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Abstract We present a supersymmetric extension of the
exotic Newtonian Chern–Simons gravity theory in three
spacetime dimensions. The underlying new non-relativistic
superalgebra is obtained by expanding theN = 2 AdS super-
algebra and can be written as two copies of the enhanced
Nappi–Witten algebra, one of which is augmented by super-
symmetry. We show that the exotic Newtonian superalgebra
allows to introduce a cosmological constant to the extended
Newtonian supergravity. Interestingly, the obtained super-
gravity action contains the extended Newton–Hooke super-
gravity as a sub-case.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1
2 Exotic Newtonian gravity in three spacetime dimen-

sions . . . . . . . . . . . . . . . . . . . . . . . . . 2
3 Exotic Newtonian superalgebra and semigroup expan-

sion method . . . . . . . . . . . . . . . . . . . . . 4
3.1 Exotic Newtonian superalgebra by expanding

the N = 2 AdS superalgebra . . . . . . . . . . 4
4 Exotic Newtonian supergravity action and flat limit . 7
5 Conclusions . . . . . . . . . . . . . . . . . . . . . 10
A Exotic Newtonian superalgebra by expanding an

enhanced Nappi–Witten superalgebra . . . . . . . . 11
B Supersymmetry gauge transformations . . . . . . . 12
References . . . . . . . . . . . . . . . . . . . . . . . . 13

a e-mail: patrick.concha@ucsc.cl (corresponding author)
b e-mail: lucrezia.ravera@polito.it
c e-mail: ekrodriguez@ubiobio.cl

1 Introduction

There has been a growing interest in exploring Newtonian
(super)gravity theories due to their use in strongly cou-
pled condensed matter systems [1–11] and non-relativistic
effective field theories [12–16]. The construction of New-
tonian gravity, describing the physical gravitational force
at non-relativistic level, requires to consider the so-called
Newton-Cartan geometry [17,18]. Such geometrical frame-
work is necessary to covariantize the Poisson equation
of Newtonian gravity. Nevertheless, a principle action for
Newtonian gravity was recently presented in [19] which
has required to extend the Bargmann algebra [20–27] by
including three additional generators. Subsequently, a three-
dimensional Chern-Simons (CS) action has been constructed
in [28] which is invariant under a central extension of the
symmetry group that leaves the recently constructed Newto-
nian gravity action invariant. The novel symmetry has been
denoted as extended Newtonian algebra and can be recov-
ered by means of a contraction of a bi-metric model being the
sum of Einstein gravity in the Lorentzian and Euclidean sig-
natures. Interestingly, unlike the Newtonian gravity of [19],
the matter coupling of the extended Newtonian gravity the-
ory admits backgrounds with non-trivial curvature whenever
matter is present, similarly to the matter-coupled extended
Bargmann gravity [27].

The introduction of a cosmological constant in gravity
theories is known to have important applications, such as,
e.g., the ones recently presented in [29]. In non-relativistic
gravity theories the inclusion of a cosmological constant
in non-relativistic gravity theories is done considering the
Newton-Hooke symmetry [30–36]. However, an extension
of the extended Newton-Hooke algebra [37,38] is needed
to include a cosmological constant to the extended Newto-
nian gravity theory [39]. The novel symmetry is denoted as
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exotic Newtonian algebra and can be seen as an enhanced
Bargmann-Newton-Hooke algebra [40]. Both extended and
exotic Newtonian gravity theories can be recovered as the
non-relativistic limit of the coadjoint Poincaré ⊕ u (1)2 and
coadjoint AdS ⊕ u (1)2 gravity theories [40].

Supersymmetric extensions of three-dimensional non-
relativistic gravity models have been recently approached in
[27,41,42] and subsequently studied in [28,43–47]. In par-
ticular, a CS action based on the supersymmetric extension of
the extended Newtonian algebra has been presented in [28].
Although a cosmological constant has been accommodated
in a non-relativistic supergravity theory through the extended
Newton–Hooke superalgebra [44], the possible supersym-
metric extensions of the exotic Newtonian gravity remain
unexplored. Unlike bosonic non-relativistic gravity, the con-
struction of an action based on a non-relativistic superalge-
bra is non-trivial and requires the introduction of additional
bosonic generators. Furthermore, the non-relativistic limit is
often ambiguous when supercharges are present. One way to
circumvent this difficulty is through the expansion method
based on Maurer–Cartan forms [48] and semigroups [49],
which have proved to be useful to obtain known and new
non-relativistic supergravity theories from relativistic ones
[43,44,46].

In this work, we present a supersymmetric extension of the
three-dimensional exotic Newtonian CS gravity introduced
in [39] by applying the semigroup expansion (S-expansion)
[49] to the N = 2 AdS supergravity theory. The motivation
to consider the CS formalism in three spacetime dimensions
is twofold. On one hand, three-dimensional CS gravity can
be seen as a toy model to approach higher-dimensional theo-
ries. On the other hand, the construction of a non-relativistic
(super)gravity action is much simpler and affordable through
the CS formalism which allows us to write a gauge-invariant
action. The novel Newtonian supergravity theory is invari-
ant under an exotic Newtonian superalgebra which can be
written as two copies of the enhanced Nappi–Witten algebra
[40,50], one of which is augmented by supersymmetry. Inter-
estingly, the extended Newton–Hooke supergravity action
appears as a sub-case of the exotic Newtonian supergrav-
ity theory. Moreover, we show that the extended Bargmann
and extended Newtonian supergravities are recovered in the
vanishing cosmological constant limit (i.e. the flat limit).

The paper is organized as follows: In Sect. 2 we review
the exotic Newtonian algebra and the corresponding three-
dimensional CS action. Sections 3 and 4 contain our main
results. In Sect. 3, we present an exotic Newtonian superal-
gebra by considering an S-expansion of the N = 2 super
AdS algebra. In Sect. 4, we construct the exotic Newtonain
CS supergravity action and analyze its vanishing cosmolog-
ical constant limit. Section 5 is devoted to discussion and
future outlook.

2 Exotic Newtonian gravity in three spacetime
dimensions

In this section, we briefly review the three-dimensional CS
exotic Newtonian gravity theory presented in [39]. The
exotic Newtonian algebra, also denoted as extended post-
Newtonian algebra [51], is spanned by the set of generators
{J,Ga, H, Pa, M, S, Ba, Ta} along with two central charges
Y and Z . The non-vanishing commutation relations of the
exotic Newtonian algebra are given by

[J,Ga] = εabGb , [Ga,Gb] = −εabS ,

[H,Ga] = εab Pb ,

[J, Pa] = εab Pb , [Ga, Pb] = −εabM ,

[H, Ba] = εabTb ,

[J, Ba] = εabBb , [Ga, Bb] = −εabZ ,

[S,Ga] = εabBb ,

[J, Ta] = εabTb , [Ga, Tb] = −εabY ,

[S, Pa] = εabTb ,

[M,Ga] = εabTb , [Pa, Bb] = −εabY ,

[H, Pa] = 1

�2 εabGb ,

[H, Ta] = 1

�2 εabBb , [Pa, Pb] = − 1

�2 εabS ,

[M, Pa] = 1

�2 εabBb , [Pa, Tb] = − 1

�2 εabZ . (2.1)

Let us note that � is a length parameter related to the cos-
mological constant through � ∝ ± 1

�2 . In particular, in the
vanishing cosmological constant limit � → ∞, the algebra
corresponds to the extended Newtonian algebra introduced
in [28]. One can notice that the extended Newton-Hooke
algebra [37,38] appears setting Ba, Ta, Y and Z to zero.

