, and pp-waves, were
considered (some studies of perturbed Schwarzschild metric
in a special form of a nonlocal gravity action are presented
also in [29]). At the same time, it is clear that both other
known metrics and more generalized gravity Lagrangians
deserve detailed studies within the framework of nonlocal
gravity. So, in this paper we consider a more generic nonlo-
cal gravity involving not only the scalar curvature but also
contractions of Ricci and Weyl tensors, and a more broad
class of metrics, that is, the Gödel-type metrics character-
ized by two constant parameters m and ω, and, depending
on these parameters, displaying either causal or non-causal
behavior.

As a result of the local homogeneity of the spacetime, all
scalar invariants constructed on the basis of the Riemann ten-
sor and its derivatives are constants. The manifolds satisfy-
ing this property are called Constant Scalar Invariants (CSI)
spaces [30,31]. In particular, Gödel-type metrics are exam-
ples of CSI spaces, with their scalar invariants are entirely
characterized by the metric parameters m and ω. One more
again by virtue of the local homogeneity it is possible to pick
a particular frame1 where field equations reduce to a set of
algebraic ones. We will look for exact solutions and scruti-
nize the possibility of whether or not such solutions resolve
the causality violation problem (an excellent review on the
causality violation is presented in [34]).

The structure of this paper looks like follows. In the Sect. 2
we define the action of nonlocal gravity which will be studied
in the paper. In the Sect. 3 we review the main properties of the
Gödel-type metric. In the Sect. 4 we discuss consistency of
the Gödel-type metric within our nonlocal gravity model. In
the Sect. 5 we present our conclusions. Finally, the Appendix
is devoted to description of the boost-weight decomposition
we use in the paper.

2 Non-local gravity theory

We start this section introducing a generic non-local gravity
theory proposed in [35]. The action of the model reads

1 In this work we will employ the Newman-Penrose (NP) formalism
which consists of choosing a complex null frame [32,33].

S = 1

2κ2

∫
d4x

√−g
[
R − 2�cc

+ 1

M2
N

(
RF1(�)R + RμνF2(�)Rμν

+CμναβγF3(�)Cμναβ
) ]

+Sm[gμν,	], (1)

where κ2 is the gravitational constant, �cc is the cosmologi-
cal constant and the MN is a typical high energy scale where
the non-locality effects must be important. On the other hand,
the infrared (IR) regime is achieved by taking MN → ∞
where the theory recovers GR as it is naturally expected for
any effective theory. We impose that the matter sources only
couple to the metric in accordance with the equivalence prin-
ciple which is encoded in the matter action Sm[gμν,	]. Here,
the Cμναβ is the Weyl tensor, Rμν is the Ricci tensor and R is
the Ricci scalar. The functions Fi ′s(�) are called form factor
functions. It is worth stressing out that they must be transcen-
dental (non-polynomial) entire functions of the d’Alembert
operator � in order to preclude the arising of non-physical
degrees of freedom in the propagator [36–38]. This by itself
ensures the unitarity (absence of ghosts) of the theory, though
further conditions must be taken into account to guarantee
also the renormalizability of the theory [27]. In this work
we shall focus on the classical solutions thereby we are not
concerned with the renormalizability conditions.

From the mathematical point of view, an entire function is
represented as a power series of its argument, in our specific
case we can write the form factors as power series of the
d’Alembert operator, i.e.,

Fi (�) =
∞∑

n=0

fin�n
MN

, (2)

where �MN ≡ �
M2

N
is dimensionless and fin are the coeffi-

cients (dimensionless) of the power series in �MN . Note that
as it said before, the IR regime is achieved when the factor
�
M2

N
is highly suppressed, i.e., k → 0 (momentum space)

and/or MN → ∞. On the other hand, the UV limit is hit

when O
(

�
M2

N

)

∝ 1.

Other choices for form factors have been worked out as
well. For instance, in [37,38] the form factors were picked
to be

F2(�) = −2F1(�)

= −1 − e�MN

�MN

, F3(�) = 0, (3)

of course leading to a full unitary (ghost-free) theory. Another
possible choice of form factors leading to a ghost-free and
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also a renormalizable theory is

F1(�) = −1

3
F3(�),

F3(�) = eH(−�MN ) − 1

2�MN

, (4)

where the function H(−�MN ) = H(z) is defined in [36] as:

eH(z) = e
a
2

(

(0,p(z)2)+γE+log(p(z)2)

)
, (5)

where 
(0, p(z)2) is the incomplete gamma function and
p(z) is a polynomial satisfying p(0) = 0. Also, in [39]
the non-local factors proportional to log � were considered,
being motivated by perturbative calculations.

