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Abstract A Polyakov chiral SU(3) quark mean-field
(PCQMF) model is applied to study the properties of strange
quark matter (SQM) and strange quark star (SQS) in β-
equilibrium. The effect of increasing the strength of vector
interactions on the effective constituent quark mass, parti-
cle fractions, and the thermodynamical properties such as
pressure, energy density, and the speed of sound is inves-
tigated. We investigate the above properties for the SQM
relevant for various stages of star evolution, i.e., consider-
ing with/without trapped neutrinos and zero/finite entropy.
The finite lepton fraction and the entropy of the medium
is observed to cause the stiffness in the equation of state
(EoS). Finally, we calculate the mass-radius relation and the
dimensionless tidal deformability within the present model
calculations and compare the results to the recent studies.

1 Introduction

Exploring the strong interaction physics of the QCD phase
diagram over a wide range of temperature and baryon chem-
ical potential (or baryonic density) is a fascinating topic of
research. One of the reasons is the possibility of various
phases over different ranges of temperature and baryonic
density, hence, enthralling underlying physics. The phase
of quark-gluon-plasma (QGP) can be realized when the
hadronic matter is put through high temperature at low bary-
onic density. This is commonly referred to as heating of mat-
ter. Such a phase may have existed in the early stage of the
universe or can be created in heavy-ion collision facilities. On
the other hand, compression of the hadronic matter to high
baryonic density, keeping temperature low, may also result
in a phase of deconfined quarks, known as quark matter. The
matter at a high baryonic density and low temperature may

a e-mail: maniyadav93@gmail.com
b e-mails: iitd.arvind@gmail.com ; kumara@nitj.ac.in (corresponding
author)

exist in the compact stars. The ‘compact star’ may refer to a
pure neutron star that is gravitationally bound, a pure quark
star which may result from very high compression such that
quarks start overlapping and hadrons lose their identity, or a
hybrid star comprising of crust as of a neutron star and the
core of quark matter.

Witten et.al. anticipated a postulate that instead of nuclear
matter, the strange quark matter (SQM) may be contemplated
as the stable ground state due to the lowering of quark chem-
ical potential of the strange quark, and this results in a value
of energy per baryon less than 930 MeV for SQM at zero
pressure [1–3]. Hence, there may be a possibility that the
pulsars which are detected as neutron stars (NSs) may also
be quark stars (QSs). SQM, if exist, may play a crucial role
in the various remarkable fields such as hot and dense mat-
ter in heavy-ion collisions [4–6], compact stars structure [7],
deconfinement phase transition [8–13] etc. The possibility
for the existence or non-existence of various phases of com-
pact stars is strongly constrained by the astrophysical data
on pulsars.

Neutron star interior composition explorer (NICER), a
mission of NASA, has become the first multi-messenger
observation of binary neutron star merger, which allows the
measurement of masses and radii of neutron stars [14,15].
Moreover, there are several other facilities in terms of tele-
scopes and satellites which describe the properties of dense
matter [16]. Among them a few are: the radio telescope at the
Parkes, Jodrell Bank, the Hubble space telescope, the x-ray
satellites Chandra, a gigantic telescope of European Southern
observatory, and the swift satellite.

Although the first discovery of a pulsar dated back to
the year 1967 [17], the recent findings of pulsars with
larger masses stimulated a lot of theoretical research in the
field with a motivation to provide a concrete explanation
of the experimental observations. The precise mass mea-
surement of two solar mass pulsars named as PSR J1614-
2230 (1.928 ± 0.017 M�) [18,19] and PSR J0348+0432
(2.01 ± 0.04 M�) [20], has put strong constraints on EoS.
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Currently, the only pulsars whose masses are larger than
2 M� are PSR J0740+6620 (2.14+0.10

−0.09M�) [21] and PSR

J2215+5135 (2.27+0.17
−0.15 M�) [22]. The detection of gravita-

tional waves can be a convenient method to collect the evi-
dence for QSs [23,24]. The detection of gravitational wave
event by LIGO and VIRGO interferometer [25], has also put
several constraints on EoS and the properties of NSs such as
radii, masses, and tidal deformability [26–28].

The above observations of larger mass limit on the com-
pact stars flavor the models with stiffer EoS. To date, there
are no first principle calculations on the EoS, and it is highly
model (and parameters used in the model) dependent. It was
a general conjecture that an increase in the degree of freedom
in the neutron stars would soften the equation of state. For
example, within different theoretical studies, hyperons and
kaon condensates cause the softening of the EoS and hence,
will lead to a decrease in the mass of compact stars. Similarly,
the transition from pure neutron stars to a hybrid or a mixed
phase of nucleons and quarks or pure quark stars may also
soften the EoS, and this may lead to the results on the mass-
radius opposite to the expectations of earlier discussed large
mass pulsars. However, as was debated in [29] (in response
to conclusion of [30]), the strong interactions may lead to
the stiffening of the EoS and hence, existence of pure quark
stars or hybrid stars composed of quark matter core cannot
be rejected [31–33] (also see the reply of Özel [34] and refs.
[18,35]).

In the present paper, we investigate the properties of
strongly interacting strange quark matter to explore the mass-
radius relation of strange quark stars, with and without
trapped neutrinos. The non-perturbative lattice QCD calcu-
lations, which work fine at finite temperature and zero bary-
onic density, are not applicable at high baryonic density,
which is a subject of present work. Therefore, several QCD
enthused effective models are used widely to study the non-
perturbative strongly interacting matter. Some of the exam-
ples are: MIT bag model [36,37], Dyson-Schwinger equa-
tion approach [38–41], quark meson coupling (QMC) model
[42], quark mass density dependent (QMDD) model [43–47],
Nambu–Jona—Lasinio (NJL) model [37,48], confined den-
sity dependent quark mass (CDDM) model [8,49,50], chiral
SU(3) quark mean field (CQMF) model [51,52], Polyakov
quark meson coupling (PQMC) model [53,54] and Polyakov
extended NJL (PNJL) model [55–57]. Many authors have
studied the properties of pure SQM in β-equilibrium [58–
61], proto-strange quark stars (PSQS) [62–67], as well as
hybrid star with SQM in the core [68,69] (also, see refer-
ences therein).