The exotic Newtonian algebra admits the extended Newton-
Hooke non-vanishing components of the invariant tensor
[37,38]

〈J S〉 = −α0 ,

〈GaGb〉 = α0δab ,

〈JM〉 = 〈HS〉 = −α1 ,

〈Ga Pb〉 = α1δab ,

〈HM〉 = −α0

�2 ,

〈Pa Pb〉 = α0

�2 δab , (2.2)

along with [39]

〈SS〉 = 〈J Z〉 = −β0 ,

〈GaBb〉 = β0δab ,

〈MS〉 = 〈HZ〉 = 〈JY 〉 = −β1 ,
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〈PaBb〉 = 〈GaTb〉 = β1δab ,

〈MM〉 = 〈HY 〉 = −β0

�2 ,

〈PaTb〉 = β0

�2 δab . (2.3)

Here, α0, α1, β0 and β1 are arbitrary independent constants.
In particular, the components of the invariant tensor propor-
tional to α0 and β0 are related to the “exotic” sector of the
theory [52]. On the other hand, the flat limit � → ∞ repro-
duces the invariant tensor of the extended Bargmann algebra
[27,38] and the most general extended Newtonian one [39].
Let us note that, at the level of the exotic Newtonian algebra,
the invariant tensor (2.2) alone is degenerate. Nevertheless,
one obtain a non-degenerate bilinear form considering both
families of invariant tensor given by (2.2) and (2.3).

The CS action based on the exotic Newtonian algebra can
be obtained considering the following gauge connection one-
form:

A = τH + ea Pa + ωJ + ωaGa + mM + sS + taTa

+ba Ba + yY + zZ , (2.4)

and the non-vanishing components of the invariant ten-
sor (2.2) and (2.3) into the general expression of a three-
dimensional CS action,

ICS = k

4π

∫ 〈
AdA + 2

3
A3

〉
. (2.5)

Here k is the CS level of the theory which, for gravitational
theories, is related to the gravitational constant G through
k = 1/(4G). The three-dimensional exotic Newtonian CS
gravity action reads, up to boundary terms, as follows [39]:

IExotic-N = k

4π

∫
LExtended-NH + LEnhanced-BNH , (2.6)

where

LExtended-NH = α0

[
ωa R

a
(
ωb

)
− 2sR (ω) + 1

�2 ea R
a
(
eb

)

− 2

�2 mR (τ )

]
+ α1

[
ea R

a
(
ωb

)

+ωa R
a
(
eb

)
− 2mR (ω) − 2sR (τ )

]
,

(2.7)

and

LEnhanced-BNH = β0

[
ba R

a
(
ωb

)
+ ωa R

a
(
bb

)
− 2zR (ω)

−sds − 2

�2 yR (τ ) − 1

�2 mdm

+ 1

�2 ta R
a
(
eb

)
+ 1

�2 ea R
a
(
tb

)]

+β1

[
ea R

a
(
bb

)
+ ba R

a
(
eb

)

+ta R
a
(
ωb

)
+ ωa R

a
(
tb

)
− 2yR (ω)

− 2zR (τ ) − 2mds
]
. (2.8)

Here we have used the curvatures

R (ω) = dω ,

R (τ ) = dτ ,

Ra
(
ωb

)
= dωa + εacωωc + 1

�2 εacτec ,

Ra
(
eb

)
= dea + εacωec + εacτωc ,

Ra
(
tb

)
= dta + εacωtc + εacτbc + εacsec + εacmωc ,

Ra
(
bb

)
= dba + εacωbc + εacsωc + 1

�2 εacτ tc

+ 1

�2 εacmec . (2.9)

Moreover, one can also introduce the curvatures

R (m) = dm + εacωaec ,

R (s) = ds + 1

2
εacωaωc + 1

2�2 εaceaec ,

R (y) = dy + εacωatc + εaceabc ,

R (z) = dz + εacωabc + 1

�2 εaceatc . (2.10)

While the first Lagrangian (2.7) corresponds to the extended
Newton-Hooke gravity Lagrangian [37,38], the second one
(2.8) coincides with the enhanced Bargmann-Newton-Hooke
gravity Lagrangian [40] plus an exotic sector proportional to
β0. The extended Newton-Hooke gravity can be seen as the
non-relativistic limit of the AdS ⊕ u (1)2 gravity. On the
other hand, the enhanced Bargmann-Newton-Hooke grav-
ity theory appears as a non-relativistic limit of the coadjoint
AdS ⊕u (1)2 gravity [40]. Both Lagrangians define the exotic
Newtonian gravity theory which in the vanishing cosmolog-
ical constant limit � → ∞ reproduces the extended Newto-
nian gravity theory [28,39].
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3 Exotic Newtonian superalgebra and semigroup
expansion method

In this section, we show that the exotic Newtonian superalge-
bra can be obtained by considering the S-expansion [49] of
the relativistic N = 2 AdS superalgebra. Our approach pro-
vides not only the (anti-)commutation relations of the exotic
Newtonian superalgebra but also the non-vanishing compo-
nents of the invariant tensor, which are essential for the con-
struction of a CS action. Before presenting the explicit deriva-
tion of the exotic Newtonian superalgebra, we first review the
S-expansion procedure and its main features.

The expansion method was first introduced in [53] and
subsequently developed in [48,49] to obtain a new (bigger)
Lie algebraG from an original one g. In particular, the expan-
sion based on semigroups [49,54–59] allows to define a new
Lie algebra,G = S×g, by combining the structure constants
of a Lie algebra g with the elements of a semigroup S. The
S-expanded Lie (super)algebra satisfies
[
T(A,α), T(B,β)

] = Kαβ
γCAB

CT(C,γ ) , (3.1)

where CAB
C are the structure constants of the original Lie

(super)algebra g, T(A,α) = λαTA denote the generators of
the expanded (super)algebra G, and Kαβ

γ is the so-called
2-selector, which satisfies

Kαβ
γ =

{
1 when λαλβ = λγ ,

0 otherwise.
(3.2)

A smaller (super)algebra can be extracted from the expanded
one, called as 0S-reduced (super)algebra, by considering a
semigroup with zero element 0S ∈ S and imposing the con-
dition 0STA = 0. An alternative method to extract a smaller
(super)algebra from the expanded one G requires to con-
sider a subset decomposition of the semigroup S = ⋃

p∈I Sp
which satisfies the same structure than a subspace decompo-
sition of the original (super)algebra g = ⊕

p∈I Vp, where I
denotes a set of indices. Then, the subalgebra

GR =
⊕
p∈I

Sp × Vp , (3.3)

is called the resonant subalgebra of the expanded (super)
algebra G.

It is important to mention that, unlike the power series
expansion carried out on the Maurer–Cartan forms [48],
the S-expansion method is defined entirely on the Lie
(super)algebra g without considering the group manifold.
Furthermore, for a particular choice of the semigroup S,
the S-expansion procedure can reproduce the expanded
(super)algebras obtained through the Maurer–Cartan forms
power series expansion. Moreover, the S-expansion method
provides us with the non-vanishing components of the invari-
ant tensor of the S-expanded (super)algebra in terms of the
invariant tensor of the original (super)algebra. It is important

to mention that both expansion mechanisms have been useful
not only to construct new relativistic (super)gravity theories
[60–73] but also at the non-relativistic level [43,47,50,51,
74–80].