2.1 Field equations

Varying the action (1) with respect to the metric, one can
obtain the following field equations [35]:

Eαβ = Gαβ + �ccg
αβ + Pαβ

1 + Pαβ
2

+Pαβ
3 − 2�

αβ
1

+gαβ(gμν�
μν
1 + �̄1) − 2�

αβ
2

+gαβ(gμν�
μν
2 + �̄2)

−4�
αβ
2 − 2�

αβ
3

+gαβ(gμν�
μν
3 + �̄3) − 8�

αβ
3

= κ2T αβ, (6)

where the tensorial quantities are defined as [35]:

Pαβ
1 = 1

2M2
N

[(
4Gαβ + gαβ R

−4(∇α∇β − gαβ�)
)F1(�)R

] ;
Pαβ

2 = 1

2M2
N

[

4Rα
νF2(�)Rνβ

− gαβ RμνF2(�)Rμν − 4∇ν∇β(F2(�)Rνα)

+ 2�(F2(�)Rαβ) +
+ 2gαβ∇μ∇ν(F2(�)Rμν)

]

;

Pαβ
3 = 1

2M2
N

[

− gαβCμνσγF3(�)Cμνσγ

+ 4Cα
μνσF3(�)Cβμνσ

− 4(Rμν + 2∇μ∇ν)(F3(�)Cβμνα)

]

;

�
αβ
1 = 1

2M2
N

∞∑

n=1

f1n

n−1∑

l=0

∇αR(l)∇β R(n−l−1),

�̄1 = 1

2M2
N

∞∑

n=1

f1n

n−1∑

l=0

R(l)R(n−l);

�
αβ
2 = 1

2M2
N

∞∑

n=1

f2n

n−1∑

l=0

(∇αRμν(l))(∇β R(n−l−1)
μν ),

�̄2 = 1

2M2
N

∞∑

n=1

f2n

n−1∑

l=0

Rμν(l)R(n−l)
μν ;

�
αβ
2 = 1

4M2
N

∞∑

n=1

f2n

n−1∑

l=0

∇ν
(
R(l)

σν∇(αRβ)σ(n−l−1)

− (∇(αRσν)R
β)σ(n−l−1)

)
;

�
αβ
3 = 1

2M2
N

∞∑

n=1

f3n

n−1∑

l=0

(∇αCμ(l)
νρσ )(∇βC νρσ(n−l−1)

μ ),

�̄3 = 1

2M2
N

∞∑

n=1

f3n

n−1∑

l=0

Cμ(l)
νρσC

νρσ(n−l−1)
μ ;

�
αβ
3 = 1

4M2
N

∞∑

n=1

f3n

n−1∑

l=0

∇ν
(
Cρ(l)

νσμ∇(αC β)σμ(n−l−1)
ρ

− (∇(αC |ρ(l)|
νσμ )Cβ)σμ(n−l−1)

ρ

)
, (7)

here we are using the same notation used in [35], i.e., A(l) ≡
�l A. Of course the field equations are very cumbersome to
solve since they are thoroughly nonlinear, then finding exact
solutions does not seem to be a simple task. However, up
to now exact solutions have been found for simplest models
which, unlike the generic one (1), typically involved only
one nonlocal term, namely the first one from (1) given by
RF(�)R. For example, it has also been shown in [27] that
FRW and Gödel metrics are exact solutions for the simplest
model in which the form factorsF2,F3 are taken ad hoc to be
zero. In the next sections we shall examine the consistency of
the class of ST-homogeneous Gödel-type metrics as solutions
within the non-local modified gravity theory.