In [36], the EoS of quark matter with color flavor locked
(CFL) phase was studied using MIT bag and NJL model to
understand the conditions which may lead to the mass of
about 1.97M�. Although in the MIT model, the stiff EoS

can be observed if a larger value of gap parameter is used,
in the NJL-CFL model, including gluonic effects, the stiff-
ening of the EoS is very sensitive to the vector-vector cou-
pling strength GV (large value of GV is required for stiff
EoS). The presence of trapped neutrinos along with quarks
is expected to cause an increase in the mass of stars as com-
pared to the neutrino free phase [70]. In order to consider
the PSR J0348+0432 (2.01 ± 0.04 M�) and MSP J0740 +
6620 (2.14+0.10

−0.09M�) as quark stars, the importance of isospin
effects and quark symmetry energy at finite temperature was
explored in [65].

In our present study on the properties of SQM and SQS,
the CQMF model is extended to include the gluonic degree of
freedom through the Polyakov loop effect, i.e., we will use
the Polyakov chiral quark mean field (PCQMF) model. In
the CQMF model, quarks are confined within the baryons by
a confining potential. The CQMF model is used in the past
to study the properties of both hadronic and quark matter
[51,52,71,72].

Following is the process of evolution of a quark star
(assuming pure quark star exist): in an early stage when proto-
strange quark star (PSQS) starts forming lepton number per
baryon with trapped neutrino and entropy per baryon will be
approximately 0.4 and 1, respectively [48]. During the mean-
time of 10-20 seconds, the star matter gets heated by diffusing
neutrinos, and entropy per baryon will increase to 2, while the
neutrino fraction drops to almost zero. Following the heating
condition, PSQS begins to cool down and finally reach to the
stage of cold SQS. In the present work, we will investigate
the properties of stars during above described stages of evo-
lution. The questions, for example, CFL phase in SQS [36],
the impact of finite magnetic field [64], and the inclusion of
the hadronic degrees of freedom to investigate hybrid stars
within the present PCQMF model will be addressed in the
future work.

The present paper is organized as follows: In Sect. 2, we
describe the Polyakov chiral SU(3) quark mean field model,
various thermodynamic relations, and the structure of SQS
(Tolman-Oppenheimer-Volkov (TOV) equations). In Sect. 3,
we explain the results of our analysis on SQM and SQSs for
various situations of star evolution, and finally, in the Sect. 4,
the results of the present work are summarized.

2 Methodology

2.1 Polyakov Chiral SU(3) Quark Mean Field Model

The PCQMF model [73] is an extended version of CQMF
model [51,52] which is based on the quark degree of freedom,
the non-linear realization of chiral symmetry [74–76], and the
trace anomaly [77–79]. Through the spontaneous symmetry
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breaking, the constituent quarks and mesons (except for the
pseudoscalars) obtain their masses, whereas the pseudoscalar
mesons acquire their masses through the explicitly symmetry
breaking. By including the gluonic degrees of freedom in the
CQMF model through an effective Polyakov loop potential,
it is possible to investigate both, the deconfinement and the
chiral symmetry breaking together in the PCQMF model.
The effective Lagrangian density of the PCQMF model for
the SQM is written as

LPCQMF = Lq0 + Lqm + L�� + LVV

+LSB + L�m + Lh −U (�, �̄, T ), (1)

where Lq0 = q̄ iγ μ∂μq represents the free part of massless
quarks, Lqm denotes the quark mesons interaction term that
remains invariant under the chiral SU(3) transformation and
can be written as [72]

Lqm = gs
(
q̄L MqR + q̄RM

+qL
)

−gv

(
q̄Lγ μlμqL + q̄Rγ μrμqR

)
. (2)

In the above, q =
⎛

⎝
u
d
s

⎞

⎠, and gs and gv are the scalar and

vector coupling constants, respectively. The compact form
of spin-0 scalar (�) and pseudoscalar (�) meson nonets can
be expressed as

M(M†) = � ± i� = 1√
2

8∑

a=0

(
σ a ± iπa) λa, (3)

where σ a and πa represent the nonets of scalar and pseu-
doscalar mesons, respectively, λa are Gell-Mann matrices

with λ0 =
√

2
3 I . Similarly, the spin-1 mesons are defined as

lμ(rμ) = 1

2

(
Vμ ± Aμ

) = 1

2
√

2

8∑

a=0

(
vaμ ± aaμ

)
λa . (4)

In the above, vaμ and aaμ are nonets of vector and pseudovector
mesons, respectively. The expressions for physical states of
scalar and vector meson nonets are

� = 1√
2

8∑

a=0

σ a λa

=
⎛

⎜
⎝

1√
2

(
σ + δ0

)
δ+ κ∗+

δ− 1√
2

(
σ − δ0

)
κ∗0

κ∗− κ̄∗0 ζ

⎞

⎟
⎠ , (5)

and

Vμ = 1√
2

8∑

a=0

vaμ λa

=
⎛

⎜
⎝

1√
2

(
ωμ + ρ0

μ

)
ρ+

μ K ∗+
μ

ρ−
μ

1√
2

(
ωμ − ρ0

μ

)
K ∗0

μ

K ∗−
μ K̄ ∗0

μ φμ

⎞

⎟
⎠ , (6)

respectively.
The coupling between scalar mesons � follows the

SU(3)V symmetry and leads to three independent invariants
written as [78]

I1 = Tr(�), I2 = Tr(�)2, I3 = det(�). (7)

These invariants are the building blocks of meson-meson
interactions and higher order invariants can be written in the
form of these three basic invariants. In terms of the above
written invariants, the potential for scalar meson-meson inter-
actions is written as

L0 = −1

2
k0 χ2 I2 + k1 (I2)

2 + k2 I4 + 2 k3 I3 χ, (8)

where χ represents the scalar dilaton field and is related
to the trace anomaly (property of QCD) which is defined
through the non-vanishing trace of the energy momentum
tensor θ

μ
μ = βQCD

2g Ga
μνGμν

a , (Gμν is the gluon field strength
tensor of QCD). The trace anomaly property is introduced in
the present chiral model through the scale breaking potential

Lscale = 1

2
(∂μχ)(∂μχ) − k4χ

4 −

×1

4
χ4 ln

χ4

χ4
0

+ d

3
χ4 ln

(σ 2 − δ2)χ

σ0
2χ

. (9)

Within the mean field approximation, the Lagrangian density
of scalar meson self-interaction term, L�� (the 3rd term in
Eq. (1)), including the effect of broken scale invariance, can
be expressed as

L�� = L0 + Lscale = −1

2
k0χ

2
(
σ 2 + ζ 2 + δ2

)

+k1

(
σ 2 + ζ 2 + δ2

)2 + k2

(
σ 4

2
+ δ4

2
+ 3σ 2δ2

+ζ 4
)

+ k3χ
(
σ 2 − δ2

)
ζ − k4χ

4 − 1

4
χ4ln

χ4

χ4
0

+d

3
χ4ln

(((
σ 2−δ2

)
ζ

σ 2
0 ζ0

) (
χ3

χ3
0

))

+1

2
(∂μχ)(∂μχ).