3.1 Exotic Newtonian superalgebra by expanding the
N = 2 AdS superalgebra

Here we explore a supersymmetric extension of the exotic
Newtonian algebra by considering the S-expansion of the
N = 2 AdS superalgebra given by an so (2) extension of the
osp (2, 2)⊗sp (2) superalgebra. To this end, we consider the
procedure used in [46,51] to obtain a proper exotic Newto-
nian superalgebra which admits an invariant supertrace.

Let us first consider an so (2) extension of the osp (2, 2)⊗
sp (2) superalgebra which is spanned by the set of gener-
ators { J̃A, P̃A, T̃ , Ũ , Q̃i

α} and satisfies the following (anti-
)commutation relations [81]:
[
J̃A, J̃B

]
= εABC J̃

C ,[
J̃A, P̃B

]
= εABC P̃

C ,

[
P̃A, P̃B

]
= 1

�2 εABC J̃
C ,

[
J̃A, Q̃i

α

]
= −1

2
(γA) β

α Q̃i
β ,

[
P̃A, Q̃i

α

]
= − 1

2�
(γA) β

α Q̃i
β ,

[
T̃ , Q̃i

α

]
= 1

2
εi j Q̃ j

β ,

{Q̃i
α, Q̃ j

β} = −δi j

�

(
γ AC

)
αβ

J̃A − δi j

(
γ AC

)
αβ

P̃A

−Cαβεi j
(
Ũ + 1

�
T̃

)
, (3.4)

where α, β = 1, 2, i, j = 1, 2 denotes the number of
supercharges and A, B,C = 0, 1, 2 are the Lorentz indices
which are raised and lowered with the Minkoswki metric
ηAB = (−1, 1, 1). Here, C is the charge conjugation matrix,

Cαβ = Cαβ =
(

0 −1
1 0

)
, (3.5)

which satisfies CT = −C and Cγ A = (Cγ A)T with γ A

being the Dirac matrices in three spacetime dimensions. Let
us note that the presence of the generators {T̃ , Ũ} is required
not only to construct an exotic Newtonian superalgebra with
non-degenerate invariant tensor, but also to establish a proper
flat limit � → ∞. The non-degeneracy of the invariant tensor
is crucial to get a well-defined CS (super)gravity action and is
related to the Physical requirement that the CS action involves
a kinematical term for each gauge field. In particular, the non-
vanishing components of the invariant tensor for the so (2)
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extension of the osp (2, 2) ⊗ sp (2) superalgebra read

〈 J̃A J̃B〉 = μ0ηAB ,

〈 J̃A P̃B〉 = μ1ηAB ,

〈P̃A P̃B〉 = μ0

�2 ηAB ,

〈T̃ T̃ 〉 = μ0 ,

〈T̃ Ũ〉 = μ1 ,

〈Ũ Ũ〉 = −μ1

�2 ,

〈Q̃i
α Q̃

j
β〉 = 2

(
μ1 + μ0

�

)
Cαβδi j , (3.6)

where μ0 and μ1 are arbitrary constants. In the flat limit
� → ∞, the invariant tensor corresponds to the N = 2
super-Poincaré ones [81].

Before considering the S-expansion of the N = 2 AdS
superalgebra (3.4), it is convenient to decompose the indices
A, B as

A → (0, a) (3.7)

with a = 1, 2. Then let V0 = { J̃0, P̃0, T̃ , Ũ , Q̃+
α } and V1 =

{ J̃a, P̃a, Q̃−
α } be a subset decomposition of the N = 2 AdS

superalgebra where

Q̃±
α = 1√

2

(
Q̃1

α ± εαβ Q̃
2
β

)
. (3.8)

One can see that the subspace decomposition of the N = 2
AdS superalgebra satisfies

[V0, V0] ⊂ V0 , [V0, V1] ⊂ V1 , [V1, V1] ⊂ V0 .(3.9)

Let us consider now S(4)
E = {λ0, λ1, λ2, λ3, λ4, λ5} as

the relevant abelian semigroup whose elements satisfy the
following multiplication law:

λαλβ =
{

λα+β if α + β < 5 ,

λ5 if α + β ≥ 5 ,
(3.10)

with λ5 = 0S being the zero element of the semigroup which
satisfies 0Sλi = 0S . Then, let S(4)

E = S0 ∪ S1 be a resonant
semigroup decomposition where

S0 = {λ0, λ2, λ4, λ5} , (3.11)

S1 = {λ1, λ3, λ5} . (3.12)

One can see that such semigroup decomposition satisfies the
same algebraic structure than the subspace decomposition,

S0 · S0 ⊂ S0 , S0 · S1 ⊂ S1 , S1 · S1 ⊂ S0 . (3.13)

Then one finds a new expanded superalgebra after extracting
a resonant subalgebra from the S(4)

E -expansion of the N = 2
AdS superalgebra,

GR = S0 × V0 ⊕ S1 × V1 , (3.14)

and considering a 0S-reduction. The novel superalgebra is
spanned by the exotic Newtonian bosonic generators

{J,Ga, S, Ba, Z , H, Pa, M, Ta,Y } (3.15)

along with

{Y1,Y2,Y3,U1,U2,U3, Q
+
α , Q−

α , Rα,W−
α ,W+

α } . (3.16)

The expanded generators (3.15) and (3.16) are related to the
N = 2 super AdS ones through

λ5

λ4 Z , Y, Y3, U3, W+
α

λ3 Ba, Ta, W−
α

λ2 S, M, Y2, U2, Rα

λ1 Ga, Pa, Q−
α

λ0 J, H, Y1, U1, Q+
α

J̃0, P̃0, T̃ , Ũ , Q̃+
α J̃a, P̃a, Q̃−

α

(3.17)

Using the (anti-)commutation relations of the N = 2 AdS
superalgebra (3.4) and the multiplication law of the semi-
group (3.10), one can show that the expanded generators
satisfy the exotic Newtonian algebra (2.1) along with the
following commutation relations:

[
J, Q±

α

] = −1

2
(γ0)

β
α Q±

β , [J, Rα] = −1

2
(γ0)

β
α Rβ ,

[
J,W±

α

] = −1

2
(γ0)

β
α W±

β ,

[
S, Q+

α

] = −1

2
(γ0)

β
α Rβ ,

[
S, Q−

α

] = −1

2
(γ0)

β
α W−

β ,

[S, Rα] = −1

2
(γ0)

β
α W+

β ,

[
H, Q±

α

] = − 1

2�
(γ0)

β
α Q±

β , [H, Rα] = − 1

2�
(γ0)

β
α Rβ ,

[
H,W±

α

] = − 1

2�
(γ0)

β
α W±

β ,

[
M, Q+

α

] = − 1

2�
(γ0)

β
α Rβ ,

[
M, Q−

α

] = − 1

2�
(γ0)

β
α W−

β ,

[M, Rα] = − 1

2�
(γ0)

β
α W+

β ,

[
Ga, Q

+
α

] = −1

2
(γa)

β
α Q−

β ,
[
Ga, Q

−
α

] = −1

2
(γa)

β
α Rβ ,

[Ga, Rα] = −1

2
(γa)

β
α W−

β ,

[
Ga,W

−
α

] = −1

2
(γa)

β
α W+

β ,
[
Ba, Q

±
α

] = −1

2
(γa)