3 ST-homogeneous Gödel-type metrics

This section is intended to give a brief review on the
main features of a generalized class of metrics called ST-
homogeneous Gödel-type metrics. The ST-homogeneous
Gödel-type metrics are defined by the following line element
in cylindrical coordinates [40–43]

ds2 = [dt + H(r)dθ ]2 − D2(r)dθ2 − dr2 − dz2, (8)

where H(r) and D(r) are metric functions depending only on
radius coordinate r . Moreover, the homogeneity conditions
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in the space-time are attainable by the conditions

H
′
(r)

D(r)
= 2ω, (9)

D
′′
(r)

D(r)
= m2, (10)

where the prime means derivative with respect to the radius
coordinate. The constant metric parameters (m2, ω) are
restricted to take on values in the range: −∞ ≤ m2 ≤ ∞
and ω 
= 0 (which is physically related to the vorticity of the
space-time). As discussed in [40–43], the ST-homogeneous
Gödel-type spaces can be separated into four different classes
by depending on the ω value and the sign of m2:

• hyperbolic class: m2 > 0, ω 
= 0:

H(r) = 2ω

m2 [cosh(mr) − 1], (11)

D(r) = 1

m
sinh(mr), (12)

• trigonometric class: −μ2 = m2 < 0, ω 
= 0:

H(r) = 2ω

μ2 [1 − cos(μr)], (13)

D(r) = 1

μ
sin(μr), (14)

• linear class: m2 = 0, ω 
= 0:

H(r) = ωr2, (15)

D(r) = r. (16)

• degenerate class: m2 
= 0, ω = 0:

H(r) = cte, (17)

in the degenerate case there is no rotation term in the metric
since the function H(r) can be conveniently chosen to vanish
by means of a suitable coordinate transformation. The func-
tion D(r) assumes the aforementioned forms by depending
on the sign of m2.

Note that the Gödel metric itself [44] is a particular exam-
ple of the ST-homogeneous Gödel-type spaces correspond-
ing to m2 = 2ω2, then it belongs to the hyperbolic class. In
addition, another important feature of the ST-homogeneous
Gödel-type spaces concerns to the isometry group, for exam-
ple, the class m2 = 4ω2 admits the larger isometric group,
G7 [40–43], whilst for m2 < 4ω2 admits G5 as the isometry
group and the degenerate class present isometry group G6.

The ST-homogeneous Gödel-type spaces present Closed
Time-like Curves (CTC’s) which are circlesC = {(t, r, θ, z);

t, r, z = const, θ ∈ [0, 2π ]}, defined in a region limited by
the range (r1 < r < r2), where G(r) = D2(r) − H2(r)
becomes negative within this range. It is interesting to note
that there is no CTC’s for the hyperbolic class corresponding
to m2 ≥ 4ω2, otherwise, they can exist. Hence, for the range
of parameters 0 < m2 < 4ω2 there are possible CTC’s inside
the region corresponding to r > rc, where rc is the critical
radius (limiting radius separating the causal and non-causal
regions) given by

sinh2
(
mrc

2

)

=
(

4ω2

m2 − 1

)−1

. (18)

Similarly, the linear and trigonometric classes also exhibit
CTCs. Both cases display a non-causal region, namely: for
the linear one, this region is hit for r > rc and the criti-
cal radius rc = 1

ω
. In the trigonometric case, the situation

is more subtle since there exists an infinite set of alternat-
ing non-causal and causal regions (this is confirmed by the
explicit form of rc in this case which is described by the
equation similar to (18) but with the usual sine instead of the
hyperbolic one). There is no CTCs in the degenerate class
due to the fact that G(r) is always positive for all values
of r . In the next section, we shall check the consistency of
ST-homogeneous Gödel-type metrics and also their causality
properties inside the our non-local theory.

4 ST-homogeneous Gödel-type metrics within non-local
gravity

Our aim in this section is to check the consistency of Gödel-
type metrics in the non-local modified gravity (1). Before fur-
ther proceeding, let us implement the matter sources. Here,
we assume that the matter content is composed of the same
components that in the GR case, it is a natural and reasonable
choice to follow since we want to recover GR at some point.
We will not explicit the matter sources because it will not be
useful for us in what follows (see [45–49] for the exact form
of the energy-momentum tensor).