(10)
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Here, d =6/33 (for N f = 3 and Nc = 3), and σ0, ζ0

and χ0 denote the vacuum expectation values of σ , ζ and χ

fields. The scale invariant self-interaction terms for the vector
mesons is written as [79]

L(1)
vec = 1

2
m2

V
χ2

χ2
0

TrVμV
μ + 2g4Tr(VμV

μ)2. (11)

The mass degeneracy of vector meson nonets is signified
by the above equation. The property of scale invariance is
satisfied on multiplying the square of the dilaton field, χ in
the 1st term of Eq. (11).

To split the masses, we need an addition chiral invariant
term

L(2)
vec = 1

4
μTr

[
VμνV

μν�2
]
. (12)

Combining Eqs. (11) and (12) along with the kinetic term
of vector mesons, within the mean-field approximation, we
obtain the Lagrangian density for the vector meson self inter-
action term, LVV (the 4th term in Eq. (1)) as

LVV = 1

2

χ2

χ2
0

(
m2

ωω2 + m2
ρρ2 + m2

φφ2
)

+g4

(
ω4 + 6ω2ρ2 + ρ4 + 2φ4

)
. (13)

In Eq. (13), the density dependent vector meson masses
can be written as [80]

m2
ω = m2

ρ = m2
v

1 − 1
2μσ 2

, and m2
φ = m2

v

1 − μζ 2 . (14)

In the above equation, the vacuum value of the vector meson
mass, mv = 673.6 MeV and the density parameter, μ = 2.34
fm2 is considered in order to replicate mω = 783 MeV and
mφ = 1020 MeV. Furthermore, the last three termsLSB ,L�m

and Lh of Eq. (1) break the chiral symmetry explicitly. The
relations between different quark meson coupling constants
are given as [52]

gs√
2

= guδ = −gdδ = guσ = gdσ

= . . . = 1√
2
gsζ , gsδ = gsσ = guζ = gdζ = 0 , (15)

gv

2
√

2
= gu

ρ0 = −gd
ρ0 = guω

= gdω = . . . = 1√
2
gsφ, gsω

= gs
ρ0 = guφ = gdφ = 0. (16)

The explicitly symmetry breaking term is introduced to
exclude Goldstone modes of a chiral effective theory. It is
written as

LSB = −1

2
m2

η0
TrY 2

−1

2
TrAp

(
u�u + u†�u†

)

−Tr
(
As − Ap

)
�, (17)

where Y is pseudoscalar chiral singlet, Ap = 1/
√

2diag
(m2

π fπ ,m2
π fπ , 2m2

K fK − m2
π fπ ), As = diag(x, x, y). The

first term of Eq. (17) provide mass to the pseudoscalar singlet,
the second term is analogous to the explicit symmetry break-
ing term, and the third term is motivated by SU (3)V symme-
try breaking term. In v(1), the Lagrangian density LSB with
mean field approximation results in non-vanishing masses
for the pseudoscalar mesons and is written as

LSB = −χ2

χ2
0

[
m2

π fπσ +
(√

2m2
K fK − m2

π√
2
fπ

)
ζ

]
. (18)

Above equation results in a non-vanishing divergence of the
axial-vector current which fulfills the partial conserved axial-
vector current (PCAC) relations for π and K mesons (masses
of π and K mesons are non-zero). The parameters σ0 and ζ0

are controlled by the spontaneous breaking of chiral symme-
try and can be expressed in terms of kaon and pion decay
constants

as

ζ0 = 1√
2
( fπ − 2 fK ) and σ0 = − fπ , (19)

where fK = 115 MeV and fπ = 93 MeV. To attain constituent
mass of strange quark, an additional mass term is introduced
through

L�m = −�msq̄Sq, (20)

where S = 1
3

(
I − λ8

√
3
)

= diag(0, 0, 1) stands for

strange quark matrix and �ms = 29 MeV. In vacuum, rela-
tions for constituent quark masses can be written as

mu = md = − gs√
2
σ0, ms = −gsζ0 + �ms . (21)

The coupling constant gs and �ms are chosen to yield the
constituent quark masses. For reasonable values of hyperon
potentials an additional symmetry breaking term should be
added, which within mean field approximation is written as
[52]

Lh = (h1 σ + h2 ζ ) s̄s . (22)

The last term of Eq. (1), U (�, �̄, T ) is better known
as temperature-dependent effective Polyakov loop poten-
tial which accounts for the deconfinement transition. The
Polyakov line and the Polyakov loop are, respectively,
defined as

L(x) = Pexp

[
i
∫ 1

T

0
dτ A4(x, τ )

]
,

�(x) = (TrcL)/NC , (23)
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Table 1 Parameters for Polyakov effective potential

a0 a1 a2 b3 T0

3.51 −2.47 15.2 −1.75 200

where P is the path ordering operator and A4 is the gluon
field in the temporal direction [81].

In the present work, we consider the logarithmic Polyakov
loop potential that satisfy the pure gauge Z(NC ) symmetry
and is expressed by [55,82,83]

U (�, �̄, T )

T 4 = −a(T )

2
�̄�

+b(T )ln
[
1 − 6�̄� + 4(�̄3 + �3) − 3(�̄�)2].

(24)

In the above equation, the T -dependent parameters a(T ) and
b(T ) can be inscribed as [55,82]

a(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

, b(T ) = b3

(
T0

T

)3

.(25)

Parameters a0, a1, a2 and b3 summarized in Table 1 are pre-
cisely fitted as per result of lattice QCD thermodynamics in
pure gauge sector [82]. The parameter T0 is the confinement-
deconfinement transition temperature in the pure Yang–Mills
theory at vanishing chemical potential [84]. A rescaling of
parameter T0 from 270 to around 200 MeV is usually imple-
mented when fermion fields are included [86–89].