β
α W∓

β ,
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[
Pa, Q

+
α

] = − 1

2�
(γa)

β
α Q−

β ,

[
Pa, Q

−
α

] = − 1

2�
(γa)

β
α Rβ , [Pa, Rα] = − 1

2�
(γa)

β
α W−

β ,

[
Pa,W

−
α

] = − 1

2�
(γa)

β
α W+

β ,

[
Ta, Q

±
α

] = − 1

2�
(γa)

β
α W∓

β ,
[
Y1, Q

±
α

] = ±1

2
(γ0)αβ Q±

β ,

[Y1, Rα] = 1

2
(γ0)αβ Rβ ,

[
Y1,W

±
α

] = ±1

2
(γ0)αβ W±

β ,
[
Y2, Q

+
α

] = 1

2
(γ0)αβ Rβ ,

[
Y2, Q

−
α

] = −1

2
(γ0)αβ W−

β ,

[Y2, Rα] = 1

2
(γ0)αβ W+

β ,
[
Y3, Q

+
α

] = 1

2
(γ0)αβ W+

β ,

[
Z , Q+

α

] = −1

2
(γ0)

β
α W+

β ,
[
Y, Q+

α

] = − 1

2�
(γ0)

β
α W+

β ,

(3.18)

and the following anti-commutation relations:

{Q+
α , Q+

β } = −1

�

(
γ 0C

)
αβ

J −
(
γ 0C

)
αβ

H

−1

�

(
γ 0C

)
αβ

Y1 −
(
γ 0C

)
αβ

U1 ,

{Q+
α , Q−

β } = −1

�

(
γ aC

)
αβ

Ga − (
γ aC

)
αβ

Pa ,

{Q−
α , Q−

β } = −1

�

(
γ 0C

)
αβ

S −
(
γ 0C

)
αβ

M

+1

�

(
γ 0C

)
αβ

Y2 +
(
γ 0C

)
αβ

U2 ,

{Q+
α , Rβ} = −1

�

(
γ 0C

)
αβ

S −
(
γ 0C

)
αβ

M

−1

�

(
γ 0C

)
αβ

Y2 −
(
γ 0C

)
αβ

U2 ,

{Q−
α , Rβ} = −1

�

(
γ aC

)
αβ

Ba − (
γ aC

)
αβ

Ta ,

{Q+
α ,W−

β } = −1

�

(
γ aC

)
αβ

Ba − (
γ aC

)
αβ

Ta ,

{Q−
α ,W−

β } = −1

�

(
γ 0C

)
αβ

Z −
(
γ 0C

)
αβ

Y

+1

�

(
γ 0C

)
αβ

Y3 +
(
γ 0C

)
αβ

U3 ,

{Q+
α ,W+

β } = −1

�

(
γ 0C

)
αβ

Z −
(
γ 0C

)
αβ

Y

−1

�

(
γ 0C

)
αβ

Y3 −
(
γ 0C

)
αβ

U3 ,

{Rα, Rβ} = −1

�

(
γ 0C

)
αβ

Z −
(
γ 0C

)
αβ

Y

−1

�

(
γ 0C

)
αβ

Y3 −
(
γ 0C

)
αβ

U3 . (3.19)

The superalgebra given by (2.1), (3.18) and (3.19) corre-
sponds to a supersymmetric extension of the exotic New-
tonin algebra [39]. Let us note that the expansion proce-

dure implies the presence of additional bosonic generators
{Y1,Y2,Y3,U1,U2,U3} which, as we shall see, ensure hav-
ing not only a non-degenerate invariant tensor but also a well-
defined non-vanishing cosmological constant limit � → ∞.
Indeed, in the flat limit, one can see that the superalgebra
reduces to the extended Newtonian superalgebra introduced
in [28] in presence of the additional generators {Y1, Y2, Y3}
and central charges {U1,U2,U3}. The extra bosonic gen-
erators {Y1,Y2,Y3} are expansions of the relativistic R-
symmetry generator T and act non-trivially on the fermionic
charges.

Interestingly, the exotic Newtonian superalgebra (2.1),
(3.18) and (3.19) can be written as two copies of the so-
called enhanced Nappi–Witten algebra [40,47], one of which
is augemented by supersymmetry. Indeed, let us consider the
following redefinition of the generators:

Ga = La − L̃a , Pa = 1

�

(
La + L̃a

)
, Q+

α =
√

2

�
Q+

α ,

Ba = Na − Ña , Ta = 1

�

(
Na + Ña

)
, Q−

α =
√

2

�
Q−

α ,

J = L + L̃ , H = 1

�

(
L − L̃

)
, Rα =

√
2

�
Rα ,

S = N + Ñ , M = 1

�

(
N − Ñ

)
,

W+
α =

√
2

�
W+

α , Z = B + B̃ , Y = 1

�

(
B − B̃

)
,

W−
α =

√
2

�
W−

α ,

Y1 = X1 − X̃1 , Y2 = X2 − X̃2 ,

Y3 = X3 − X̃3 ,

U1 = 1

�
X̃1 , U2 = 1

�
X̃2 ,

U3 = 1

�
X̃3 , (3.20)

where the set of generators

{L , N , B, La, Na, X1, X2, X3,Q+
α ,Q−

α ,Rα,W−
α ,W+

α }
(3.21)

satisfies a supersymmetric extension of the enhanced Nappi–
Witten algebra. In particular, the generators of the enhanced
Nappi–Witten superalgebra obey the following commutation
relations:

[L , La] = εabLb ,
[
La, Lb

] = −εabN ,

[N , La] = εabNb ,

[L , Na] = εabNb ,
[
La, Nb

] = −εabB ,

[
L ,Q±

α

] = −1

2
(γ0)

β
α Q±

β ,

123
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[L ,Rα] = −1

2
(γ0)

β
α Rβ ,

[
L ,W±

α

] = −1

2
(γ0)

β
α W±

β ,

[
N ,Q+

α

] = −1

2
(γ0)

β
α Rβ ,

[
N ,Q−

α

] = −1

2
(γ0)

β
α W−

β , [N ,Rα] = −1

2
(γ0)

β
α W+

β ,

[
B,Q+

α

] = −1

2
(γ0)

β
α W+

β ,

[
X1,Q±

α

] = ±1

2
(γ0)αβ Q±

β , [X1,Rα] = 1

2
(γ0)αβ Rβ ,

[
X1,W±

α

] = ±1

2
(γ0)αβ W±

β ,

[
X2,Q+

α

] = 1

2
(γ0)αβ Rβ ,

[
X2,Q−

α

] = −1

2
(γ0)αβ W−

β ,

[X2,Rα] = 1

2
(γ0)αβ W+

β ,

[
X3,Q+

α

] = 1

2
(γ0)αβ W+

β ,
[
La,Q+

α

] = −1

2
(γa)

β
α Q−

β ,

[
La,Q−

α

] = −1

2
(γa)

β
α Rβ ,

[La,Rα] = −1

2
(γa)

β
α W−

β ,
[
La,W−

α

] = −1

2
(γa)

β
α W+

β ,

[
Na,Q+

α

] = −1

2
(γa)

β
α W−

β ,

[
Na,Q−

α

] = −1

2
(γa)

β
α W+

β , (3.22)

along with the following anti-commutation relations:

{Q+
α ,Q+

β } = − (γ0C)αβ L − (γ0C)αβ X1 ,

{Q−
α ,Q−

β } = − (γ0C)αβ N + (γ0C)αβ X2 ,

{Q+
α ,Rβ} = − (γ0C)αβ N − (γ0C)αβ X2 ,

{Q−
α ,W−

β } = − (γ0C)αβ B + (γ0C)αβ X3 ,

{Q+
α ,W+

β } = − (γ0C)αβ B − (γ0C)αβ X3 ,

{Rα,Rβ} = − (γ0C)αβ B − (γ0C)αβ X3 ,

{Q+
α ,Q−

β } = − (
γ aC

)
αβ

La ,

{Q−
α ,Rβ} = − (

γ aC
)
αβ

Na ,

{Q+
α ,W−

β } = − (
γ aC

)
αβ

Na . (3.23)

While the Nappi–Witten superalgebra [46,47] requires three
fermionic generators {Q+

α ,Q−
α ,Rα}, the supersymmetric

extension of the enhanced Nappi–Witten algebra requires
the introduction of five fermionic generators {Q+

α ,Q−
α ,Rα,

W+
α ,W−

α }. The presence of additional Majorana fermionic
charges is due to the extra bosonic content and such fermionic
generators are necessary to satisfy the Jacobi identity.1 On
the other hand, the set of generators

1 Let us mention, here, that the presence of extra fermionic generators
(namely besides the gravitino) in supergravity has been considered also
in higher-dimensional (relativistic) cases, see e.g. [69,82–85].

{L̃, Ñ , B̃, L̃a, Ña, X̃1, X̃2, X̃3} (3.24)

satisfies the bosonic enhanced Nappi–Witten algebra [40,
47], that is
[
L̃, L̃a

]
= εab L̃b ,

[
L̃a, L̃b

]
= −εab Ñ ,[

Ñ , L̃a

]
= εab Ñb ,[

L̃, Ña

]
= εab Ñb ,

[
L̃a, Ñb

]
= −εab B̃ , (3.25)

supplemented with the additional bosonic generators {X̃1,

X̃2, X̃3}. Although the extra bosonic generators {X̃1, X̃2, X̃3}
do not appear explicitly into the commutation relations,
they are essential to define a non-degenerate invariant ten-
sor. It is important to mention that the exotic Newtonian
superalgebra can alternatively be obtained by expanding the
enhanced Nappi–Witten superalgebra (3.22)-(3.23), follow-
ing the same procedure used in [47] (more details about the
expansion of the enhanced Nappi–Witten superalgebra and
its invariant tensor are given in “Appendix A”).

4 Exotic Newtonian supergravity action and flat limit

In this section, we shall explore the explicit construction of a
CS action based on the exotic Newtonian superalgebra given
by (2.1), (3.18) and (3.19). As we shall see, the exotic Newto-
nian superalgebra allows us to accommodate a cosmological
constant to the Newtonian supergravity.

The non-vanishing components of the invariant tensor for
the exotic Newtonian superalgebra can be obtained from the
N = 2 super AdS ones considering Theorem VII of Ref.
[49]. In particular, the exotic Newtonian superalgebra admits
the non-vanishing components of the invariant tensor for the
extended Newton-Hooke superalgebra [47],

〈J S〉 = −α0 , 〈GaGb〉 = α0δab ,

〈JM〉 = 〈HS〉 = −α1 , 〈Ga Pb〉 = α1δab ,

〈HM〉 = −α0

�2 , 〈Pa Pb〉 = α0

�2 δab ,

〈Y1Y2〉 = α0 〈Q−
α Q−

β 〉 = 〈Q+
α Rβ〉

= 2
(
α1 + α0

�

)
Cαβ ,

〈U1U2〉 = −α1

�2 , 〈Y1U2〉 = 〈Y2U1〉 = α1 ,

(4.1)

along with

〈SS〉 = 〈J Z〉 = −β0 ,

〈GaBb〉 = β0δab ,

〈MS〉 = 〈HZ〉 = 〈JY 〉 = −β1 ,

〈PaBb〉 = 〈GaTb〉 = β1δab ,

123



646 Page 8 of 15 Eur. Phys. J. C (2021) 81 :646

〈MM〉 = 〈HY 〉 = −β0

�2 , 〈PaTb〉 = β0

�2 δab ,

〈Y1Y3〉 = 〈Y2Y2〉 = β0 ,

〈Q+
α W

+
β 〉 = 〈Q−

α W
−
β 〉 = 〈RαRβ〉 = 2

(
β1 + β0

�

)
Cαβ ,

〈U1U3〉 = 〈U2U2〉 = −β1

�2 ,

〈Y1U3〉 = 〈Y3U1〉 = 〈Y2U2〉 = β1 , (4.2)

where the extended Newtonian parameters are related to the
relativistic N = 2 super AdS ones through the semigroup
elements as

α0 = λ2μ0 , α1 = λ2μ1 ,

β0 = λ4μ0 , β1 = λ4μ1 . (4.3)

One can notice that the invariant tensor is given by two
families proportional to α and β, respectively. In particular,
the components proportional to α0 and β0 are related to an
exotic sector of a non-relativistic supergravity theory. In the
vanishing cosmological constant limit � → ∞, we recover
the invariant tensor for the extended Bargmann [27] and the
extended Newtonian superalgebras [28]. Although one could
consider additional components coming from the expan-
sion with the λ0 element, we shall omit such components
since they are related to trivial CS terms. On the other hand,
although the invariant tensor (4.1) is non-degenerate for the
extended Newton–Hooke superalgebra, the non-degeneracy
of the invariant supertrace for the exotic Newtonian superal-
gebra requires also to consider the components given by (4.2).
As we shall see, the non-degeneracy of the bilinear invariant
supertrace implies that the CS action involves a kinematical
term for each gauge field.

The gauge connection one-form for the exotic Newtonian
superalgebra is given by

A = τH + ea Pa + ωJ + ωaGa + mM + sS + taTa

+ba Ba + yY + zZ + y1Y1 + y2Y2 + y3Y3

+u1U1 + u2U2 + u3U3 + ψ̄+Q+ + ψ̄−Q− + ρ̄R

+φ̄+W+ + φ̄−W− . (4.4)

The corresponding curvature two-form F = d A + 1
2 [A, A]

reads

F = R (τ ) H + Ra
(
eb

)
Pa + R (ω) J + Ra

(
ωb

)
Ga

+R (m) M + R (s) S + Ra
(
tb

)
Ta

+Fa
(
bb

)
Ba + F (y) Y + F (z) Z + F (y1) Y1

+F (y2) Y2 + F (y3) Y3 + F (u1)U1

+F (u2)U2 + F (u3)U3 + ∇ψ̄+Q+ + ∇ψ̄−Q−

+∇ρ̄R + ∇φ̄+W+ + ∇φ̄−W− .