The next step is to implement the geometrical ingredients,
i.e., the left-hand side of Eq. (6). At this time, it is useful to
define a set of complex null frames θa = eaμdx

μ. Here,
we consider the NP formalism [32,33] where the tetrad is
identified as eaμ ≡ {lμ, nμ,mμ, m̄μ} where lμ and nμ are real
null vectors and (mμ, m̄μ) is a pair of mutually conjugated
null vectors satisfying the following conditions

lμn
μ = 1,

mμm̄
μ = −1,

lμl
μ = nμn

μ = nμm
μ
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= nμm̄
μ = lμm

μ

= lμm̄
μ = 0, (19)

leading to metric decomposition

gμν = 2l(μnν) − 2m(μm̄ν), (20)

here lower Latin letters label local tetrad indices. A good null
tetrad basis choice for the metric (8) is:

lμ = 1√
2
[1, 0, H(r), 1]; (21)

nν = 1√
2
[1, 0, H(r),−1]; (22)

mμ = 1√
2
[0,−i, D(r), 0]; (23)

m̄μ = 1√
2
[0, i, D(r), 0], (24)

yielding

θ(0) = 1√
2
(dt + H(r)dθ + dz); (25)

θ(1) = 1√
2
(dt + H(r)dθ − dz); (26)

θ(2) = 1√
2
(D(r)dθ − idr); (27)

θ(3) = 1√
2
(D(r)dθ − idr). (28)

In this frame, the field equations (1) read

Eab = Gab + �ccηab + Pab
1

+Pab
2 + Pab

3 − 2�ab
1

+ηab(ηcd�
cd
1 + �̄1) − 2�ab

2

+ηab(ηcd�
cd
2 + �̄2)

−4�ab
2 − 2�ab

3

+ηab(ηcd�
cd
3 + �̄3) − 8�ab

3

= κ2T ab, (29)

where the transformation rule to link tensorial representa-
tions in both frames is Aab = eaμe

b
ν A

μν .
Before proceeding with the general model with all non-

null form factors, let us deem the simplest reduced model:

S = 1

2κ2

∫
d4x

√−g

[

R − 2�cc

+ 1

M2
N

(

RF1(�)R

)]

+ Sm[gμν,	], (30)

which is reached from the full theory just setting F2 = F3 =
0. The field equations for this model is obtained by getting rid
of all tensorial quantities with indices (2) and (3) in Eq. (1).
More simplifications can be carried out by taking note of the
fact that ST-homogeneous Gödel-type metrics have constant

Ricci scalar, more precisely, R = 2(m2 − ω2), as a result,
the nth derivative acting on R vanishes for all n ≥ 1, i.e.,
R�n R = 0, then the quantity Pαβ

1 dramatically simplifies

while �
αβ
1 and �̄1 vanish throughout. To be more clear by

using the form factor expansion (2), one can find

Pαβ
1 = f10

2M2
N

[(
4Gαβ R + gαβR2

)]
, (31)

where f10 is the zeroth-order coefficient in the power series
of the form factor F1. Then, there exist two possibilities:
(1) f10 = 0, it implies Pαβ

1 = 0, thereby the field equa-
tions recover GR ones. Therefore, in this particular case, ST-
homogeneous Gödel-type metrics are solutions both in GR
and in the non-local model (30). In particular, the solution
correspondent to Gödel metric (m2 = 2ω2) has been found
previously in [27]. (2) f10 
= 0, it implies Pαβ

1 
= 0 for
generic values of the metric parameters. This case turns out
to reproduce the same conclusions to the f (R) = R + αR2

gravity since the derivatives of Ricci scalar play no relevant
role in the field equations. In particular, when m2 = ω2, the
metric is Ricci-flat so that Pαβ

1 = 0 regardless of partic-
ular choices of the form factor, thereby the field equations
recover the GR ones again. Thenceforth, we will throw away
the zeroth-order coefficient in the power series expansion
of the form factors because of the fact that it only plays an
important role in the UV regime, and since we are interested
in the classical field equations (IR regime) it can be safely
set to be zero as pointed out in [27].

4.1 ST-homogeneous Gödel-type metrics as a space with
all constant scalar invariants (CSI)

The CSI spaces are those whose all scalar curvature invariants
(I) are constants [30,31]. We mean by scalar invariants the
set of all invariants made up from the curvature tensors and
their derivatives, i.e.,

I = {R, RμνR
μν,CμναC

μνα,∇αRμνβσ ∇αRμνβσ , ...}.
(32)

Many theorems with important properties of CSI spaces
has been proven in various works [31,50]. One of them will
be relevant for us, namely:

• Theorem: A 4-dimensional CSI spacetime is either:
(1) locally homogeneous; or
(2) a subclass of Kundt spacetimes.