Within mean field approximation, the thermodynamical
potential density of SQM in the PCQMF model at finite
baryon density and temperature can be elucidated as

� = U(�, �̄, T ) + �qq̄ − LM − Vvac, (26)

where �qq̄ exemplifies the contribution of quarks and anti-
quarks to the total thermodynamical potential and is given
by

�qq̄ = −γi kBT
∑

q,l

∫ ∞

0

d3k

(2π)3

× [ln(1 + e−3(E∗
i (k)−νi

∗)/kBT + 3�e−(E∗
i (k)−νi

∗)/kBT

Table 3 Values of different meson masses and decay constants (in
MeV)

mπ mK mη mη′ mω mφ mρ mσ

139 496 540.1 961.9 783 1020 783 417.5

mζ mχ σ0 ζ0 χ0 fK fπ

1170.1 596.2 −93 −96.87 254.6 115 93

+ 3�̄e−2(E∗
i (k)−νi

∗)/kBT )

+ ln(1 + e−3(E∗
i (k)+νi

∗)/kBT

+ 3�̄e−(E∗
i (k)+νi

∗)/kBT

+ 3�e−2(E∗
i (k)+νi

∗)/kBT )]. (27)

In above equation, summation runs over constituent
quarks (q=u, d, s) and leptons (l=e, μ, νe, νμ). More-
over, the value of spin degeneracy factor, γi , is 2 for quarks

while 1 for leptons and E∗
i (k) =

√
m∗2

i + k2 is the effec-
tive single particle energy of quarks. In Eq. (26), the term
LM = L�� + LVV + LSB defines the meson interaction.
Also, the vacuum energy term, Vvac, is subtracted to attain
zero vacuum energy. Furthermore, the effective chemical
potential, νi

∗, of quarks is defined by

νi
∗ = μi − giωω − giφφ − giρρ, (28)

where μi is usual quark chemical potential, giω, giφ and giρ are
the coupling strengths of quarks with vector meson fields.

Additionally, the effective constituent quark mass mi
∗ is

defined as per the relation

mi
∗ = −giσ σ − giζ ζ − giδδ + mi0. (29)

In the above equation, giσ , giζ and giδ signify the cou-
pling strengths of various quarks with scalar fields. The
model dependent parameters used in the present work and
the parameters used for fixing them are given in Tables 2 and
3, respectively. The values of giσ , giζ and mi0 are approxi-
mated to fit the vacuum masses of constituent quarks with
their values given as mu = md = 313 MeV and ms = 490
MeV [80].

The model parameters, k0, k1, k2, k3, k4, gv , g4 are deter-
mined using π -meson mass, K -meson mass and average

Table 2 Parameters for PCQMF model used in the present work

k0 k1 k2 k3 k4 gs gv g4 h1 h2

4.94 2.12 −10.16 −5.38 −0.06 4.76 10.92 37.5 −2.20 3.24

guσ gdσ gsσ guζ gdζ gsζ guδ gdδ gsδ ρ0(fm−3)

3.36 3.36 0 0 0 4.76 3.36 −3.36 0 0.15

guω gdω gsω guφ gdφ gsφ guρ gdρ gsρ d

3.86 3.86 0 0 0 5.46 3.86 −3.86 0 0.18
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mass of η and η
′

mesons which are further calculated by
eigenvalues of mass matrix Mi j = −δ2L(φ)/δφiδφ j .

The vacuum expectation value of the dilaton field, χ0

and the parameter g4, is constrained to obtain the effective
nucleon mass around 0.61mN and compression modulus at
around 252 MeV at nuclear saturation density ρ0 = 0.15
fm−3. Further, the constraint that binding energy of nuclear
matter, ε0/ρ − mN , at saturation density, ρ0, should be near
−16 MeV fix the parameter gv . The vacuum values of σ

and ζ fields are calculated by applying the constraint on the
values of decay constants of pion and kaon, respectively.

The fermion vacuum term, which is usually considered in
the NJL and PNJL models, but neglected in Polyakov linear
sigma (PLS) and PQMC models [53,85], is not included in
Eq. (27). This is because in the case of PLS, PQMC, and also
in the present PCQMF model, the spontaneous breaking of
chiral symmetry is done via mesonic potential; however, NJL
and PNJL models use the ultraviolet cut-off parameter, �. In
some of the studies within the PQM, such term is considered
to study the properties of strongly interacting matter and is
observed to change the nature of phase transition from first
to second order [86,87,90].

The vector density, ρi , and scalar density, ρs
i , of quarks

are defined as

ρi = 2Nc

∫
d3k

(2π)3

(
fi (k) − f̄i (k)

)
, (30)

and

ρs
i = 2Nc

∫
d3k

(2π)3

m∗
i

E∗
i (k)

(
fi (k) + f̄i (k)

)
, (31)

respectively, where fi (k) and f̄i (k)denote the Fermi distribu-
tion functions at finite temperature for quarks and anti-quarks
and are expressed as

fi (k) = �e−(E∗
i (k)−νi

∗)/kBT + 2�̄e−2(E∗
i (k)−νi

∗)/kBT + e−3(E∗
i (k)−νi

∗)/kBT

1 + 3�e−(E∗
i (k)−νi

∗)/kBT + 3�̄e−2(E∗
i (k)−νi

∗)/kBT + e−3(E∗
i (k)−νi

∗)/kBT
, (32)

and

f̄i (k) = �̄e−(E∗
i (k)+νi

∗)/kBT + 2�e−2(E∗
i (k)+νi

∗)/kBT + e−3(E∗
i (k)+νi

∗)/kBT

1 + 3�̄e−(E∗
i (k)+νi

∗)/kBT + 3�e−2(E∗
i (k)+νi

∗)/kBT + e−3(E∗
i (k)+νi

∗)/kBT
. (33)

In order to evaluate the values of scalar fields σ , ζ , δ, and
χ , the vector fields ω, ρ and φ and the Polyakov field � and
its conjugate �̄, we minimize � with respect to these fields,
i.e.,

∂�

∂σ
= ∂�

∂ζ
= ∂�

∂δ

= ∂�

∂χ
= ∂�

∂ω
= ∂�

∂ρ
= ∂�

∂φ

= ∂�

∂�
= ∂�

∂�̄
= 0. (34)

This leads to the following set of coupled equations:

∂�

∂σ
= k0χ

2σ − 4k1

(
σ 2 + ζ 2 + δ2

)
σ − 2k2

×
(
σ 3 + 3σδ2

)
− 2k3χσζ

− d

3
χ4

(
2σ

σ 2 − δ2

)
+

(
χ

χ0

)2

m2
π fπ

−
(

χ

χ0

)2

mωω2 ∂mω

∂σ

−
(

χ

χ0

)2

mρρ2 ∂mρ

∂σ
−

∑

i=u,d

giσ ρs
i = 0, (35)

∂�

∂ζ
= k0χ

2ζ − 4k1

(
σ 2 + ζ 2 + δ2

)
ζ

− 4k2ζ
3 − k3χ

(
σ 2 − δ2

)

− d

3

χ4

ζ
+

(
χ

χ0

)2 [√
2m2

K fK − 1√
2
m2

π fπ

]

−
(

χ

χ0

)2

mφφ2 ∂mφ

∂ζ
−

∑

i=s

giζ ρ
s
i = 0,

(36)

∂�

∂δ
= k0χ

2δ − 4k1

(
σ 2 + ζ 2 + δ2

)

× δ − 2k2

(
δ3 + 3σ 2δ

)
+ 2k3χδζ

+ 2

3
dχ4

(
δ

σ 2 − δ2

)
−

∑

i=u,d

giδρ
s
i = 0, (37)

∂�

∂χ
= k0χ

(
σ 2 + ζ 2 + δ2

)

− k3

(
σ 2 − δ2

)
ζ

123



Eur. Phys. J. C (2021) 81 :791 Page 7 of 20 791

+ χ3

[

1 + ln

(
χ4

χ4
0

)]

+ (4k4 − d)χ3

− 4

3
dχ3ln

(((
σ 2 − δ2

)
ζ

σ 2
0 ζ0

)(
χ

χ0

)3)
+ 2χ

χ2
0

[
m2

π fπσ

+
(√

2m2
K fK − 1√

2
m2

π fπ

)
ζ

]

− χ

χ2
0
(mω

2ω2 + mρ
2ρ2) = 0, (38)

∂�

∂ω
= χ2

χ2
0

m2
ωω + 4g4ω

3

+ 12g4ωρ2 −
∑

i=u,d

giωρv
i = 0, (39)

∂�

∂ρ
= χ2

χ2
0

m2
ρρ + 4g4ρ

3

+ 12g4ω
2ρ −

∑

i=u,d

giρρv
i = 0, (40)

∂�

∂φ
= χ2

χ2
0

m2
φφ

+ 8g4φ
3 −

∑

i=s

giφρv
i = 0, (41)

∂�

∂�
=

[−a(T )�̄

2
− 6b(T )(�̄ − 2�2 + �̄2�)

1 − 6�̄� + 4(�̄3 + �3) − 3(�̄�)2

]
T 4 −

∑

i=u,d,s

2kBT NC

(2π)3

×
∫ ∞

0
d3k

[
e−(E∗

i (k)−νi
∗)/kBT

(1 + e−3(E∗
i (k)−νi

∗)/kBT + 3�e−(E∗
i (k)−νi

∗)/kBT + 3�̄e−2(E∗
i (k)−νi

∗)/kBT )

+ e−2(E∗
i (k)+νi

∗)/kBT

(1 + e−3(E∗
i (k)+νi

∗)/kBT + 3�̄e−(E∗
i (k)+νi

∗)/kBT + 3�e−2(E∗
i (k)+νi

∗)/kBT )

]
= 0, (42)

and

∂�

∂�̄
=

[−a(T )�

2
− 6b(T )(� − 2�̄2 + �2�̄)

1 − 6�̄� + 4(�̄3 + �3) − 3(�̄�)2

]
× T 4 −

∑

i=u,d,s

2kBT NC

(2π)3

×
∫ ∞

0
d3k

[
e−2(E∗

i (k)−νi
∗)/kBT

1 + e−3(E∗
i (k)−νi

∗)/kBT + 3�e−(E∗
i (k)−νi

∗)/kBT + 3�̄e−2(E∗
i (k)−νi

∗)/kBT

+ e−(E∗
i (k)+νi

∗)/kBT

1 + e−3(E∗
i (k)+νi

∗)/kBT + 3�̄e−(E∗
i (k)+νi

∗)/kBT + 3�e−2(E∗
i (k)+νi

∗)/kBT

]
= 0. (43)

The above equations are solved simultaneously under dif-
ferent situations of the medium to obtain the in-medium val-
ues of scalar and vector fields, which are further used to
evaluate other thermodynamic properties and the EoS.

2.2 Thermodynamics of β-equilibrated SQM and structure
of strange quark stars

The initial stage of SQS known as PSQS is composed of
quarks (u, d, s) and leptons (e, μ, νe and νμ) maintaining the
weak β- equilibrium and the charge neutrality.

The weak β-equilibrium conditions are expressed as [45,
46]

μd = μs = μu + μe − μνe , (44)

μμ = μe and μνμ = μνe . (45)

Additionally, the condition for electric charge neutrality
is written as

2

3
ρu = 1

3
ρd + 1

3
ρs + ρe + ρμ. (46)

The total baryon density can be articulated in terms of
number density of quarks as

ρB = 1

3
(ρu + ρd + ρs). (47)

Using thermodynamical potential density,�, one can eval-
uate the pressure, p, free energy density, F , and the energy
density, ε, through the relations

p = −�, (48)

F = � +
∑

i=q,l

μi
∗ρi , (49)

and

ε = � +
∑

i=q,l

μi
∗ρi + T S, (50)
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respectively.
The EoS of quark matter calculated using the above rela-

tions can be used further to obtain the mass-radius relation
of QSs by solving the Tolman-Oppenheimer-Volkov (TOV)
equations (in units G = c = 1) [91]

dM

dr
= 4πr2ε(r), (51)

dp

dr
= −ε(r)M(r)

r2

[
1 + p(r)

ε(r)

][
1 + 4πp(r)r3

M(r)

]

×
[

1 − 2GM(r)

r

]−1

. (52)

In above, M(r) is the total mass within the sphere of radius r ,
ε(r) is the corresponding energy density, p(r) is the pressure,
and G is the Newton’s gravitational constant. In Eq. (52)
the first two factors in the square brackets denote the special
relativity corrections of order v2/c2, and these factors reduce
to 1 in the non-relativistic limit. The last set of brackets is a
general relativistic correction. The gravitational mass M =
M(r = R) of the star is the mass enclosed within the star’s
radius.