(4.5)

Here, the bosonic curvature two-forms are given by

F (ω) = R (ω) + 1

2�
ψ̄+γ 0ψ+ ,

F (y1) = dy1 + 1

2�
ψ̄+γ 0ψ+ ,

Fa
(
ωb

)
= Ra

(
ωb

)
+ 1

�
ψ̄+γ aψ− ,

F (y2) = dy2 − 1

2�
ψ̄−γ 0ψ− + 1

�
ψ̄+γ 0ρ ,

F (τ ) = R (τ ) + 1

2
ψ̄+γ 0ψ+ ,

F (y3) = dy3 − 1

�
ψ̄−γ 0φ− + 1

�
ψ̄+γ 0φ+ + 1

2�
ρ̄γ 0ρ ,

Fa
(
eb

)
= Ra

(
eb

)
+ ψ̄+γ aψ− ,

F (u1) = du1 + 1

2
ψ̄+γ 0ψ+ ,

F (s) = R (s) + 1

2�
ψ̄−γ 0ψ− + 1

�
ψ̄+γ 0ρ ,

F (u2) = du2 − 1

2
ψ̄−γ 0ψ− + 1

2
ψ̄+γ 0ρ ,

Fa
(
bb

)
= Ra

(
bb

)
+ 1

�
ψ̄−γ aρ + 1

�
ψ̄+γ aφ− ,

F (u3) = du3 − ψ̄−γ 0φ− + ψ̄+γ 0φ+ + 1

2
ρ̄γ 0ρ ,

F (m) = R (m) + 1

2
ψ̄−γ 0ψ− + ψ̄+γ 0ρ ,

Fa
(
tb

)
= Ra

(
tb

)
+ ψ̄−γ aρ + ψ̄+γ aφ− ,

F (z) = R (z) + 1

�
ψ̄−γ 0φ− + 1

�
ψ̄+γ 0φ+ + 1

2�
ρ̄γ 0ρ ,

F (y) = R (y) + ψ̄−γ 0φ− + ψ̄+γ 0φ+ + 1

2
ρ̄γ 0ρ ,

(4.6)

where R (ω), Ra
(
ωb

)
, R (τ ), Ra

(
eb

)
, R (s), Ra

(
bb

)
, R (m),

Ra
(
tb

)
, R (z) and R (y) are the respective bosonic curva-

ture two-forms (2.9)–(2.10) of the exotic Newtonian alge-
bra. On the other hand, the fermionic curvature two-forms
reads

∇ψ+ = dψ+ + 1

2
ωγ0ψ

+ + 1

2�
τγ0ψ

+ − 1

2
y1γ0ψ

+

∇ψ− = dψ− + 1

2
ωγ0ψ

− + 1

2�
τγ0ψ

− + 1

2
ωaγaψ

+

+ 1

2�
eaγaψ

+ + 1

2
y1γ0ψ

−

∇ρ = dρ + 1

2
ωγ0ρ + 1

2
sγ0ψ

+ + 1

2
ωaγaψ

−

123
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+ 1

2�
τγ0ρ + 1

2�
mγ0ψ

+ + 1

2�
eaγaψ

−

−1

2
y1γ0ρ − 1

2
y2γ0ψ

+ ,

∇φ+ = dφ+ + 1

2
ωγ0ψ

+ + 1

2
sγ0ρ + 1

2
ωaγaφ

−

+1

2
baγaψ

− + 1

2�
τγ0φ

+ + 1

2�
mγ0ρ

+ 1

2�
eaγaφ

− + 1

2�
taγaψ

− − 1

2
y1γ0φ

+

−1

2
y2γ0ρ − 1

2
y3γ0ψ

+ ,

∇φ− = dφ− + 1

2
ωγ0φ

− + 1

2
sγ0ψ

−

+1

2
ωaγaρ + 1

2
baγaψ

+ + 1

2�
τγ0φ

− + 1

2�
mγ0ψ

−

+ 1

2�
eaγaρ + 1

2�
taγaψ

+ + 1

2
y1γ0φ

−

+1

2
y2γ0ψ

− + 1

2
zγ0ψ

+ + 1

2�
yγ0ψ

+ . (4.7)

The gauge-invariant CS supergravity action based on the
super exotic Newtonian algebra given by (2.1), (3.18) and
(3.19) can be obtained by combining the gauge connec-
tion one-form (4.4) and the non-vanishing components of
the invariant tensor (4.1) and (4.2) into the general expres-
sion for the CS action (2.5). In particular, the exotic Newto-
nian (EN) CS supergravity action can be written in terms
of the super Extended Newton–Hooke (ENH) and super
Enhanced Bargmann–Newton–Hooke (EBNH) supergravity
Lagrangians, that is

ISuper-EN = k

4π

∫
LSuper ENH + LSuper EBNH , (4.8)

where

LSuper-ENH = LExtended-NH + α0

[
2y1dy2 − 2

�
ψ̄−∇ψ−

−2

�
ψ̄+∇ρ − 2

�
ρ̄∇ψ+

]

+α1

[
2y1du2 + 2y2du1 + 2

�2 u1du2

−2ψ̄−∇ψ− − 2ψ̄+∇ρ − 2ρ̄∇ψ+
]

, (4.9)

and

LSuper-EBNH = LEnhanced-BNH + β0

[
2y1dy3 + y2dy2

−2

�
ψ̄+∇φ+

−2

�
φ̄+∇ψ+ − 2

�
ψ̄−∇φ−

− 2

�
φ̄−∇ψ− − 2

�
ρ̄∇ρ

]

+β1 [2y1du3 + 2y3du1 + 2y2du2

+ 2

�2 u1du3 + 1

�2 u2du2 − 2ψ̄+∇φ+

−2φ̄+∇ψ+ − 2ψ̄−∇φ− − 2φ̄−∇ψ−

−2ρ̄∇ρ] . (4.10)

Here, LExtended-NH and LEnhanced-BNH correspond to the
Extended Newton-Hooke and Enhanced Bargmann-Newton-
Hooke gravity Lagragians which are given by (2.7) and (2.8),
respectively. The exotic Newtonian supergravity CS action
(4.8) generalizes the extended Newtonian supergravity the-
ory [28] by introducing a cosmological constant and consid-
ering six additional bosonic gauge fields y1, y2, y3, u1, u2 and
u3. Interestingly, a supersymmetric extension of the extended
Newtonian gravity [28,39] appears in the vanishing cosmo-
logical constant limit � → ∞. In such limit, the curvature
two-forms reduce to the extended Newtonian ones. Further-
more, the fermionic gauge fields do not contribute anymore
to the exotic sectors, along α0 and β0, in the flat limit. Such
exotic terms can be seen as the non-relativistic version of the
exotic supergravity Lagrangian [52]. In particular, the exotic
Newtonian supergravity CS action (4.8) can alternatively be
recovered as an S(4)

E -expansion of the relativisticN = 2 AdS
supergravity CS action [81,86,87],

IN=2
AdS =

∫
μ0

[
ωAdωA + 1

3
εABCωAωBωC + 1

�2 eAT
A

+tdt − 2

�

˜̄ψ i∇ψ̃ i
]

+μ1

[
2eAR

A + 1

3�2 εABCe
AeBeC + tdu

− 1

�2 udu − 2 ˜̄ψ i∇ψ̃ i
]

, (4.11)

where

RA = dωA + 1

2
εABCωBωC ,

T A = deA + 1

2
εABCωBeC ,

∇ψ̃ i = dψ̃ i + 1

2
ωAγAψ̃ i + 1

2�
eAγAψ̃ i + tεi j ψ̃ j .