From the above theorem, ST-homogeneous Gödel-type
metrics belong to the class of CSI spaces.

Furthermore, according to the weight decomposition the
algebraic classification of curvature (see Appendix A) of
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such metrics are Petrov (Weyl) type D or simpler which then
implies that the Weyl scalars (in NP formalism) take the form:

	2 = 1

6
(4ω2 − m2),

	0 = 	1 = 	3 = 	4 = 0, (33)

with 	2 being constant as a consequence of the local homo-
geneity of the space. Note that the special class m2 = 4ω2,
in particular, is Petrov type 0, as a result it is conformally flat
since all Weyl scalars vanish.

For Petrov type D metrics, the only quadratic Weyl invari-
ant I = 1

2CμναβCμναβ constructed from the Riemann curva-
ture tensor [51] is

I = 3	2
2 = 1

12
(4ω2 − m2)2, (34)

where Cμναβ = 1
4

(
Cμναβ − iC�

μναβ

)
with C�

μναβ being

the dual Weyl tensor. Due to the symmetries of the ST-
homogeneous Gödel-type metrics the total contraction
between the Weyl tensor and its dual one is zero, i.e.,
CμναβC�

μναβ = 0, thereby from Eq. (34) we have

CμναβC
μναβ = 48	2

2

= 4

3
(4ω2 − m2)2. (35)

In respect the Ricci tensor in the complex null frame (28),
the non-vanishing components are

R(0)(0) = 2�00 = ω2; (36)

R(1)(1) = 2�22 = ω2; (37)

R(0)(1) = 2 (�11 − 3�) = ω2; (38)

R(2)(3) = 2 (�11 + 3�) = 2ω2 − m2, (39)

where the Ricci scalars �AB and � are defined in [51].

4.2 Completely causal solutions in non-local gravity

We now turn our attention back to the complete theory (1).
As it was said before, ST-homogeneous Gödel-type metrics
are locally homogeneous, with all corresponding scalar cur-
vature invariants are constant. Such properties mean that it is
always possible to pick a local frame where the components
of the curvature (or Weyl) tensor and their covariant deriva-
tives take constant values. Keeping this in mind together with
the previous information on the geometrical quantities, we
are able to evaluate the higher order tensors. Therefore, let
us start by evaluating the first-order derivative of the Weyl
tensor which we have found that the non-vanishing compo-
nents in the complex null basis take the following canonical
form:

∇aCbcde ∝ ω(4ω2 − m2). (40)

The non-vanishing components of the second- and third-
order derivative of the Weyl tensor also can be rewritten in
terms of the former canonical form as shown below

∇a∇bCcde f ∝ ω2(4ω2 − m2); (41)

∇a∇b∇cCdef g ∝ ω3(4ω2 − m2), (42)

we can keep doing this up to nth-order and the canonical form
will hold. This is not a surprise since it is just a consequence
of the Cartan–Karlhede algorithm [52]. In fact, any other
higher-order derivatives will yield the same canonical form
given by Eq. (42).

Through similar arguments, we find

∇a Rbc ∝ ω(4ω2 − m2);
∇a∇bRcd ∝ ω2(4ω2 − m2);

.

.

. (43)

With this at hands, one can construct the nth-order invariants
we are concerned of,

Cμναβ�Cμναβ = −8ω2(4ω2 − m2); (44)

Cμναβ�2Cμναβ = 48ω4(4ω2 − m2); (45)

Cμναβ�3Cμναβ = −288ω6(4ω2 − m2); (46)

.

.

.

Cμναβ�nCμναβ = (−1)n6n−18ω2n(4ω2 − m2), for n ≥ 1.

(47)

Analogously,

Rμν�Rμν = −4ω2(4ω2 − m2); (48)

Rμν�2Rμν = 24ω4(4ω2 − m2); (49)

Rμν�3Rμν = −144ω6(4ω2 − m2); (50)

.

.

.

Rμν�n Rμν = (−1)n6n−14ω2n(4ω2 − m2), for n ≥ 1.