The gravitational waves emitted from the merger of two
compact stars serve as another probe to the study of the EoS of
dense matter. To calculate the tidal deformability and Love
number, along with TOV equations, we need to solve the
differential equations [58,92–94]

dH(r)

dr
= β, (53)

dβ(r)

dr
= 2

(
1 − 2

M

r

)−1

H

{
− 2π [5ε + 9P + f (ε + P)]

+ 3

r2 + 2

(
1 − 2

M

r

)−1 (
M

r2 + 4πr P

)2
}

+ 2β

r

(
1 − 2

M

r

)−1 {
−1 + M

r
+ 2πr2(ε − P)

}
, (54)

where H(r) is the metric function and f is defined as dε/dp.
The integration will start from the center with the expansions
H(r) = a0r2 and β(r) = 2a0r as the radius r → 0. The love
number measures the distortion of the shape of the surface of
a star by an external tidal field. The tidal deformability, �, is
related to the l = 2 dimensional love number k2 through the
relation � = 2

3k2 (C)−5, with k2 given by [93,95]

k2 = 8C5

5
(1 − 2C)2[2 + 2C(y − 1) − y]

× {2C[6 − 3y + 3C(5y − 8)]
+ 4C3[13 − 11y + C(3y − 2) + 2C2(1 + y)]
+ 3(1 − 2C)2[2 − y + 2C(y − 1)] ln(1 − 2C)}−1.

(55)

In Eq. 55, C ≡ M/R is the compactness of the compact star,
and the parameter y is defined as [58,94]

y = Rβ(R)

H(R)
− 4πR3ε0

M
, (56)

is related to the metric function H(R) and the surface energy
density ε0. The second term in the above equation is because
of the non-zero value of the surface energy density ε0.

3 Numerical results and discussion

In this section, numerical results on the study of the quark
matter under the conditions of β-equilibrium and charge neu-
trality are presented. The solution of the non-linear coupled
equation of motion (from Eqs. (35) to (43)) give rise to the
scalar fields (σ , ζ , δ, χ ), vector fields (ω, ρ, φ), and Polyakov
loop fields, (�, �̄). As discussed in the introduction section,
three situations are taken into consideration for evaluating
various quantities of interest. In the first situation, neutri-
nos are assumed to be inside of a star with lepton fraction,
Yl = 0.4 (Yl = Ye + Yμ + Yνe + Yνμ = 0.4) and entropy
per baryon equals to 1, second stage comes into action just
after the escape of neutrinos (Yνl = 0) and the entropy per
baryon increases to 2, and finally cold stars with zero entropy
forms [67,96,97]. In Sect. 3.1, we present the discussion on

the particle fraction, the effective constituent quark masses,
and the EoS under consideration. At last, employing the EoS,
the possible structure of SQSs is explored in Sect. 3.2.

3.1 Thermodynamical properties of SQM

In Fig. 1, we show the particle fractions,Yi , of quarks (u, d, s)
and leptons (e, μ) for different snapshots of PQS evolution at
gv = 0 and 10.92, as a function of baryonic density, ρB . The
population of d-quarks and electrons start decreasing when
s-quark appearance is observed for each case. The density at
which s-quarks start appearing is decreased with an increase
in the entropy. The fraction of electrons and muons is larger
at initial stage of the PQS evolution (s = 1 and Yl = 0.4),
as shown in Fig. 1a, b. This may occur due to the higher lep-
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Fig. 1 Particle fractions of
quarks (u, d and s) and leptons
(e, μ) at gv = 0 and 10.92 for
different snapshots of PQS as a
function of baryonic density, ρB
(in units of nuclear saturation
density ρ0)
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ton fraction which provides a large number of electrons and
decreases other negatively charged particles due to electric
charge neutrality. At second stage of star evolution, the frac-
tion of electron and muon decreased. At the final stage, where
s = 0 and Yνl = 0, the muon almost disappears for the whole
range of density, and the electron fraction is very small. For
the finite vector interaction, s quarks appear at lower density
as compared to the vanishing vector interaction.

The constituent quark masses are generated via the cou-
pling of scalar fields with the quarks in the medium. Figure 2
illustrates the variation of the constituent quark masses with

the baryonic density, ρB , at gv = 0 and 10.92. It is observed
that the effective constituent quark mass, m∗

i , in the SQM
decreases with an increase in the value of baryon density for
gv = 0 and 10.92. The variation inm∗

u andm∗
d is sharper than

m∗
s for lower density due to the absence of coupling between

s-quark and scalar σ field (gsσ = 0). The values of m∗
u , m∗

d
and m∗

s are observed as 140, 134 and 423 MeV at 2ρ0 and
can be compared to the vacuum masses 313 MeV for u, d
and 498 MeV for s-quark. For a given density, an increase in
the strength of vector interactions causes an increment in the
m∗

i . Moreover, the effect of different values of the entropy and
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Fig. 2 The effective constituent quark masses, m∗
i , for three snapshots of PQS evolution at gv = 0 and 10.92 as a function of baryonic density, ρB

(in units of nuclear saturation density ρ0)
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Fig. 3 a The sound velocity square, c2
s , as a function of energy density ε, b the entropy per baryon, s, as a function of baryonic density for strange

quark matter at T = 10, 30, 50 and 80 MeV

lepton fraction is minimal on m∗
d due to almost same fraction

of d-quark, however measurable change is observed in m∗
u

and m∗
s . As is visible from Fig. 2e, f, the sharp decrement in

m∗
s starts from different value of ρB for evolution condition

of PQS, because s-quark appear at different densities in each
case. Increase in the lepton fraction causes an increase in the
mass of s-quark and this shows that, for finite lepton frac-
tion, the chiral restoration for s-quark is suppressed because
of the large electron fraction. Further, with the increase in
vector interaction, the sharp decrement in m∗

s starts from
lower density. Our results are consistent with work of Ref.
[98], where the effects of varying the scalar-isovector cou-
pling strength on the constituent quark masses and particle
fractions were studied in the cold quark matter using NJL
model. To further explore the impact of finite temperature
on the quark matter properties, we present the discussion on
the sound velocity square, c2

s , and the entropy density, s. It
is known that the square of the sound velocity c2

s (= dp/dε)

for strongly interacting liquid is typically smaller than 1/3
(ideal gas limit) and satisfies the causality constraint, cs < c.
Therefore, it becomes interesting to introduce and investi-
gate the sound velocity in the proposed model for the phys-
ical verification of model parameters. In Fig. 3a, the sound
velocity square is plotted against the energy density for the
SQM without considering the case of neutrinos at T = 10,
30, 50, and 80 MeV. From the attained figure, it is observed
that c2

s of dense quark matter for each T will always be less
than 1/3. If we increase the temperature from T = 10 to 80

0

20
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60

80

T(
M
eV

)

0 1 2 3 4 5 6

B/ 0

s = 1, Yl = 0.4

s = 2, Y
l
= 0
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Fig. 4 The range of temperature achieved as a function of baryonic
density for s = 1, 2 with/without trapped neutrinos at different vector
interaction

MeV, it is attained that c2
s shows decrement and for T = 80

MeV, the peak of c2
s almost disappears. The results for the

square of the sound velocity plotted here resemble the results
predicted in the three flavor NJL model [48].