(4.12)

Indeed, the exotic Newtonian CS supergravity action appears
after considering the S(4)

E -expansion of theN = 2 super AdS
gauge fields as

123
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ω = λ0ω0 , s = λ2ω0 , z = λ4ω0 ,

ωa = λ1ωa , ba = λ3ωa ,

τ = λ0e0 , m = λ2e0 , y = λ4e0 ,

ea = λ1ea , ta = λ3ea ,

ψ+ = λ0ψ̃
+ , ρ = λ2ψ̃

+ , φ+ = λ4ψ̃
+,

ψ− = λ1ψ̃
− , φ− = λ3ψ̃

− ,

y1 = λ0t , y2 = λ2t , y3 = λ4t ,

u1 = λ0u , u2 = λ2u , u3 = λ4u , (4.13)

along with the expanded parameters (4.3) and defining

ψ̃±
α = 1√

2

(
ψ̃1

α ± εαβψ̃2
β

)
. (4.14)

On the other hand, the non-degeneracy of the invariant
tensor (4.1) and (4.2) implies that the field equations derived
from the CS action (4.8) are given by the vanishing of the
curvature two-forms (4.6)-(4.7). Such curvatures transform
covariantly under the supersymmetry transformation laws
(the explicit supersymmetry transformation laws of the exotic
Newtonian superalgebra are given in “Appendix B”).

5 Conclusions

In this work we have presented an exotic Newtonian CS
supergravity theory in presence of a cosmological constant.
The underlying non-relativistic superalgebra, which we have
called as exotic Newtonian superalgebra, is obtained as an
S-expansion of the N = 2 AdS superalgebra considering a
particular semigroup. Interestingly, we showed that the exotic
Newtonian superalgebra can be written as two copies of the
so-called enhanced Nappi–Witten algebra [40,50], one of
which is supersymmetric. The new Newtonian supergravity
action contains the extended Newton-Hooke CS supergrav-
ity term [44] as a sub-case. Furthermore, we showed that
the most general extended Newtonian supergravity action
appears in the flat limit � → ∞ which contains the extended
Bargmann supergravity [27] as a particular sub-case. It would
be interesting to explore the matter coupling of the exotic
Newtonian supergravity theory presented here. Although
the exotic Newtonian supergravity theory differs from the
extended Newtonian one at the action level, one could expect
that the matter couplings of both theories behave similarly.

It would be worth considering further extensions of
the Newtonian supergravity theory obtained here and in
[28] by considering a Maxwellian generalization. One
could expect that such generalizations are given by the
respective supersymmetric extensions of the enlarged and
Maxwellian extended Newtonian gravity presented in [50].
On the other hand, following [44], one could explore a
Schrödinger extension [42,88] of the exotic Newtonian
superalgebra. Moving towards Newtonian supergravity the-

ories and their Schrödinger extension can be useful, for
instance, to approach supersymmetric field theories on non-
relativistic curved backgrounds via localization [89–91].

Our results and those obtained in [46,51] could be
extended to other relativistic (super)algebras. Indeed, it
seems that the S(4)

E semigroup allows to obtain the respective
Newtonian version of a relativistic (super)algebra. In par-
ticular, the procedure used here could be useful in presence
of supersymmetry, where the study of the non-relativistic
limit is highly non-trivial. It is interesting to notice that the
exotic Newtonian superalgebra can alternatively be recov-
ered by expanding the enhanced Nappi–Witten superalgebra
(see “Appendix A”). Although both methods are based on
the semigroup expansion method [49], they present subtle
differences which could lead to diverse extensions of our
results. Indeed, to obtain diverse Newtonian (super)algebras
from an enhanced Nappi–Witten (super)algebra, we need to
consider diverse semigroups as in [50]. On the other hand, the
derivation of various Newtonian (super)algebras by expand-
ing a relativistic (super)algebra requires to consider different
original algebras without modifying the semigroup.
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A Exotic Newtonian superalgebra by expanding an
enhanced Nappi–Witten superalgebra

As was shown in [50], diverse generalizations of the extended
Newtonian algebra appear as S-expansions of an enhanced
Nappi–Witten algebra. Here, we show that a supersymmetric
extension of the enhanced Nappi–Witten algebra allows to
obtain the exotic Newtonian superalgebra (2.1), (3.18) and
(3.19) considering a particular semigroup. Let

g = {L̂, N̂ , B̂, L̂a, N̂a, X̂1, X̂2, X̂3, Q̂
+
α , Q̂−

α , R̂α, Ŵ−
α , Ŵ+

α }
(A.1)

be a supersymmetric extension of the enhanced Nappi–
Witten algebra whose generators satisfy (3.22) and (3.23).
The presence of the additional generators {X̂1, X̂2, X̂3}
allows us not only to make contact with the exotic New-
tonian superalgebra obtained here but also to establish a
non-degenerate invariant tensor. In particular, the enhanced
Nappi–Witten superalgebra (3.22)-(3.23) admits the follow-
ing non-vanishing components of the invariant tensor:

〈L̂ N̂ 〉 = −γ1 , 〈N̂ N̂ 〉 = 〈N̂ B̂〉 = −γ2 ,

〈L̂a L̂b〉 = γ1δab , 〈L̂a N̂b〉 = γ2δab ,

〈X̂1 X̂2〉 = �1 , 〈X̂2 X̂2〉 = 〈X̂1 X̂3〉 = �2 ,

〈Q̂−
α Q̂−

β 〉 = 〈Q̂+
α R̂β〉 = 2γ1Cαβ,

〈Q̂+
α Ŵ

+
β 〉 = 〈Q̂−

α Ŵ
−
β 〉 = 〈R̂α R̂β〉 = 2γ2Cαβ , (A.2)

where γ1, �1, �2 and γ2 are arbitrary independent constants.
Let us note that the components proportional to γ1 and ρ1 cor-
respond to those of the super Nappi–Witten ones [47]. Nev-
ertheless, the complete set of components (A.2) is required
to ensure the non-degeneracy of the bilinear invariant trace.

Before considering the S-expansion of the enhanced
Nappi–Witten superalgebra, it is convenient to consider
a subspace decomposition g = V0 ⊕ V1 where V0 =
{L̂, N̂ , B̂, L̂a, N̂a, X̂1, X̂2, X̂3} and V1 = {Q̂+

α , Q̂−
α , R̂α,

Ŵ−
α , Ŵ+

α }. Such subspace decomposition satisfies (3.9). On

the other hand, let S(1)
L = {λ0, λ1, λ2} be the relevant semi-

group whose elements satisfy the following multiplication
law [73]:

λ2 λ2 λ2 λ2

λ1 λ2 λ1 λ2

λ0 λ0 λ2 λ2

λ0 λ1 λ2

(A.3)

where λ2 = 0S is the zero element of the semigroup. Then,
let us consider a semigroup decomposition S(1)

L = S0 ∪ S1

with S0 = {λ0, λ1, λ2} and S1 = {λ1, λ2}, which is said
to be resonant since it satisfies the same algebraic structure
as the subspace decomposition (3.9). After considering a
resonant subalgebra of the S(1)

L -expansion of the enhanced
Nappi–Witten superalgebra and performing a 0S-reduction,
one finds an expanded superalgebra which is spanned by the
set of generators

{L , N , B, La, Na, X1, X2, X3, L̃, Ñ , B̃, L̃a, Ña, X̃1,

X̃2, X̃3,Q+
α ,Q−

α ,Rα,W−
α ,W+

α } . (A.4)

The expanded generators are related to the original ones
through the semigroup elements as

λ2

λ1 L , N , B, La, Na, X1, X2, X3 Q+
α , Q−

α , Rα, W+
α , W−

α

λ0 L̃, Ñ , B̃, L̃a, Ña, X̃1, X̃2, X̃3

L̂, N̂ , B̂, L̂a, N̂a, X̂1, X̂2, X̂3 Q̂+
α , Q̂−

α , R̂α, Ŵ+
α , Ŵ−

α

(A.5)