(51)

We recall that R�n R = 0 for n ≥ 1 as we already concluded.
As far as the field equations (6) are concerned, it turns

out that the above argumentation can be applied for the other
high-order derivative tensorial quantities of the field equa-
tions in the complex null frame (21), that is, Pab

i ,�ab
i , �̄ab

i
and �ab

i with i = 2, 3, are constants and they vanish for
ω = 0 (degenerate class) and for m2 = 4ω2. Otherwise,
the field equations reduce to a set of algebraic equations
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with infinite degree in ω to be solved. Obviously, it estab-
lishes an overcomplete system of algebraic equations, in this
case it becomes undoubtedly impracticable to find solutions.
Returning to the former case, i.e., ω = 0 and m2 = 4ω2

are exact solutions of the non-local theory (1) and the field
equations reduce to the GR ones. Therefore, the only ST-
homogeneous Gödel-type solutions that hold in our non-local
gravity theory are those classes characterized by ω = 0 with
arbitrary m 
= 0 and m2 = 4ω2. It is noteworthy that both
solutions are completely causal providing that the full non-
local ghost-free (1) only support solutions avoiding CTC’s
unlike the model (30).

5 Summary and conclusions

We have investigated ST-homogeneous Gödel-type metrics
within the non-local gravity theory (1). Despite the highly
non-linear form of field equations we have succeeded in
engendering exact solutions for this model. It was first exam-
ined the particular model corresponding to the Eq. (30) wher
the form factors F2 and F3 are put to zero. In this case all
ST-homogeneous Gödel-type metric classes are consistent
within this particular model when, first, the first-order expan-
sion coefficient of the form factor vanishes, then the field
equations recover GR, and obviously their solutions are the
same of GR, second, the first-order expansion coefficient of
the form factor does not vanish, in this situation, the solutions
are the same of a particular model f (R) = R + αR2.

Regarding the whole theory (1) we have shown that the
exact solutions found – they correspond to ω = 0 and m2 =
4ω2 – display the remarkable property of being completely
causal. Physically speaking, the unitary theory only “selects”
those ST-homogeneous Gödel-type metrics circumventing
the presence of CTCs by some mechanism coming from the
incorporation of the infinite higher-derivative terms in the
gravitational action. It suggests a strong link between ghost-
free theories like Eq. (1) and the Chronological Protection
principle. Of course, a more careful assessment regarding
this point should be made. Such investigations are currently
in progress.
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Appendix A: Boost-weight decomposition

In this appendix we briefly discuss on boost-weight decom-
position. First let us consider a complex null frame {lμ, nμ,

mμ, m̄μ} that satisfies the following conditions:

lμn
μ = 1,

mμm̄
μ = −1,

lμl
μ = nμn

μ = nμm
μ

= nμm̄
μ = lμm

μ

= lμm̄
μ = 0. (A1)

We now apply a boost in the (lμ − nμ) plane, i.e.,

{
l̃μ, ñμ, m̃μ, ˜̄mμ

}
= {

eλlμ, e−λnμ,mμ, m̄μ

}
. (A2)

A generic tensor T can be decomposed in terms of the boost
weight with respect to the boost transformation (A2) as fol-
lows:

T =
∑

b

(T )b , (A3)

where (T )b stands for the projection of the tensor T onto the
vector space of boost-weight b. In respect the components
of the tensor T under the boost-weight transformation, they
will transform as:

(T )b μν... = e−bλ (T )b μ̃ν̃... , (A4)

where indices with tildes label boosted tensorial components.
The boost-weight decomposition of the metric is simply:

g = (g)0, i.e., the metric has only boost weight 0 component.
Similarly, it easy to see that any scalar invariant of a tensor,
say T , should be boost-weight invariant since all scalar terms
are invariant under the action of the SO(1, 3) group, thus:

Contr [T ] = Contr
[
(T )0

]
, (A5)

where “Contr” stands for full contraction.
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Spacetimes can be algebraically classified based on boost-
weight decomposition of Weyl tensor–the well-known Petrov
classification in 4D, namely:

• Type I: C = (C)−2 + (C)−1 + (C)1 + (C)0;
• Type II: C = (C)−2 + (C)−1 + (C)0;
• Type D: C = (C)0;
• Type III: C = (C)−2 + (C)−1;
• Type N: C = (C)−2;
• Type O: C = 0.

The classification of the Weyl tensor in higher dimensions
has been developed in [53].
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