The variation of the entropy density as a function of baryon
density at finite temperatures is depicted in Fig. 3b, without
trapped neutrino matter. At finite temperature, entropy den-
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Fig. 5 The electron chemical potential as a function of baryonic density, ρB (in units of nuclear saturation density ρ0) for three snapshots of PQS
evolution at gv = 0, 6 and 10.92

sity, s, decreases with an increase in the baryonic density.
This behavior may be because, when baryon density van-
ishes, an electron-positron pair is generated at a finite temper-
ature, contributing to the entropy. Also, we noticed that with
the increase in temperature, s becomes larger. These obser-
vations are also consistent with the calculations of Ref. [99]
where properties of SQM at finite temperature were investi-
gated using the MIT bag model with the density-dependent
bag constant.

In Fig. 4 we plot the variation of temperature, T , as
a function of baryonic density for (s,Yl) = (1, 0.4) and
(s,Yνl) = (2, 0), at gv = 0, 6 and 10.92. For both s = 1 and
2, it is evident that temperature becomes almost constant and
saturation is achieved at 4 − 6 ρ0. For both situations, the
temperature of each curve increased gradually and attained
a maximum value at 38 MeV and 76 MeV, for s = 1 and 2,
respectively. For a given value of entropy per baryon, if one
compare the situations with and without neutrino cases, the

temperature will be lower in the former situation. The rea-
son is: the degrees of freedom will increase for fixed lepton
fraction, and a lower value of temperature will be required
to keep the entropy per baryon fixed [37]. Further, the effect
of vector interaction can also be observed in the moderate
density range, i.e., for an increment in gv at fixed density, the
temperature is observed to decrease.

Lepton fraction plays an important role in studying the
behavior of electron chemical potential. Figure 5 shows the
variation of electron chemical potential, μe, with the baryon
density, at various vector interactions, for three star evolu-
tion snapshots of PQS. It is observed that for Yνl = 0, μe

first increase, attain a maximum value and then decrease
for s = 0, 2 at gv = 0, 6 and 10.92. On the other hand,
for a fixed value of the total lepton fraction with the finite
number of neutrinos, μe increases gradually with the den-
sity. Comparing s = 0 and s = 2 curves, μe is observed to
fall with an increase in the entropy, for each given gv value.
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Fig. 6 The behavior of pressure at for different condition of PQS evolution as a function of baryonic density, ρB (in units of nuclear saturation
density ρ0) at gv = 0, 6 and 10.92

Increasing the strength of vector interactions, keeping other
parameters fixed, μe increases, and maxima of the curve (for
Yνl = 0) moves toward lower density. Focusing on the range
of electron chemical potential, for Yνl = 0 and Yl = 0.4,
it is observed to be nearly 0 to 75 MeV and 0 to 300 MeV,
respectively. The nature of μe is also studied in NJL and MIT
bag model [37]. It was observed that in the MIT model, μe

is always less than 20 MeV, whereas its range was about 100
MeV for the NJL model.

In Fig. 6, we plot the behavior of pressure density, P , of
quarks with baryonic density for different conditions of PQS
evolution at gv = 0, 6 and 10.92. It is observed that P shows
a monotonic increment with an increase in the baryonic den-
sity for each configuration. For a given density, an increase
in the strength of vector interactions results in the pressure
increment.

In Fig. 7 we plot the EoS of quark matter for dif-
ferent conditions of the medium. Pressure is observed to

increase smoothly with energy density for each combination
of entropy and lepton fraction. An increase in the value of
gv and as well as lepton fraction, increase the stiffness in the
EoS. The effect of temperature on the EoS for different val-
ues of lepton fraction has been studied using the NJL model
under the β-equilibrium and charge neutrality condition in
Ref. [37]. Also, EoS for SQM for different coupling strengths
of vector-isovector and scalar-isoscalar interaction have been
computed in NJL model studies of Refs. [48,98,100].

3.2 Properties of strange quark stars (SQSs)

Solving the TOV equation for a specific EoS, one can find
the radial dependency of the energy density and the pressure
for a particular central pressure, Pc. With the variation in Pc,
one can attain a sequence of compact star masses and radii
as illustrated in Fig. 8.
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Fig. 7 The EoS plotted as a function of baryonic density ρB (in units of nuclear saturation density ρ0), for various situation of PQS evolution at
gv = 0, 6 and 10.92

This figure shows the effect of vector interactions on the
mass-radius relation for different stages of PQS evolution.
For an increase in the gv value, the EoS becomes stiffer
and the maximum gravitational mass and radius of SQS
increases. In case of cold quark star (s = 0 and Yνl = 0), the
maximum value of mass reaches upto 1.776M�, 1.830M�,
and 1.934M� for gv = 0, 1 and 2, respectively. On increas-
ing the entropy per baryon (keeping Yνl = 0) from 0 to
2, the maximum mass of SQSs is also found to increase,
for finite values of gv . The inclusion of neutrinos further
increase the gravitational mass for different vector interac-
tions. For stars with trapped neutrinos and gv ≥ 2, the max-
imum mass can have a value larger than 2.0 M�, which
is consistent with the recently discovered large mass pul-
sar J1614 − 2230 (1.97 ± 0.04M�) and PSR J0740-6620
(2.14+0.10

−0.09M�) [18,19], however the upper radius limit val-
ues for a 1.4M� from three recent works are R ≤ 13.76
km, R ≤ 13.6 km, and 8.9 ≤ R ≤ 13.76 km, respectively
[26,28]. From Fig. 8 one can observe that the upper radius

limits of 1.4M� are smaller than our maximum radii except
s = 0 and Yνl = 0 for gv = 2. Table 2 shows the numeric
values of maximum masses and radii for various conditions
of PQS evolution at different gv values (Table 4).