Two enhanced Nappi–Witten algebras, one of which
is augmented by supersymmetry, are obtained using the
multiplication law of the semigroup (A.3) and the (anti-
)commutation relations of the original superalgebra (3.22)-
(3.23). In particular, the set of generators

{L , N , B, La, Na, X1, X2, X3,Q+
α ,Q−

α ,Rα,W−
α ,W+

α }
(A.6)

satisfies the enhanced Nappi–Witten superalgebra (3.22)-
(3.23). On the other hand, the set of generators

{L̃, Ñ , B̃, L̃a, Ña, X̃1, X̃2, X̃3} (A.7)

satisfies the bosonic enhanced Nappi–Witten algebra (3.25).
Then, the exotic Newtonian superalgebra (2.1), (3.18) and
(3.19) appears by considering the redefinition of the genera-
tors as in (3.20). Let us note that the non-vanishing com-
ponents of the invariant tensor for the two copies of the
enhanced Nappi–Witten algebra, one of which is supersym-
metric, can be obtained following the definitions of [49].
Indeed, the expanded superalgebra admits the following non-
vanishing components of the invariant tensor:
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〈LaLb〉 = μ1δab, 〈L̃a L̃b〉 = ν1δab ,

〈LN 〉 = −μ1 , 〈L̃ Ñ 〉 = −ν1 ,

〈X1X2〉 = ρ1 , 〈X̃1 X̃2〉 = ρ̃1 ,

〈LaNb〉 = μ2δab , 〈L̃a Ñb〉 = ν2δab ,

〈NN 〉 = 〈N B〉 = −μ2 , 〈Ñ Ñ 〉 = 〈Ñ B̃〉 = −ν2 ,

〈X2X2〉 = 〈X1X3〉 = ρ2 , 〈X̃2 X̃2〉 = 〈X̃1 X̃3〉 = ρ̃2 ,

〈Q−
α Q−

β 〉 = 〈Q+
α Rβ〉 = 2μ1Cαβ , 〈Q+

α W+
β 〉 = 〈Q−

α W−
β 〉

= 〈RαRβ〉 = 2μ2Cαβ , (A.8)

where the constants are related to the enhanced super Nappi–
Witten ones through the semigroup elements as

μ1 = λ1γ1 , μ2 = λ1γ2 , ρ1 = λ1�1 , ρ2 = λ1�2 ,

ν1 = λ0γ1 , ν2 = λ0γ2 , ρ̃1 = λ0�1 , ρ̃2 = λ0�2 .

(A.9)

Interestingly, the non-vanishing components of the invariant
tensor for the exotic Newtonian superalgebra (4.1) and (4.2)
can be alternatively recovered from the invariant tensor (A.8),
considering the redefinition of the generators as in (3.20) and
setting

α0 = μ1 + ν1 , α1 = 1

�
(μ1 − ν1) ,

ρ1 = α0 + α1 , ρ̃1 = −α1 ,

β0 = μ2 + ν2 , β1 = 1

�
(μ2 − ν2) ,

ρ2 = β0 + β1 , ρ̃2 = −β1 . (A.10)

B Supersymmetry gauge transformations

The supersymmetry transformation laws under which the
curvature two-forms (4.6) and (4.7) of the exotic Newtonian
superalgebra transform in a covariant way read

δω = −1

�
ε̄+γ 0ψ+ ,

δωa = −1

�
ε̄+γ aψ− − 1

�
ε̄−γ aψ+ ,

δτ = −ε̄+γ 0ψ+ ,

δea = −ε̄+γ aψ− − ε̄−γ aψ+ ,

δs = −1

�
ε̄−γ 0ψ− − 1

�
ε̄+γ 0ρ − 1

�
η̄γ 0ψ+ ,

δm = −ε̄−γ 0ψ− − ε̄+γ 0ρ − ρ̄γ 0ψ+ ,

δba = −1

�
ε̄−γ aρ − 1

�
η̄γ aψ− − 1

�
ε̄+γ aφ− − 1

�
ζ̄−γ aψ+ ,

δta = −ε̄−γ aρ − η̄γ aψ− − ε̄+γ aφ− − ζ̄−γ aψ+ ,

δz = −1

�
ε̄−γ 0φ− − 1

�
ζ̄−γ 0ψ− − 1

�
ε̄+γ 0φ+

−1

�
ζ̄+γ 0ψ+ − 1

�
η̄γ 0ρ ,

δy = −ε̄−γ 0φ− − ζ̄−γ 0ψ− − ε̄+γ 0φ+ − ζ̄+γ 0ψ+

−η̄γ 0ρ ,

δy1 = −1

�
ε̄+γ 0ψ+ ,

δy2 = +1

�
ε̄−γ 0ψ− − 1

�
ε̄+γ 0ρ − 1

�
η̄γ 0ψ+ ,

δy3 = +1

�
ε̄−γ 0φ− + 1

�
ζ̄−γ 0ψ− − 1

�
ε̄+γ 0φ+

−1

�
ζ̄+γ 0ψ+ − 1

�
η̄γ 0ρ ,

δu1 = −ε̄+γ 0ψ+ ,

δu2 = +ε̄−γ 0ψ− − ε̄+γ 0ρ − ρ̄γ 0ψ+ ,

δu3 = +ε̄−γ 0φ− + ζ̄−γ 0ψ− − ε̄+γ 0φ+

−ζ̄+γ 0ψ+ − η̄γ 0ρ , (B.1)

along with

δψ+ = dε+ + 1

2
ωγ0ε

+ + 1

2�
τγ0ε

+ − 1

2
y1γ0ε

+

δψ− = dε− + 1

2
ωγ0ε

− + 1

2�
τγ0ε

− + 1

2
ωaγaε

+

+ 1

2�
eaγaε

+ + 1

2
y1γ0ε

−

δρ = dη + 1

2
ωγ0η + 1

2
sγ0ε

+ + 1

2
ωaγaε

− + 1

2�
τγ0η

+ 1

2�
mγ0ε

+ + 1

2�
eaγaε

−

−1

2
y1γ0η − 1

2
y2γ0ε

+ ,

δφ+ = dζ+ + 1

2
ωγ0ε

+ + 1

2
sγ0η + 1

2
ωaγaζ

−

+1

2
baγaε

− + 1

2�
τγ0ζ

+ + 1

2�
mγ0η

+ 1

2�
eaγaζ

− + 1

2�
taγaε

− − 1

2
y1γ0ζ

+

−1

2
y2γ0η − 1

2
y3γ0ε

+ ,

δφ− = dζ− + 1

2
ωγ0ζ

− + 1

2
sγ0ε

− + 1

2
ωaγaη

+1

2
baγaε

+ + 1

2�
τγ0ζ

− + 1

2�
mγ0ε

−

+ 1

2�
eaγaη + 1

2�
taγaε

+ + 1

2
y1γ0ζ

− + 1

2
y2γ0ε

−

+1

2
zγ0ε

+ + 1

2�
yγ0ε

+ , (B.2)

where ε±, ζ± and η are the respective fermionic gauge
parameters related to the fermionic generators Q±, W± and
R. One can notice that in the vanishing cosmological con-
stant limit, � → ∞, we recover the supersymmetry trans-
formations laws under which the curvature two-forms of the
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extended Newtonian superalgebra transform in a covariant
way [28].
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