Another important parameter Love number, k2, is calcu-
lated using Eq. (55). Figure 9 depicts the variation of Love
number as a function of SQS mass at gv = 0, 1, and 2. It
is observed that k2 increases at small SQS mass values, then
reaches its maximum at around 1.1–1.4M�, and later decays
rapidly in the larger mass region.

The tidal deformability is an important quantity in the
binary neutron star merger which can be derived using a grav-
itational wave detector. In Fig. 10, the tidal deformability, �,
is plotted against the mass of SQS. It is perceived that the
deformability decreases with an increase in the mass of star,
as long as SQS is stable with increasing central density. Com-
paring the results attained for gv = 2, one can see that larger
deformability of SQS is achieved at s = 2. The recent inves-
tigation for binary neutron star merger GW170817 put tight
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Fig. 8 Mass-radius relation of SQSs for various vector interactions/moments of the star evolution defined by entropy and lepton fraction with the
observational constraints for maximum mass required by PSR J0740-6620(2.14+0.10

−0.09M�) and PSR J0348+0432 (2.01 ± 0.04 M�) [20]

Table 4 The values of maximum gravitational mass, M/M� and corresponding radius, R, for strange quark stars are tabulated.

(s, Yl ) gv M/M� R(km)

(0, 0) 0 1.776 12.45

1 1.830 12.75

2 1.934 13.39

(1, 0.4) 0 1.880 12.59

1 1.928 12.84

2 2.045 13.47

(2, 0) 0 1.775 13.42

1 1.836 13.71

2 1.949 14.23
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Fig. 9 Relation between Love number, k2 and the mass of SQS for different moments of the star evolution at gv = 0, 1 and 2

constraints on mass and �, with corresponding range 1.00–
1.89M� and 70–580, respectively. In our case, for 1.4M�
star, the observed tidal deformabilities are 85–132 for gv = 0,
106–151 for gv = 1 and 160-200 for gv = 2 which show
good agreement with the results obtained for GW170817.
In Ref. [60], the author studied the tidal deformability in
binary star mergers, considering the cases of udQS−udQS
and udQS-hadronic star. The obtained tidal deformabilities
at 1.4M� and their average values are in good agreement
with the experimental constraints of GW170817.

The properties of proto-quark star are also explained in
Ref. [102] using different models (QMDD model, MIT bag
model, and NJL model) at different entropy and lepton frac-
tion. Their results show that the QMDD model always repro-
duces massive stars than the MIT bag model due to the
additional terms appearing in the thermodynamical potential.
Bordbar et al. investigated the properties of SQSs consider-
ing the impact of finite entropy and temperature using MIT
bag model [63] and NJL model [103]. It was concluded that
the maximum mass and the radius of stars decreases with

an increase in entropy, whereas an increment is observed as
a function of temperature. The mass-radius relation for the
above models obey the relation, M ∝ R3, for different cases
at fixed central energy density.

Finally, we present the results on the gravitational redshift,
Z , defined through the relation [63]

Z =
(

1 − 2M

Rc2

)−1/2

− 1. (57)

The gravitational redshift of SQS as a function of gravita-
tional mass is plotted in Fig. 11. It is observed that Z increases
with an increase in the value of gv for different moments of
star evolution, and Z has a larger value at finite lepton frac-
tion. The maximum value of Z for SQS is observed as 0.210
at gv = 2, with s = 1, Yl = 0 and minimum value as 0.174 at
gv = 0 with s = 2 and Yνl = 0. The maximum gravitational
redshift, Z = 0.192, lies in the observed range of quark star
candidate RXJ185635-3750 [104]. In Ref. [63], authors have
studied the gravitational redshift using the MIT bag model for
both fixed and density-dependent bag constant. They found
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Fig. 10 Relation between tidal deformability and the mass of SQS for different moments of the star evolution at gv = 0, 1 and 2

that Z increases with an increase in the entropy value, and
its maximum is attained by density-dependent bag constant
with entropy s = 2.5kB . The behavior of gravitational red-
shift with temperature is also studied in the NJL model and
observed that Z increases with an increase of temperature.

4 Summary and future outlook

In summary, employing Polyakov chiral SU(3) quark mean-
field model, we studied the properties of SQM/ SQSs under
β-equilibrium, with/without trapped neutrinos. We studied
the effect of finite entropy and lepton fraction on the pop-
ulation threshold of quarks and leptons, the effect of tem-
perature on entropy density and sound velocity squared. We
also observed the effect of vector interactions at different
snapshots of PQS evolution on the EoS. It was found that
the EoS becomes stiffer for a higher gv value in each case,
and the presence of lepton fraction further enhanced this.

The EoS was further used in TOV equation to calculate the
mass-radius and tidal deformability for different stages of
star evolution. The maximum mass of SQSs shows an incre-
ment with an increase in the vector interaction. In the case of
cold star, the maximum gravitational mass of SQSs reached
upto 1.776M�, 1.830M� and 1.934M�, for gv = 0, 1 and 2,
respectively. We further evaluated the tidal deformability of
SQSs and found that its magnitude has good compatibility
with the constraint of the GW170817 event.

In our future work, the hadronic degrees of freedom will be
incorporated in the present Polyakov model, and the EoS and
other properties of hybrid stars will be explored as has been
done in different studies [68,105–108]. Several efforts have
been made by the authors to study the effect of first-order
phase transition on SQM in relation to compact stars [109–
111]. Roark and Dexheimer applied a two-phase approach on
the chiral mean-field model in order to explore the first-order
phase transition for different leptonic degrees of freedom
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Fig. 11 The gravitational redshift versus gravitational mass of strange quark stars for different moments of the star evolution, at gv = 0, 1 and 2

[109]. A similar approach was applied within MIT bag model
to describe the properties of SQM and phase transition [110].

Extending the current model to situations beyond the
mean-field approximation for the study of strongly interact-
ing matter will also be of interest in the future work. To
incorporate quantum fluctuations in the PCQMF model, cal-
culations can be done using the functional renormalization
group (FRG) approach. Recently, the QCD phase has been
studied applying the FRG approach to the quark meson model
[112–115]. Also, we will include the effect of finite magnetic
field on the EoS and structural properties of compact objects
[100,116–118].
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